Chapter 1: Differential Form of Basic Equations

Size: px
Start display at page:

Download "Chapter 1: Differential Form of Basic Equations"

Transcription

1 MEG 74 Energ and Variational Methods in Mechanics I Brendan J. O Toole, Ph.D. Associate Professor of Mechanical Engineering Howard R. Hghes College of Engineering Universit of Nevada Las Vegas TBE B- (7) bj@me.nlv.ed Chapter : Differential Form of Basic Eqations 3-

2 Lectre 3 Otline Some Comments on Shear Strain Material Laws Eqilibrim Bondar Conditions Governing Eqations 3-

3 What Is the Difference Between Engineering Strain and Tensorial Strain Engineering and Tensorial Normal strains are defined the same: L/L Engineering Shear strain,, is defined as the change in angle of two perpendiclar aes as a material is deformed in shear. Tensorial shear strain is defined as ½ of engineering shear strain: ( )/ and ( )/ 3-3

4 Engineering Strain and Tensorial Strain It is sometimes convenient to write related eqations in matri form so that the are more compact. Albert Einstein devised a shorthand notation, Einstein s Indicial Notation, to be able to write eqations in an even more efficient manner (bt we will not be sing that here). All terms written with matri notation shold be eactl the same as if all the eqations were written ot eplicitl. Eample: Strain Energ Densit, W, is defined as the area nder the stress-strain crve. In the linear region of the crve, the area forms a triangle so: W ½ ( ) This eample assmes a -D problem with applied normal stresses in the - and - directions, and an applied shear stress. 3-4

5 Strain Energ Densit We wold like to be able to define strain energ densit in terms of matri operations: W ½ [][] Using engineering strain W W Engineering Strain and Tensorial Strain Using tensorial strain W ½ ( ) ( ) Tensorial Strain Mst Be Used In All Matri Operations ( ) This is the correct definition of W. Using engineering strain in matri eqations does not give the correct W. Using tensorial strain in matri eqations does give the correct W. 3-5

6 Material Laws (Constittive Relations) (Stress - Strain Eqations) The stress-strain eqations or constittive relations are a good eample of the seflness of the indicial notation. The most basic constittive relation that we first learn in Mechanics of Materials is the -D Hookes Law eqation: E, Stress eqals Yong's modls times strain. Later, we learned that if there is strain in more than one direction, the stress will be a fnction of all strains. 3-6

7 General 3-D Constittive Relations The first two (of nine) stress eqations can be written as shown below. Each of the nine stress components is a fnction of all nine strain components. Each Q variable is a different fnction of material properties. Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 3-7

8 General 3-D Constittive Relations Both the shorthand and fll matri versions of the 3-D constittive eqations are shown below. Q kl kl where i, j, k and l represent, and. Sometimes the nmbers, and 3 are sbstitted for, and. Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 3-8

9 Simplifing the Constittive Relations The general constittive eqations have 8 elastic constants. Lckil, the nmber of constants is redced for most practical materials. Both the stress and strain tensors are smmetric. ji and ji This redces the nmber of independent stresses and strains to

10 Constittive Relations Since there are onl si independent stresses and strains, another shorthand notation is introdced sing nmeric sbscripts. Let and and 3 and 3 4 and 4 5 and 5 6 and 6 3-

11 Constittive Relations This redces the nmber of independent material constants to Q Q Q3 Q4 Q5 Q6 Q Q Q3 Q4 Q5 Q6 Q3 Q3 Q33 Q43 Q53 Q63 Q4 Q4 Q34 Q44 Q54 Q64 Q5 Q5 Q35 Q45 Q55 Q65 Q6 Q6 Q36 Q46 Q56 Q66 A thermodnamics proof can be sed to show that the Q matri itself is smmetric, or Q Q ji. This redces the nmber of independent constants to

12 Smmetr of Stiffness Matri Smmetr of the stiffness matri is shown b considering the definition of Strain Energ: W The se of Einstein s Indicial Notation simplifies the proof. The proof is shown here bt we will not be covering indicial notation in this corse. Q W W Q kl kl kl Q Q kl These eqations can be rewritten with different sbscripts : kl Q kl This implies that Q, the stiffness matri is smmetric and redces the nmber of independent constants from 36 to. kl kl Q kl kl kl Q Both epressions for the strain energ are valid and can be eqated : Q Q Therefore : kl kl kl kl kl 3-

13 Anisotrop and Material Smmetr General Anisotrop A material with different material properties in all directions ehibits general anisotrop. independent elastic constants are reqired to define the stress-strain relationship for this tpe of material. Orthotropic Material Has 3 mtall orthogonal planes of elastic smmetr e.g.: A material with the same properties in the and - directions has elastic smmetr abot the - plane. Most composite materials ehibit elastic smmetr abot three planes Reqires 9 independent elastic constants 3-3

14 3-4 Orthotropic Stress-Strain Eqations or i Q j, where Q is know as the stiffness matri. Inverting the matri eqation ields: S S S S S S S S S S S S Q Q Q Q Q Q Q Q Q Q Q Q or i S j, where S is know as the compliance matri. [S] [Q] -

15 Compliance Matri The compliance matri vales are easier to define than the stiffness matri vales S S S3 S S S3 S3 S3 S33 S44 S55 S S E S 44 G 3 S E S 55 G 3 S 33 E 33 S 66 G S S E E S 3 S 3 3 E 3 E 33 S 3 S 3 3 E 3 E

16 Stiffness Matri TheQ components are fond b inverting S Q E ( 3 3 ) Q 44 G 3 Q E ( 3 3 ) Q 55 G 3 Q 33 E 33 ( ) Q 66 G Q E ( 3 3 ) E ( 3 3 ) Q 3 E ( 3 3 ) E 33 ( 3 3 ) Q 3 E ( 3 3 ) E 33 ( 3 3 )

