Extreme Values of Functions

Size: px
Start display at page:

Download "Extreme Values of Functions"

Transcription

1 Extreme Values o Functions When we are using mathematics to model the physical world in which we live, we oten express observed physical quantities in terms o variables. Then, unctions are used to describe the ways in which these variables change. A scientist or engineer will be interested in the ups and downs o a unction that is, its maximum and minimum values, also known as its Turning Points. Drawing a graph o a unction using a graphical calculator or computer graph plotting package will reveal this behaviour, but i we want to know the precise location o such points we need to turn to algebra and dierential calculus. In this section we look at how we can ind maximum and minimum points in this way. Consider the graph o the unction, y(x), shown below. I, at the points marked A, B and C, we draw tangents to the graph, note that these are parallel to the x axis. They are horizontal. This means that at each o the points A, B and C the slope (or gradient) o the graph is zero. The gradient o this graph is zero at each o the points A, B and C. We know that the gradient o a graph is given by dx. Consequently, dx 0 o these points are known as stationary points. at points A, B and C. All Stationary Points Any point where the tangent line to the graph is horizontal is called a stationary point. We determine stationary points by setting 0 and solving or x. dx Reerring again to above curve. Notice that at points A and B the curve actually turns. These two stationary points are reerred to as Turning Points. Point C is not a turning point because, although the graph is lat or a short time, the curve continues to go down as we look rom let to right. So, all turning points are stationary points. But not all stationary points are turning points (e.g. point C).

2 In other words, there are points or where 0 which are not turning points Turning Points At a Turning Point 0 dx, not all points where 0 dx dx Not all Stationary Points are Turning Points. and solving or x. are Turning Points. That is : Deinition: Absolute (Global) Extreme Values One o the most useul applications o dierential calculus is to determine i the unction assumes any maximum or minimum values on a given interval and where these values are located. Deinition: Absolute Extreme Values Let be a continuous unction with domain D. Then c is the: a) absolute maximum value on D i and only i, x c x D b) absolute minimum value on D i and only i, x c x D Absolute (or global) maximum and minimum values are also called absolute extrema. Values which are maximum or minimum to those values around them are called local extrema. Think about what happens to the slope o the graph as we travel through the minimum turning point, rom let to right, that is as x increases. As you can see the slope goes rom negative through zero to positive as x increases. In other words, you notice that or a minimum value Turning Point, as x increases, the slope dx 0 dx is increasing rom negative through zero to positive. Similarly i as x

3 increases the slope goes rom positive through zero to negative, the Turning Point is then a Maximum. 0 dx Deinition: The Extreme Value Theorem I is continuous on a closed interval, a minimum value on the interval a b, then has both a maximum value and Note: While you do not need to have a closed interval or a continuous unction to have an absolute maximum or minimum, the Extreme Value Theorem say that continuous unctions are guaranteed to have one on a closed bounded interval. Finding Extreme Values I a unction has a local maximum or a local minimum value at an interior point c o. its domain, and i exists at c, then c 0

4 Deinition: Critical Point A point in the interior o the domain o a unction at which 0 exist is called a critical point. or does not Recall: derivatives do not exist at endpoints. The deinition o Critcal Points provides us a plan to determine solutions to Extreme Value problems. 1. Determine the derivative; set derivative equal to zero; solve or variable. This gives us a set o candidates.. Locate endpoint. This gives us a set o candidates. 3. Check all candidates to see which one is the largest or smallest. Example x x Find the absolute maximum and minimum values o 3 3,. on the interval Determine Derivative 3 x x 4 x 3 3 x Critical point occurs when c 0 Critical point: 0 0 or does not exist.

5 Endpoints: The absolute maximum is about 4.16 {occurs at endpoint x= 3} The absolute minimum is 0 {occurs at critical point x=0 Example Find the extreme value o x 4 x, x 1 x 1, x 1 Graphically By examining the graph we note that 1 does not exist, and 0 0 a local maximum value o 4 at x=0, and a local minimum value o at x=1.. This gives Algebraically 4 x, x x 1 1, x 1 The only point where 0 exist] is at x=0. Note: no value at x=1 [derivative does not 0 4 and 1 There are no Endpoints is this question to worry about. Thereore we see that 4 is a absolute maximum, and is a absolute minimum.