17 3-7 Isotropic Stress-Strain Relations ( ) ( ) ( ) E ( )( ) E

18 Isotropic Stress-Strain Relations (Matri Form of Eqations) E E (Inde Form of Eqations) kk ( )( ) ( ) E λδ or δ kk µ Where λ and µ are known as Lame s constants. Note that onl independent constants are needed to describe isotropic material behavior. E Also note that µ G shear stiffness or modls of rigidit 3-8

19 Common -D Conditions: Plane Stress Applied to thin flat plates where the loads are generall in the plane of the plate. Assme normal and shear stresses in the -direction are ero: Assme all other stresses and strains do not var throgh the thickness. Sbstitte these assmptions into the general isotropic material law eqations to get the following: and ( ) ( ) 3-9

20 Common -D Conditions: Plane Strain Applied to long strctres where loads are in the transverse direction (long pressried clinders). Can be applied to other strctres where strain is restricted in the -direction. Assme strains along the long ais of the clinder are ero -direction): Sbstitte these assmptions into the general isotropic material law eqations to get the following: ( ) and 3-

21 3- Material Laws for Plane Problems Plane Stress: E Plane Strain: ( )( ) E

22 3- Stress Resltants n n n t It is sometimes convenient to define stress resltants (n, n, n ) as an alternative for stresses. Calclate the stress resltant as force/width (not force/thickness). Units are force/length. / / / / / / t t t t t t d n d n d n ( )( ) Et n n n Plane Strain Plane Stress Et n n n

23 Total State of Strain Thermal strains or initial strains can be added to strains cased b applied loads: E ( o ) E A change in temperatre cases the following strains in an isotropic bod: o o o o o o α T o where α is the coefficient of thermal epansion. 3-3

24 D Eqilibrim Element State of stress acting on a differential planar element at point O in a -D bod. d d Volmetric (or bod) forces are represented b p v F d p V o d p V d d The volmetric differential element has dimensions of d, d, and d into the page. The -eqilibrim eqation is shown below: ( ) ( ) d dd d dd dd dd p ddd : V Dividing b ddd ields: p V 3-4

25 3-5 D Eqilibrim Eqations Writing a force balance eqation in the -direction and a moment balance eqation abot point O ields: V p Writing the -D eqilibrim eqations in matri form: V V p p p D V T

26 Stress Fnctions It is often convenient to epress the different stresses in terms of a single stress fnction. Then, instead of solving for 3 different stresses, there will onl be one nknown stress fnction. Air s stress fnction (ψ) is most common. In the absence of bod forces it is: ψ ψ ψ The stress fnction mst satisf the eqilibrim eqations. Verif that these eqations satisf eqilibrim. 3-6

27 Bondar Conditions Force Bondar Conditions along this edge. Displacement Bondar Conditions along this edge. S p Strctral Bod S The entire bondar of the strctre mst be defined as S OR S p. on S Force bondar condition ma be pressre, moment, point load, or ero load. Where are the prescribed displacements. Applied srface forces (per nit area) are referred to as srface tractions p. p p on S p 3-7

28 3-8 Governing Eqations ( ) i k k i ik kk Vi i P,, µ λδ Eqilibrim (3): Material Law (6): Strain Displacement Eqations (6): 5 Eqations with 5 nknowns:

29 3-9 Displacement Formlation of Governing Eqations Matri Form of Eqations D Strain Displacement Eqations: Material Law: Eqilibrim: () () (3) E D T p V Sbstitte () into () into (3): D T E D p V G p G p G p V V V Now there are onl 3 eqations and 3 nknowns:,,,

30 Displacement Formlation of Governing Eqations Shorthand Notation G i ( λ G) p k, ki Vi If there are no bod forces than this can be simplified even frther: i This is the classic biharmonic differential eqation that appears freqentl in mathematics. is the Laplacian or harmonic operator: i 3-3

31 Net Class Stress Analsis Engineering Beam Theor Torsion Theor 3-3

MEG 741 Energy and Variational Methods in Mechanics I

MEG 741 Energy and Variational Methods in Mechanics I MEG 74 Energ and Variational Methods in Mechanics I Brendan J. O Toole, Ph.D. Associate Professor of Mechanical Engineering Howard R. Hghes College of Engineering Universit of Nevada Las Vegas TBE B- (7)

More information

3 2D Elastostatic Problems in Cartesian Coordinates

3 2D Elastostatic Problems in Cartesian Coordinates D lastostatic Problems in Cartesian Coordinates Two dimensional elastostatic problems are discssed in this Chapter, that is, static problems of either plane stress or plane strain. Cartesian coordinates

More information

1 Differential Equations for Solid Mechanics

1 Differential Equations for Solid Mechanics 1 Differential Eqations for Solid Mechanics Simple problems involving homogeneos stress states have been considered so far, wherein the stress is the same throghot the component nder std. An eception to

More information

Formal Methods for Deriving Element Equations

Formal Methods for Deriving Element Equations Formal Methods for Deriving Element Eqations And the importance of Shape Fnctions Formal Methods In previos lectres we obtained a bar element s stiffness eqations sing the Direct Method to obtain eact

More information

Concept of Stress at a Point

Concept of Stress at a Point Washkeic College of Engineering Section : STRONG FORMULATION Concept of Stress at a Point Consider a point ithin an arbitraril loaded deformable bod Define Normal Stress Shear Stress lim A Fn A lim A FS

More information

Chapter 2 Introduction to the Stiffness (Displacement) Method. The Stiffness (Displacement) Method

Chapter 2 Introduction to the Stiffness (Displacement) Method. The Stiffness (Displacement) Method CIVL 7/87 Chater - The Stiffness Method / Chater Introdction to the Stiffness (Dislacement) Method Learning Objectives To define the stiffness matrix To derive the stiffness matrix for a sring element

More information

Chapter 6 Momentum Transfer in an External Laminar Boundary Layer

Chapter 6 Momentum Transfer in an External Laminar Boundary Layer 6. Similarit Soltions Chapter 6 Momentm Transfer in an Eternal Laminar Bondar Laer Consider a laminar incompressible bondar laer with constant properties. Assme the flow is stead and two-dimensional aligned

More information

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University 9. TRUSS ANALYSIS... 1 9.1 PLANAR TRUSS... 1 9. SPACE TRUSS... 11 9.3 SUMMARY... 1 9.4 EXERCISES... 15 9. Trss analysis 9.1 Planar trss: The differential eqation for the eqilibrim of an elastic bar (above)

More information

FEA Solution Procedure

FEA Solution Procedure EA Soltion Procedre (demonstrated with a -D bar element problem) EA Procedre for Static Analysis. Prepare the E model a. discretize (mesh) the strctre b. prescribe loads c. prescribe spports. Perform calclations

More information

Linear Strain Triangle and other types of 2D elements. By S. Ziaei Rad

Linear Strain Triangle and other types of 2D elements. By S. Ziaei Rad Linear Strain Triangle and other tpes o D elements B S. Ziaei Rad Linear Strain Triangle (LST or T6 This element is also called qadratic trianglar element. Qadratic Trianglar Element Linear Strain Triangle

More information

MAE 323: Chapter 4. Plane Stress and Plane Strain. The Stress Equilibrium Equation

MAE 323: Chapter 4. Plane Stress and Plane Strain. The Stress Equilibrium Equation The Stress Equilibrium Equation As we mentioned in Chapter 2, using the Galerkin formulation and a choice of shape functions, we can derive a discretized form of most differential equations. In Structural

More information

Crystal Micro-Mechanics

Crystal Micro-Mechanics Crystal Micro-Mechanics Lectre Classical definition of stress and strain Heng Nam Han Associate Professor School of Materials Science & Engineering College of Engineering Seol National University Seol

More information

A FOUR-NODED PLANE ELASTICITY ELEMENT BASED ON THE SEPARATION OF THE DEFORMATION MODES

A FOUR-NODED PLANE ELASTICITY ELEMENT BASED ON THE SEPARATION OF THE DEFORMATION MODES A FOUR-NODD LAN LASICIY LMN BASD ON H SARAION OF H DFORMAION MODS A. DÓSA D. RADU Abstract: his paper presents a for-noded qadrilateral finite element with translational degrees of freedom for plane elasticit

More information

A Decomposition Method for Volume Flux. and Average Velocity of Thin Film Flow. of a Third Grade Fluid Down an Inclined Plane

A Decomposition Method for Volume Flux. and Average Velocity of Thin Film Flow. of a Third Grade Fluid Down an Inclined Plane Adv. Theor. Appl. Mech., Vol. 1, 8, no. 1, 9 A Decomposition Method for Volme Flx and Average Velocit of Thin Film Flow of a Third Grade Flid Down an Inclined Plane A. Sadighi, D.D. Ganji,. Sabzehmeidani

More information

MMJ1153 COMPUTATIONAL METHOD IN SOLID MECHANICS PRELIMINARIES TO FEM

MMJ1153 COMPUTATIONAL METHOD IN SOLID MECHANICS PRELIMINARIES TO FEM B Course Content: A INTRODUCTION AND OVERVIEW Numerical method and Computer-Aided Engineering; Phsical problems; Mathematical models; Finite element method;. B Elements and nodes, natural coordinates,

More information

Period #5: Strain. A. Context. Structural mechanics deals with the forces placed upon mechanical systems and the resulting deformations of the system.

Period #5: Strain. A. Context. Structural mechanics deals with the forces placed upon mechanical systems and the resulting deformations of the system. Period #5: Strain A. Contet Strctral mechanics deals with the forces placed pon mechanical sstems and the reslting deformations of the sstem. Solid mechanics on the smaller scale relates stresses in the

More information

Modelling by Differential Equations from Properties of Phenomenon to its Investigation

Modelling by Differential Equations from Properties of Phenomenon to its Investigation Modelling by Differential Eqations from Properties of Phenomenon to its Investigation V. Kleiza and O. Prvinis Kanas University of Technology, Lithania Abstract The Panevezys camps of Kanas University

More information

Motion in an Undulator

Motion in an Undulator WIR SCHAFFEN WISSEN HEUTE FÜR MORGEN Sven Reiche :: SwissFEL Beam Dnamics Grop :: Pal Scherrer Institte Motion in an Undlator CERN Accelerator School FELs and ERLs On-ais Field of Planar Undlator For planar

More information

Reduction of over-determined systems of differential equations

Reduction of over-determined systems of differential equations Redction of oer-determined systems of differential eqations Maim Zaytse 1) 1, ) and Vyachesla Akkerman 1) Nclear Safety Institte, Rssian Academy of Sciences, Moscow, 115191 Rssia ) Department of Mechanical

More information

MEC-E8001 Finite Element Analysis, Exam (example) 2017

MEC-E8001 Finite Element Analysis, Exam (example) 2017 MEC-E800 Finite Element Analysis Eam (eample) 07. Find the transverse displacement w() of the strctre consisting of one beam element and po forces and. he rotations of the endpos are assmed to be eqal

More information

Geometric Image Manipulation. Lecture #4 Wednesday, January 24, 2018

Geometric Image Manipulation. Lecture #4 Wednesday, January 24, 2018 Geometric Image Maniplation Lectre 4 Wednesda, Janar 4, 08 Programming Assignment Image Maniplation: Contet To start with the obvios, an image is a D arra of piels Piel locations represent points on the

More information

EE2 Mathematics : Functions of Multiple Variables

EE2 Mathematics : Functions of Multiple Variables EE2 Mathematics : Fnctions of Mltiple Variables http://www2.imperial.ac.k/ nsjones These notes are not identical word-for-word with m lectres which will be gien on the blackboard. Some of these notes ma

More information

Two identical, flat, square plates are immersed in the flow with velocity U. Compare the drag forces experienced by the SHADED areas.