6 Example Find the extreme values o Graphically x x ln. x x It is hard to determine where at what are the maximums, but maybe at x 1.5 with a maximum o just about 1.1. The local minimum is at x=0, but it is not deined there. Algebraically x x x x x 0 occurs when x 0 x x x does not exist when x=0. The endpoints are, Checking these all candidate: No Solution Thereore the absolute maximum is The absolute minimum is

7 Example Determine the maximum and minimum values o the ollowing unction with given domain x 5 1x 3 4 x, 0 x 4 and solve or x Set x x 1x 64x x 1 x x 10x 1x 10x 1x 10x 6 100x 3 x x 36 1x The other possible values or the extreme are x=0 and x=4 Evaluate all o these in the original unction to ind the extreme values Thereore the maximum value is 5 17 and the minimum value is 16.

8 Example Determine the where the maximum value the ollowing unction with given domain 1600v E v, 0 v 100 v 6400 occurs. Set E v 0 and solve or v v E 1600 v v v v v 6400 v v 80 v v 6400 The derivative=0 when numerator =0 Thereore v=-80 and v=80 But v=-80 in not part o velocity interval The other possible values or the extreme are the endpoint v=0 and v=100 Evaluate all o these in the domain to ind the extreme values E E E The maximum value is 10, which occurs at v= 80 Example The population index o a new species o pink elephants is modelled by the equation 1 P t t, 0 t 1 16t 1 population index at its lowest level?. Where t is the time in years. At what time was the Set P t 0 and solve or t Pt 16t t 1 16

9 t t 1 16t 1 16t t t Thereore t= 4 81 The other possible values or the extreme are t=0 and t=1 Evaluate all o these in the domain to ind the extreme values P P P Thereore the minimum value o the population index occurs at t= 4 81 years.

Example: When describing where a function is increasing, decreasing or constant we use the x- axis values.

Example: When describing where a function is increasing, decreasing or constant we use the x- axis values. Business Calculus Lecture Notes (also Calculus With Applications or Business Math II) Chapter 3 Applications o Derivatives 31 Increasing and Decreasing Functions Inormal Deinition: A unction is increasing

More information

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A Math 13 Recitation Worksheet 1A 1 Plot these points in the y plane: A 0,0 B 5,0 C 0, 4 D 3,5 Without using a calculator, sketch a graph o each o these in the y plane: A y B 3 Consider the unction a Evaluate

More information

MEAN VALUE THEOREM. Section 3.2 Calculus AP/Dual, Revised /30/2018 1:16 AM 3.2: Mean Value Theorem 1

MEAN VALUE THEOREM. Section 3.2 Calculus AP/Dual, Revised /30/2018 1:16 AM 3.2: Mean Value Theorem 1 MEAN VALUE THEOREM Section 3. Calculus AP/Dual, Revised 017 viet.dang@humbleisd.net 7/30/018 1:16 AM 3.: Mean Value Theorem 1 ACTIVITY A. Draw a curve (x) on a separate sheet o paper within a deined closed

More information

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 1. Extreme points

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 1. Extreme points Roberto s Notes on Dierential Calculus Chapter 8: Graphical analysis Section 1 Extreme points What you need to know already: How to solve basic algebraic and trigonometric equations. All basic techniques

More information

Review of Prerequisite Skills for Unit # 2 (Derivatives) U2L2: Sec.2.1 The Derivative Function

Review of Prerequisite Skills for Unit # 2 (Derivatives) U2L2: Sec.2.1 The Derivative Function UL1: Review o Prerequisite Skills or Unit # (Derivatives) Working with the properties o exponents Simpliying radical expressions Finding the slopes o parallel and perpendicular lines Simpliying rational

More information

Absolute and Local Extrema

Absolute and Local Extrema Extrema of Functions We can use the tools of calculus to help us understand and describe the shapes of curves. Here is some of the data that derivatives f (x) and f (x) can provide about the shape of the

More information

Section 3.4: Concavity and the second Derivative Test. Find any points of inflection of the graph of a function.