Two identical, flat, square plates are immersed in the flow with velocity U. Compare the drag forces experienced by the SHADED areas. Two identical flat sqare plates are immersed in the flow with velocity U. Compare the drag forces experienced by the SHAE areas. F > F A. A B F > F B. B A C. FA = FB. It depends on whether the bondary

More information

8 Properties of Lamina

8 Properties of Lamina 8 Properties of Lamina 8- ORTHOTROPIC LAMINA An orthotropic lamina is a sheet with unique and predictable properties and consists of an assemblage of fibers ling in the plane of the sheet and held in place

More information

Section 7.4: Integration of Rational Functions by Partial Fractions

Section 7.4: Integration of Rational Functions by Partial Fractions Section 7.4: Integration of Rational Fnctions by Partial Fractions This is abot as complicated as it gets. The Method of Partial Fractions Ecept for a few very special cases, crrently we have no way to

More information

FEA Solution Procedure

FEA Solution Procedure EA Soltion Procedre (demonstrated with a -D bar element problem) MAE 5 - inite Element Analysis Several slides from this set are adapted from B.S. Altan, Michigan Technological University EA Procedre for

More information

called the potential flow, and function φ is called the velocity potential.

called the potential flow, and function φ is called the velocity potential. J. Szantr Lectre No. 3 Potential flows 1 If the flid flow is irrotational, i.e. everwhere or almost everwhere in the field of flow there is rot 0 it means that there eists a scalar fnction ϕ,, z), sch

More information

The Plane Stress Problem

The Plane Stress Problem . 4 The Plane Stress Problem 4 Chapter 4: THE PLANE STRESS PROBLEM 4 TABLE OF CONTENTS Page 4.. INTRODUCTION 4 3 4... Plate in Plane Stress............... 4 3 4... Mathematical Model.............. 4 4

More information

FEA Solution Procedure

FEA Solution Procedure EA Soltion rocedre (demonstrated with a -D bar element problem) MAE - inite Element Analysis Many slides from this set are originally from B.S. Altan, Michigan Technological U. EA rocedre for Static Analysis.

More information

4 Exact laminar boundary layer solutions

4 Exact laminar boundary layer solutions 4 Eact laminar bondary layer soltions 4.1 Bondary layer on a flat plate (Blasis 1908 In Sec. 3, we derived the bondary layer eqations for 2D incompressible flow of constant viscosity past a weakly crved

More information

UNCERTAINTY FOCUSED STRENGTH ANALYSIS MODEL

UNCERTAINTY FOCUSED STRENGTH ANALYSIS MODEL 8th International DAAAM Baltic Conference "INDUSTRIAL ENGINEERING - 19-1 April 01, Tallinn, Estonia UNCERTAINTY FOCUSED STRENGTH ANALYSIS MODEL Põdra, P. & Laaneots, R. Abstract: Strength analysis is a

More information

Flexure of Thick Simply Supported Beam Using Trigonometric Shear Deformation Theory

Flexure of Thick Simply Supported Beam Using Trigonometric Shear Deformation Theory International Jornal of Scientific and Research Pblications, Volme, Isse 11, November 1 1 ISSN 5-15 Flere of Thick Simply Spported Beam Using Trigonometric Shear Deformation Theory Ajay G. Dahake *, Dr.

More information

Complex Variables. For ECON 397 Macroeconometrics Steve Cunningham

Complex Variables. For ECON 397 Macroeconometrics Steve Cunningham Comple Variables For ECON 397 Macroeconometrics Steve Cnningham Open Disks or Neighborhoods Deinition. The set o all points which satis the ineqalit

More information

Incompressible Viscoelastic Flow of a Generalised Oldroyed-B Fluid through Porous Medium between Two Infinite Parallel Plates in a Rotating System

Incompressible Viscoelastic Flow of a Generalised Oldroyed-B Fluid through Porous Medium between Two Infinite Parallel Plates in a Rotating System International Jornal of Compter Applications (97 8887) Volme 79 No., October Incompressible Viscoelastic Flow of a Generalised Oldroed-B Flid throgh Poros Medim between Two Infinite Parallel Plates in

More information

A FIRST COURSE IN THE FINITE ELEMENT METHOD

A FIRST COURSE IN THE FINITE ELEMENT METHOD INSTRUCTOR'S SOLUTIONS MANUAL TO ACCOMANY A IRST COURS IN TH INIT LMNT MTHOD ITH DITION DARYL L. LOGAN Contents Chapter 1 1 Chapter 3 Chapter 3 3 Chapter 17 Chapter 5 183 Chapter 6 81 Chapter 7 319 Chapter

More information

Chapter 3: BASIC ELEMENTS. solid mechanics)

Chapter 3: BASIC ELEMENTS. solid mechanics) Chapter 3: BASIC ELEMENTS Section 3.: Preliminaries (review of solid mechanics) Outline Most structural analsis FE codes are displacement based In this chapter we discuss interpolation methods and elements

More information

Homotopy Perturbation Method for Solving Linear Boundary Value Problems

Homotopy Perturbation Method for Solving Linear Boundary Value Problems International Jornal of Crrent Engineering and Technolog E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/categor/ijcet Research Article Homotop

More information

1. Solve Problem 1.3-3(c) 2. Solve Problem 2.2-2(b)

1. Solve Problem 1.3-3(c) 2. Solve Problem 2.2-2(b) . Sole Problem.-(c). Sole Problem.-(b). A two dimensional trss shown in the figre is made of alminm with Yong s modls E = 8 GPa and failre stress Y = 5 MPa. Determine the minimm cross-sectional area of

More information

Simplified Identification Scheme for Structures on a Flexible Base

Simplified Identification Scheme for Structures on a Flexible Base Simplified Identification Scheme for Strctres on a Flexible Base L.M. Star California State University, Long Beach G. Mylonais University of Patras, Greece J.P. Stewart University of California, Los Angeles