Section 3.4: Concavity and the second Derivative Test. Find any points of inflection of the graph of a function. Unit 3: Applications o Dierentiation Section 3.4: Concavity and the second Derivative Test Determine intervals on which a unction is concave upward or concave downward. Find any points o inlection o the

More information

Basic mathematics of economic models. 3. Maximization

Basic mathematics of economic models. 3. Maximization John Riley 1 January 16 Basic mathematics o economic models 3 Maimization 31 Single variable maimization 1 3 Multi variable maimization 6 33 Concave unctions 9 34 Maimization with non-negativity constraints

More information

Math Review and Lessons in Calculus

Math Review and Lessons in Calculus Math Review and Lessons in Calculus Agenda Rules o Eponents Functions Inverses Limits Calculus Rules o Eponents 0 Zero Eponent Rule a * b ab Product Rule * 3 5 a / b a-b Quotient Rule 5 / 3 -a / a Negative

More information

The concept of limit

The concept of limit Roberto s Notes on Dierential Calculus Chapter 1: Limits and continuity Section 1 The concept o limit What you need to know already: All basic concepts about unctions. What you can learn here: What limits

More information

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature. Maima and minima In this unit we show how differentiation can be used to find the maimum and minimum values of a function. Because the derivative provides information about the gradient or slope of the

More information

9.3 Graphing Functions by Plotting Points, The Domain and Range of Functions

9.3 Graphing Functions by Plotting Points, The Domain and Range of Functions 9. Graphing Functions by Plotting Points, The Domain and Range o Functions Now that we have a basic idea o what unctions are and how to deal with them, we would like to start talking about the graph o

More information

y2 = 0. Show that u = e2xsin(2y) satisfies Laplace's equation.

y2 = 0. Show that u = e2xsin(2y) satisfies Laplace's equation. Review 1 1) State the largest possible domain o deinition or the unction (, ) = 3 - ) Determine the largest set o points in the -plane on which (, ) = sin-1( - ) deines a continuous unction 3) Find the

More information

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve.

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve. Dierentiation The main problem o dierential calculus deals with inding the slope o the tangent line at a point on a curve. deinition() : The slope o a curve at a point p is the slope, i it eists, o the

More information

Special types of Riemann sums

Special types of Riemann sums Roberto s Notes on Subject Chapter 4: Deinite integrals and the FTC Section 3 Special types o Riemann sums What you need to know already: What a Riemann sum is. What you can learn here: The key types o

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Extreme Values Philippe B Laval KSU April 9, 2012 Philippe B Laval (KSU) Functions of Several Variables April 9, 2012 1 / 13 Introduction In Calculus I (differential calculus

More information

Section 4.2: The Mean Value Theorem

Section 4.2: The Mean Value Theorem Section 4.2: The Mean Value Theorem Before we continue with the problem of describing graphs using calculus we shall briefly pause to examine some interesting applications of the derivative. In previous

More information

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on Mat 7 Calculus III Updated on 10/4/07 Dr. Firoz Chapter 14 Partial Derivatives Section 14.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair

More information

AP Calculus Notes: Unit 1 Limits & Continuity. Syllabus Objective: 1.1 The student will calculate limits using the basic limit theorems.

AP Calculus Notes: Unit 1 Limits & Continuity. Syllabus Objective: 1.1 The student will calculate limits using the basic limit theorems. Syllabus Objective:. The student will calculate its using the basic it theorems. LIMITS how the outputs o a unction behave as the inputs approach some value Finding a Limit Notation: The it as approaches

More information

= first derivative evaluated at that point: ( )

= first derivative evaluated at that point: ( ) Calculus 130, section 5.1-5. Functions: Increasing, Decreasing, Extrema notes by Tim Pilachowski Reminder: You will not be able to use a graphing calculator on tests! First, a quick scan of what we know

More information

WEEK 7 NOTES AND EXERCISES

WEEK 7 NOTES AND EXERCISES WEEK 7 NOTES AND EXERCISES RATES OF CHANGE (STRAIGHT LINES) Rates of change are very important in mathematics. Take for example the speed of a car. It is a measure of how far the car travels over a certain

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Extreme Values Philippe B. Laval KSU Today Philippe B. Laval (KSU) Extreme Values Today 1 / 18 Introduction In Calculus I (differential calculus for functions of one variable),

More information

Maximum and Minimum Values (4.2)

Maximum and Minimum Values (4.2) Math 111.01 July 17, 2003 Summer 2003 Maximum and Minimum Values (4.2) Example. Determine the points at which f(x) = sin x attains its maximum and minimum. Solution: sin x attains the value 1 whenever

More information

Differential Equaitons Equations

Differential Equaitons Equations Welcome to Multivariable Calculus / Dierential Equaitons Equations The Attached Packet is or all students who are planning to take Multibariable Multivariable Calculus/ Dierential Equations in the all.

More information

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context.

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context. Math 18.0A Gradients, Chain Rule, Implicit Dierentiation, igher Order Derivatives These notes ocus on our things: (a) the application o gradients to ind normal vectors to curves suraces; (b) the generaliation

More information

Rolle s Theorem and the Mean Value Theorem. Rolle s Theorem

Rolle s Theorem and the Mean Value Theorem. Rolle s Theorem 0_00qd //0 0:50 AM Page 7 7 CHAPTER Applications o Dierentiation Section ROLLE S THEOREM French mathematician Michel Rolle irst published the theorem that bears his name in 9 Beore this time, however,

More information

Mathematical Notation Math Calculus & Analytic Geometry III

Mathematical Notation Math Calculus & Analytic Geometry III Mathematical Notation Math 221 - alculus & Analytic Geometry III Use Word or WordPerect to recreate the ollowing documents. Each article is worth 10 points and should be emailed to the instructor at james@richland.edu.

More information

Mat 267 Engineering Calculus III Updated on 9/19/2010

Mat 267 Engineering Calculus III Updated on 9/19/2010 Chapter 11 Partial Derivatives Section 11.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair o real numbers (, ) in a set D a unique real number

More information

( x) f = where P and Q are polynomials.

( x) f = where P and Q are polynomials. 9.8 Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm ( ) ( ) ( ) P where P and Q are polynomials. Q An eample o a simple rational

More information

Final Exam Review Math Determine the derivative for each of the following: dy dx. dy dx. dy dx dy dx. dy dx dy dx. dy dx

Final Exam Review Math Determine the derivative for each of the following: dy dx. dy dx. dy dx dy dx. dy dx dy dx. dy dx Final Eam Review Math. Determine the derivative or each o the ollowing: a. y 6 b. y sec c. y ln d. y e. y e. y sin sin g. y cos h. i. y e y log j. k. l. 6 y y cosh y sin m. y ln n. y tan o. y arctan e

More information

Review Sheet 2 Solutions

Review Sheet 2 Solutions Review Sheet Solutions. A bacteria culture initially contains 00 cells and grows at a rate proportional to its size. After an hour the population has increased to 40 cells. (a) Find an expression for the

More information

1. Definition: Order Statistics of a sample.

1. Definition: Order Statistics of a sample. AMS570 Order Statistics 1. Deinition: Order Statistics o a sample. Let X1, X2,, be a random sample rom a population with p.d.. (x). Then, 2. p.d.. s or W.L.O.G.(W thout Loss o Ge er l ty), let s ssu e

More information

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a)

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a) MATH 2250 Calculus I Eric Perkerson Test 3 Review Sections Covered: 3.11, 4.1 4.6. Topics Covered: Linearization, Extreme Values, The Mean Value Theorem, Consequences of the Mean Value Theorem, Concavity

More information

Chapter 2 Section 3. Partial Derivatives

Chapter 2 Section 3. Partial Derivatives Chapter Section 3 Partial Derivatives Deinition. Let be a unction o two variables and. The partial derivative o with respect to is the unction, denoted b D1 1 such that its value at an point (,) in the

More information

8.4 Inverse Functions

8.4 Inverse Functions Section 8. Inverse Functions 803 8. Inverse Functions As we saw in the last section, in order to solve application problems involving eponential unctions, we will need to be able to solve eponential equations