More information

CHAPTER 8 CONVECTION IN EXTERNAL TURBULENT FLOW

CHAPTER 8 CONVECTION IN EXTERNAL TURBULENT FLOW CHAPTER 8 CONVECTION IN EXTERNAL TURBULENT FLOW 8.1 Introdction Common phsical phenomenon, bt comple Still relies on empirical data and rdimentar conceptal drawings Tremendos growth in research over last

More information

Lab Manual for Engrd 202, Virtual Torsion Experiment. Aluminum module

Lab Manual for Engrd 202, Virtual Torsion Experiment. Aluminum module Lab Manal for Engrd 202, Virtal Torsion Experiment Alminm modle Introdction In this modle, o will perform data redction and analsis for circlar cross section alminm samples. B plotting the torqe vs. twist

More information

Computational Biomechanics Lecture 3: Intro to FEA. Ulli Simon, Frank Niemeyer, Martin Pietsch

Computational Biomechanics Lecture 3: Intro to FEA. Ulli Simon, Frank Niemeyer, Martin Pietsch Comptational iomechanics 06 ectre : Intro to Ulli Simon, rank Niemeyer, Martin Pietsch Scientific Compting Centre Ulm, UZWR Ulm University Contents E Eplanation in one sentence inite Element Methode =

More information

10.4 Solving Equations in Quadratic Form, Equations Reducible to Quadratics

10.4 Solving Equations in Quadratic Form, Equations Reducible to Quadratics . Solving Eqations in Qadratic Form, Eqations Redcible to Qadratics Now that we can solve all qadratic eqations we want to solve eqations that are not eactl qadratic bt can either be made to look qadratic

More information

Partial Differential Equations with Applications

Partial Differential Equations with Applications Universit of Leeds MATH 33 Partial Differential Eqations with Applications Eamples to spplement Chapter on First Order PDEs Eample (Simple linear eqation, k + = 0, (, 0) = ϕ(), k a constant.) The characteristic

More information

Elastico-Viscous MHD Free Convective Flow Past an Inclined Permeable Plate with Dufour Effects in Presence of Chemical Reaction

Elastico-Viscous MHD Free Convective Flow Past an Inclined Permeable Plate with Dufour Effects in Presence of Chemical Reaction International Jornal of Engineering and Technical Research (IJETR) ISSN: 2321-0869 (O) 2454-4698 (P), Volme-3, Isse-8, Agst 2015 Elastico-Viscos MHD Free Convective Flow Past an Inclined Permeable Plate

More information

Advanced topics in Finite Element Method 3D truss structures. Jerzy Podgórski

Advanced topics in Finite Element Method 3D truss structures. Jerzy Podgórski Advanced topics in Finite Element Method 3D trss strctres Jerzy Podgórski Introdction Althogh 3D trss strctres have been arond for a long time, they have been sed very rarely ntil now. They are difficlt

More information

1. State-Space Linear Systems 2. Block Diagrams 3. Exercises

1. State-Space Linear Systems 2. Block Diagrams 3. Exercises LECTURE 1 State-Space Linear Sstems This lectre introdces state-space linear sstems, which are the main focs of this book. Contents 1. State-Space Linear Sstems 2. Block Diagrams 3. Exercises 1.1 State-Space

More information

EXPT. 5 DETERMINATION OF pk a OF AN INDICATOR USING SPECTROPHOTOMETRY

EXPT. 5 DETERMINATION OF pk a OF AN INDICATOR USING SPECTROPHOTOMETRY EXPT. 5 DETERMITIO OF pk a OF IDICTOR USIG SPECTROPHOTOMETRY Strctre 5.1 Introdction Objectives 5.2 Principle 5.3 Spectrophotometric Determination of pka Vale of Indicator 5.4 Reqirements 5.5 Soltions

More information

Geometry of Span (continued) The Plane Spanned by u and v

Geometry of Span (continued) The Plane Spanned by u and v Geometric Description of Span Geometr of Span (contined) 2 Geometr of Span (contined) 2 Span {} Span {, } 2 Span {} 2 Geometr of Span (contined) 2 b + 2 The Plane Spanned b and If a plane is spanned b

More information

Calculations involving a single random variable (SRV)

Calculations involving a single random variable (SRV) Calclations involving a single random variable (SRV) Example of Bearing Capacity q φ = 0 µ σ c c = 100kN/m = 50kN/m ndrained shear strength parameters What is the relationship between the Factor of Safety

More information

u P(t) = P(x,y) r v t=0 4/4/2006 Motion ( F.Robilliard) 1

u P(t) = P(x,y) r v t=0 4/4/2006 Motion ( F.Robilliard) 1 y g j P(t) P(,y) r t0 i 4/4/006 Motion ( F.Robilliard) 1 Motion: We stdy in detail three cases of motion: 1. Motion in one dimension with constant acceleration niform linear motion.. Motion in two dimensions

More information

DISPLACEMENT ANALYSIS OF SUBMARINE SLOPES USING ENHANCED NEWMARK METHOD

DISPLACEMENT ANALYSIS OF SUBMARINE SLOPES USING ENHANCED NEWMARK METHOD DISPLACEMENT ANALYSIS OF SUBMARINE SLOPES USING ENHANCED NEWMARK METHOD N. ZANGENEH and R. POPESCU Faclt of Engineering & Applied Science, Memorial Universit, St. John s, Newfondland, Canada A1B 3X5 Abstract

More information

08.06 Shooting Method for Ordinary Differential Equations

08.06 Shooting Method for Ordinary Differential Equations 8.6 Shooting Method for Ordinary Differential Eqations After reading this chapter, yo shold be able to 1. learn the shooting method algorithm to solve bondary vale problems, and. apply shooting method

More information

Momentum Equation. Necessary because body is not made up of a fixed assembly of particles Its volume is the same however Imaginary

Momentum Equation. Necessary because body is not made up of a fixed assembly of particles Its volume is the same however Imaginary Momentm Eqation Interest in the momentm eqation: Qantification of proplsion rates esign strctres for power generation esign of pipeline systems to withstand forces at bends and other places where the flow

More information

BLOOM S TAXONOMY. Following Bloom s Taxonomy to Assess Students

BLOOM S TAXONOMY. Following Bloom s Taxonomy to Assess Students BLOOM S TAXONOMY Topic Following Bloom s Taonomy to Assess Stdents Smmary A handot for stdents to eplain Bloom s taonomy that is sed for item writing and test constrction to test stdents to see if they

More information

CH.7. PLANE LINEAR ELASTICITY. Multimedia Course on Continuum Mechanics

CH.7. PLANE LINEAR ELASTICITY. Multimedia Course on Continuum Mechanics CH.7. PLANE LINEAR ELASTICITY Multimedia Course on Continuum Mechanics Overview Plane Linear Elasticit Theor Plane Stress Simplifing Hpothesis Strain Field Constitutive Equation Displacement Field The

More information

The Plane Stress Problem

The Plane Stress Problem 14 The Plane Stress Problem IFEM Ch 14 Slide 1 Plate in Plane Stress Thickness dimension or transverse dimension z Top surface Inplane dimensions: in, plane IFEM Ch 14 Slide 2 Mathematical Idealization

More information

Chapter 3. Preferences and Utility

Chapter 3. Preferences and Utility Chapter 3 Preferences and Utilit Microeconomics stdies how individals make choices; different individals make different choices n important factor in making choices is individal s tastes or preferences

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending EA 3702 echanics & aterials Science (echanics of aterials) Chapter 4 Pure Bending Pure Bending Ch 2 Aial Loading & Parallel Loading: uniform normal stress and shearing stress distribution Ch 3 Torsion:

More information

FUZZY BOUNDARY ELEMENT METHODS: A NEW MULTI-SCALE PERTURBATION APPROACH FOR SYSTEMS WITH FUZZY PARAMETERS

FUZZY BOUNDARY ELEMENT METHODS: A NEW MULTI-SCALE PERTURBATION APPROACH FOR SYSTEMS WITH FUZZY PARAMETERS MODELOWANIE INŻYNIERSKIE ISNN 896-77X 3, s. 433-438, Gliwice 6 FUZZY BOUNDARY ELEMENT METHODS: A NEW MULTI-SCALE PERTURBATION APPROACH FOR SYSTEMS WITH FUZZY PARAMETERS JERZY SKRZYPCZYK HALINA WITEK Zakład

More information

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Chapter 8 KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Figure 8.1: 195 196 CHAPTER 8. KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS 8.1 Motivation In Chapter 3, the conservation of linear momentum for a

More information

1.1 The Equations of Motion

1.1 The Equations of Motion 1.1 The Equations of Motion In Book I, balance of forces and moments acting on an component was enforced in order to ensure that the component was in equilibrium. Here, allowance is made for stresses which

More information

Chapter 6 2D Elements Plate Elements

Chapter 6 2D Elements Plate Elements Institute of Structural Engineering Page 1 Chapter 6 2D Elements Plate Elements Method of Finite Elements I Institute of Structural Engineering Page 2 Continuum Elements Plane Stress Plane Strain Toda

More information

Chapter 2 Difficulties associated with corners

Chapter 2 Difficulties associated with corners Chapter Difficlties associated with corners This chapter is aimed at resolving the problems revealed in Chapter, which are cased b corners and/or discontinos bondar conditions. The first section introdces

More information

Pulses on a Struck String

Pulses on a Struck String 8.03 at ESG Spplemental Notes Plses on a Strck String These notes investigate specific eamples of transverse motion on a stretched string in cases where the string is at some time ndisplaced, bt with a

More information

5. The Bernoulli Equation

5. The Bernoulli Equation 5. The Bernolli Eqation [This material relates predominantly to modles ELP034, ELP035] 5. Work and Energy 5. Bernolli s Eqation 5.3 An example of the se of Bernolli s eqation 5.4 Pressre head, velocity

More information

Classify by number of ports and examine the possible structures that result. Using only one-port elements, no more than two elements can be assembled.

Classify by number of ports and examine the possible structures that result. Using only one-port elements, no more than two elements can be assembled. Jnction elements in network models. Classify by nmber of ports and examine the possible strctres that reslt. Using only one-port elements, no more than two elements can be assembled. Combining two two-ports

More information

IMPROVED ANALYSIS OF BOLTED SHEAR CONNECTION UNDER ECCENTRIC LOADS

IMPROVED ANALYSIS OF BOLTED SHEAR CONNECTION UNDER ECCENTRIC LOADS Jornal of Marine Science and Technology, Vol. 5, No. 4, pp. 373-38 (17) 373 DOI: 1.6119/JMST-17-3-1 IMPROVED ANALYSIS OF BOLTED SHEAR ONNETION UNDER EENTRI LOADS Dng-Mya Le 1, heng-yen Liao, hien-hien

More information

Time-adaptive non-linear finite-element analysis of contact problems

Time-adaptive non-linear finite-element analysis of contact problems Proceedings of the 7th GACM Colloqim on Comptational Mechanics for Yong Scientists from Academia and Indstr October -, 7 in Stttgart, German Time-adaptive non-linear finite-element analsis of contact problems

More information

A Fully-Neoclassical Finite-Orbit-Width Version. of the CQL3D Fokker-Planck code

A Fully-Neoclassical Finite-Orbit-Width Version. of the CQL3D Fokker-Planck code A Flly-Neoclassical Finite-Orbit-Width Version of the CQL3 Fokker-Planck code CompX eport: CompX-6- Jly, 6 Y. V. Petrov and. W. Harvey CompX, el Mar, CA 94, USA A Flly-Neoclassical Finite-Orbit-Width Version