More information

MTH 241: Business and Social Sciences Calculus

MTH 241: Business and Social Sciences Calculus MTH 241: Business and Social Sciences Calculus F. Patricia Medina Department of Mathematics. Oregon State University January 28, 2015 Section 2.1 Increasing and decreasing Definition 1 A function is increasing

More information

Physics 2B Chapter 17 Notes - First Law of Thermo Spring 2018

Physics 2B Chapter 17 Notes - First Law of Thermo Spring 2018 Internal Energy o a Gas Work Done by a Gas Special Processes The First Law o Thermodynamics p Diagrams The First Law o Thermodynamics is all about the energy o a gas: how much energy does the gas possess,

More information

4 3A : Increasing and Decreasing Functions and the First Derivative. Increasing and Decreasing. then

4 3A : Increasing and Decreasing Functions and the First Derivative. Increasing and Decreasing. then 4 3A : Increasing and Decreasing Functions and the First Derivative Increasing and Decreasing! If the following conditions both occur! 1. f (x) is a continuous function on the closed interval [ a,b] and

More information

We would now like to turn our attention to a specific family of functions, the one to one functions.

We would now like to turn our attention to a specific family of functions, the one to one functions. 9.6 Inverse Functions We would now like to turn our attention to a speciic amily o unctions, the one to one unctions. Deinition: One to One unction ( a) (b A unction is called - i, or any a and b in the

More information

Maximum and Minimum Values section 4.1

Maximum and Minimum Values section 4.1 Maximum and Minimum Values section 4.1 Definition. Consider a function f on its domain D. (i) We say that f has absolute maximum at a point x 0 D if for all x D we have f(x) f(x 0 ). (ii) We say that f

More information

Basic properties of limits

Basic properties of limits Roberto s Notes on Dierential Calculus Chapter : Limits and continuity Section Basic properties o its What you need to know already: The basic concepts, notation and terminology related to its. What you

More information

Tangent Lines and Derivatives

Tangent Lines and Derivatives The Derivative and the Slope of a Graph Tangent Lines and Derivatives Recall that the slope of a line is sometimes referred to as a rate of change. In particular, we are referencing the rate at which the

More information

5.1 Extreme Values of Functions

5.1 Extreme Values of Functions 5.1 Extreme Values of Functions Lesson Objective To be able to find maximum and minimum values (extrema) of functions. To understand the definition of extrema on an interval. This is called optimization

More information

Mathematical Notation Math Calculus & Analytic Geometry III

Mathematical Notation Math Calculus & Analytic Geometry III Name : Mathematical Notation Math 221 - alculus & Analytic Geometry III Use Word or WordPerect to recreate the ollowing documents. Each article is worth 10 points and can e printed and given to the instructor

More information

Math 180, Final Exam, Fall 2012 Problem 1 Solution

Math 180, Final Exam, Fall 2012 Problem 1 Solution Math 80, Final Exam, Fall 0 Problem Solution. Find the derivatives of the following functions: (a) ln(ln(x)) (b) x 6 + sin(x) e x (c) tan(x ) + cot(x ) (a) We evaluate the derivative using the Chain Rule.

More information

Review Sheet 2 Solutions

Review Sheet 2 Solutions Review Sheet Solutions 1. If y x 3 x and dx dt 5, find dy dt when x. We have that dy dt 3 x dx dt dx dt 3 x 5 5, and this is equal to 3 5 10 70 when x.. A spherical balloon is being inflated so that its

More information

= c, we say that f ( c ) is a local

= c, we say that f ( c ) is a local Section 3.4 Extreme Values Local Extreme Values Suppose that f is a function defined on open interval I and c is an interior point of I. The function f has a local minimum at x= c if f ( c) f ( x) for

More information

Curve Sketching. The process of curve sketching can be performed in the following steps:

Curve Sketching. The process of curve sketching can be performed in the following steps: Curve Sketching So ar you have learned how to ind st and nd derivatives o unctions and use these derivatives to determine where a unction is:. Increasing/decreasing. Relative extrema 3. Concavity 4. Points

More information

3.5 Graphs of Rational Functions

3.5 Graphs of Rational Functions Math 30 www.timetodare.com Eample Graph the reciprocal unction ( ) 3.5 Graphs o Rational Functions Answer the ollowing questions: a) What is the domain o the unction? b) What is the range o the unction?