More information

Localization in Undrained Deformation 1

Localization in Undrained Deformation 1 Localization in Undrained Deformation 1 J. W. Rdnicki Dept. of Civil and Env. Engn. and Dept. of Mech. Engn. Northwestern University Evanston, IL 6001-3109 John.Rdnicki@gmail.com Janary 7, 009 1 To appear

More information

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation:

Math 263 Assignment #3 Solutions. 1. A function z = f(x, y) is called harmonic if it satisfies Laplace s equation: Math 263 Assignment #3 Soltions 1. A fnction z f(x, ) is called harmonic if it satisfies Laplace s eqation: 2 + 2 z 2 0 Determine whether or not the following are harmonic. (a) z x 2 + 2. We se the one-variable

More information

Aircraft Structures Structural & Loading Discontinuities

Aircraft Structures Structural & Loading Discontinuities Universit of Liège Aerospace & Mechanical Engineering Aircraft Structures Structural & Loading Discontinuities Ludovic Noels Computational & Multiscale Mechanics of Materials CM3 http://www.ltas-cm3.ulg.ac.be/

More information

3.4-Miscellaneous Equations

3.4-Miscellaneous Equations .-Miscellaneos Eqations Factoring Higher Degree Polynomials: Many higher degree polynomials can be solved by factoring. Of particlar vale is the method of factoring by groping, however all types of factoring

More information

Axial Compressor Design Parameters

Axial Compressor Design Parameters Trbomachinery Lectre Notes 007-09-9 Axial Compressor Design Parameters Damian Vogt Corse MJ49 Nomenclatre Sbscripts Symbol Denotation Unit c Absolte velocity m/s h Enthalpy J/kg m& Mass flow rate kg/s

More information

Two-media boundary layer on a flat plate

Two-media boundary layer on a flat plate Two-media bondary layer on a flat plate Nikolay Ilyich Klyev, Asgat Gatyatovich Gimadiev, Yriy Alekseevich Krykov Samara State University, Samara,, Rssia Samara State Aerospace University named after academician

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Differentiation of Eponential Fnctions The net derivative rles that o will learn involve eponential fnctions. An eponential fnction is a fnction in the form of a constant raised to a variable power. The

More information

The Plane Stress Problem

The Plane Stress Problem . 14 The Plane Stress Problem 14 1 Chapter 14: THE PLANE STRESS PROBLEM 14 TABLE OF CONTENTS Page 14.1. Introduction 14 3 14.1.1. Plate in Plane Stress............... 14 3 14.1.. Mathematical Model..............

More information

Second-Order Wave Equation

Second-Order Wave Equation Second-Order Wave Eqation A. Salih Department of Aerospace Engineering Indian Institte of Space Science and Technology, Thirvananthapram 3 December 016 1 Introdction The classical wave eqation is a second-order

More information

ME 7502 Lecture 2 Effective Properties of Particulate and Unidirectional Composites

ME 7502 Lecture 2 Effective Properties of Particulate and Unidirectional Composites ME 75 Lecture Effective Properties of Particulate and Unidirectional Composites Concepts from Elasticit Theor Statistical Homogeneit, Representative Volume Element, Composite Material Effective Stress-

More information

Stress and Strain ( , 3.14) MAE 316 Strength of Mechanical Components NC State University Department of Mechanical & Aerospace Engineering

Stress and Strain ( , 3.14) MAE 316 Strength of Mechanical Components NC State University Department of Mechanical & Aerospace Engineering (3.8-3.1, 3.14) MAE 316 Strength of Mechanical Components NC State Universit Department of Mechanical & Aerospace Engineering 1 Introduction MAE 316 is a continuation of MAE 314 (solid mechanics) Review

More information

Pankaj Charan Jena 1, Dayal R. Parhi 2, G. Pohit 3. Pankaj Charan Jena et al. / International Journal of Engineering and Technology (IJET)

Pankaj Charan Jena 1, Dayal R. Parhi 2, G. Pohit 3. Pankaj Charan Jena et al. / International Journal of Engineering and Technology (IJET) Theoretical, Nmerical (FEM) and Experimental Analsis of composite cracked beams of different bondar conditions sing vibration mode shape crvatres Pankaj Charan Jena, Daal R. Parhi, G. Pohit 3 Department

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . Two smooth niform spheres S and T have eqal radii. The mass of S is 0. kg and the mass of T is 0.6 kg. The spheres are moving on a smooth horizontal plane and collide obliqely. Immediately before the

More information

16.21 Techniques of Structural Analysis and Design Spring 2003 Unit #5 - Constitutive Equations

16.21 Techniques of Structural Analysis and Design Spring 2003 Unit #5 - Constitutive Equations 6.2 Techniques of Structural Analysis and Design Spring 2003 Unit #5 - Constitutive quations Constitutive quations For elastic materials: If the relation is linear: Û σ ij = σ ij (ɛ) = ρ () ɛ ij σ ij =

More information

4.4 Moment of a Force About a Line

4.4 Moment of a Force About a Line 4.4 Moment of a orce bot a Line 4.4 Moment of a orce bot a Line Eample 1, page 1 of 3 1. orce is applied to the end of gearshift lever DE. Determine the moment of abot shaft. State which wa the lever will

More information

WEAR PREDICTION OF A TOTAL KNEE PROSTHESIS TIBIAL TRAY

WEAR PREDICTION OF A TOTAL KNEE PROSTHESIS TIBIAL TRAY APPLIED PHYSICS MEDICAL WEAR PREDICTION OF A TOTAL KNEE PROSTHESIS TIBIAL TRAY L. CÃPITANU, A. IAROVICI, J. ONIªORU Institte of Solid Mechanics, Romanian Academy, Constantin Mille 5, Bcharest Received

More information

Modeling Effort on Chamber Clearing for IFE Liquid Chambers at UCLA

Modeling Effort on Chamber Clearing for IFE Liquid Chambers at UCLA Modeling Effort on Chamber Clearing for IFE Liqid Chambers at UCLA Presented by: P. Calderoni own Meeting on IFE Liqid Wall Chamber Dynamics Livermore CA May 5-6 3 Otline his presentation will address

More information

Professor Terje Haukaas University of British Columbia, Vancouver The M4 Element. Figure 1: Bilinear Mindlin element.

Professor Terje Haukaas University of British Columbia, Vancouver   The M4 Element. Figure 1: Bilinear Mindlin element. Professor Terje Hakaas University of British Colmbia, ancover www.inrisk.bc.ca The M Element variety of plate elements exist, some being characterized as Kirchhoff elements, i.e., for thin plates, and

More information

Module 4. Analysis of Statically Indeterminate Structures by the Direct Stiffness Method. Version 2 CE IIT, Kharagpur

Module 4. Analysis of Statically Indeterminate Structures by the Direct Stiffness Method. Version 2 CE IIT, Kharagpur Modle Analysis of Statically Indeterminate Strctres by the Direct Stiffness Method Version CE IIT, Kharagr Lesson The Direct Stiffness Method: Trss Analysis (Contined) Version CE IIT, Kharagr Instrctional

More information

Prandl established a universal velocity profile for flow parallel to the bed given by

Prandl established a universal velocity profile for flow parallel to the bed given by EM 0--00 (Part VI) (g) The nderlayers shold be at least three thicknesses of the W 50 stone, bt never less than 0.3 m (Ahrens 98b). The thickness can be calclated sing Eqation VI-5-9 with a coefficient

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA. PRINCIPLES AND APPLICATIONS of FLUID MECHANICS UNIT 13 NQF LEVEL 3 OUTCOME 3 - HYDRODYNAMICS

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA. PRINCIPLES AND APPLICATIONS of FLUID MECHANICS UNIT 13 NQF LEVEL 3 OUTCOME 3 - HYDRODYNAMICS EDEXCEL NATIONAL CERTIFICATE/DIPLOMA PRINCIPLES AND APPLICATIONS of FLUID MECHANICS UNIT 3 NQF LEVEL 3 OUTCOME 3 - HYDRODYNAMICS TUTORIAL - PIPE FLOW CONTENT Be able to determine the parameters of pipeline

More information

AMS 212B Perturbation Methods Lecture 05 Copyright by Hongyun Wang, UCSC

AMS 212B Perturbation Methods Lecture 05 Copyright by Hongyun Wang, UCSC AMS B Pertrbation Methods Lectre 5 Copright b Hongn Wang, UCSC Recap: we discssed bondar laer of ODE Oter epansion Inner epansion Matching: ) Prandtl s matching ) Matching b an intermediate variable (Skip

More information

Understand basic stress-strain response of engineering materials.

Understand basic stress-strain response of engineering materials. Module 3 Constitutive quations Learning Objectives Understand basic stress-strain response of engineering materials. Quantify the linear elastic stress-strain response in terms of tensorial quantities

More information

PLATE AND PANEL STRUCTURES OF ISOTROPIC, COMPOSITE AND PIEZOELECTRIC MATERIALS, INCLUDING SANDWICH CONSTRUCTION

PLATE AND PANEL STRUCTURES OF ISOTROPIC, COMPOSITE AND PIEZOELECTRIC MATERIALS, INCLUDING SANDWICH CONSTRUCTION PLATE AND PANEL STRUCTURES OF ISOTROPIC, COMPOSITE AND PIEZOELECTRIC MATERIALS, INCLUDING SANDWICH CONSTRUCTION SOLID MECHANICS AND ITS APPLICATIONS Volume 10 Series Editor: G.M.L. GLADWELL Department

More information

Lecture 5. Differential Analysis of Fluid Flow Navier-Stockes equation

Lecture 5. Differential Analysis of Fluid Flow Navier-Stockes equation Lectre 5 Differential Analsis of Flid Flo Naier-Stockes eqation Differential analsis of Flid Flo The aim: to rodce differential eqation describing the motion of flid in detail Flid Element Kinematics An

More information

Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introduction The transmission line equations are given by

Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introduction The transmission line equations are given by Reflections on a mismatched transmission line Reflections.doc (4/1/00) Introdction The transmission line eqations are given by, I z, t V z t l z t I z, t V z, t c z t (1) (2) Where, c is the per-nit-length

More information

σ = F/A. (1.2) σ xy σ yy σ zx σ xz σ yz σ, (1.3) The use of the opposite convention should cause no problem because σ ij = σ ji.

σ = F/A. (1.2) σ xy σ yy σ zx σ xz σ yz σ, (1.3) The use of the opposite convention should cause no problem because σ ij = σ ji. Cambridge Universit Press 978-1-107-00452-8 - Metal Forming: Mechanics Metallurg, Fourth Edition Ecerpt 1 Stress Strain An understing of stress strain is essential for the analsis of metal forming operations.

More information

Inertial Instability of Arbitrarily Meandering Currents Governed by the Eccentrically Cyclogeostrophic Equation

Inertial Instability of Arbitrarily Meandering Currents Governed by the Eccentrically Cyclogeostrophic Equation Jornal of Oceanography, Vol. 59, pp. 163 to 17, 3 Inertial Instability of Arbitrarily Meandering Crrents Governed by the Eccentrically Cyclogeostrophic Eqation HIDEO KAWAI* 131-81 Shibagahara, Kse, Joyo,

More information

Introducing Ideal Flow

Introducing Ideal Flow D f f f p D p D p D f T k p D e The Continit eqation The Naier Stokes eqations The iscos Flo Energ Eqation These form a closed set hen to thermodnamic relations are specified Introdcing Ideal Flo Getting

More information

The Dual of the Maximum Likelihood Method

The Dual of the Maximum Likelihood Method Department of Agricltral and Resorce Economics University of California, Davis The Dal of the Maximm Likelihood Method by Qirino Paris Working Paper No. 12-002 2012 Copyright @ 2012 by Qirino Paris All

More information