More information

WorkSHEET 2.1 Applications of differentiation Name:

WorkSHEET 2.1 Applications of differentiation Name: WorkSHEET. Applications o dierentiation Name: The displacement o a vehicle can be described by the unction; (d in metres and t in seconds) d t = 4t + How ast is the car travelling? The derivative o a displacement

More information

8. THEOREM If the partial derivatives f x. and f y exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).

8. THEOREM If the partial derivatives f x. and f y exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b). 8. THEOREM I the partial derivatives and eist near (a b) and are continuous at (a b) then is dierentiable at (a b). For a dierentiable unction o two variables z= ( ) we deine the dierentials d and d to

More information

m2413f 4. Suppose that and . Find the following limit b. 10 c. 3 d Determine the limit (if it exists). 2. Find the lmit. a. 1 b. 0 c. d.

m2413f 4. Suppose that and . Find the following limit b. 10 c. 3 d Determine the limit (if it exists). 2. Find the lmit. a. 1 b. 0 c. d. m2413f Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find an equation of the line that passes through the point and has the slope. 4. Suppose that and

More information

New Functions from Old Functions

New Functions from Old Functions .3 New Functions rom Old Functions In this section we start with the basic unctions we discussed in Section. and obtain new unctions b shiting, stretching, and relecting their graphs. We also show how

More information

Target 6.1 The student will be able to use l Hôpital s Rule to evaluate indeterminate limits. lim. lim. 0, then

Target 6.1 The student will be able to use l Hôpital s Rule to evaluate indeterminate limits. lim. lim. 0, then Target 6.1 The student will be able to use l Hôpital s Rule to evaluate indeterminate limits. Recall from Section 2.1 Indeterminate form is when lim. xa g( Previously, we tried to reduce and then re-evaluate

More information

Asymptote. 2 Problems 2 Methods

Asymptote. 2 Problems 2 Methods Asymptote Problems Methods Problems Assume we have the ollowing transer unction which has a zero at =, a pole at = and a pole at =. We are going to look at two problems: problem is where >> and problem

More information

Graphical Relationships Among f, f,

Graphical Relationships Among f, f, Graphical Relationships Among f, f, and f The relationship between the graph of a function and its first and second derivatives frequently appears on the AP exams. It will appear on both multiple choice

More information

3. (12 points) Find an equation for the line tangent to the graph of f(x) =

3. (12 points) Find an equation for the line tangent to the graph of f(x) = April 8, 2015 Name The total number of points available is 168 Throughout this test, show your work Throughout this test, you are expected to use calculus to solve problems Graphing calculator solutions

More information

1. Which one of the following points is a singular point of. f(x) = (x 1) 2/3? f(x) = 3x 3 4x 2 5x + 6? (C)

1. Which one of the following points is a singular point of. f(x) = (x 1) 2/3? f(x) = 3x 3 4x 2 5x + 6? (C) Math 1120 Calculus Test 3 November 4, 1 Name In the first 10 problems, each part counts 5 points (total 50 points) and the final three problems count 20 points each Multiple choice section Circle the correct

More information

ExtremeValuesandShapeofCurves

ExtremeValuesandShapeofCurves ExtremeValuesandShapeofCurves Philippe B. Laval Kennesaw State University March 23, 2005 Abstract This handout is a summary of the material dealing with finding extreme values and determining the shape

More information

1 Antiderivatives graphically and numerically

1 Antiderivatives graphically and numerically Math B - Calculus by Hughes-Hallett, et al. Chapter 6 - Constructing antiderivatives Prepared by Jason Gaddis Antiderivatives graphically and numerically Definition.. The antiderivative of a function f

More information

AP Calculus. Analyzing a Function Based on its Derivatives

AP Calculus. Analyzing a Function Based on its Derivatives AP Calculus Analyzing a Function Based on its Derivatives Student Handout 016 017 EDITION Click on the following link or scan the QR code to complete the evaluation for the Study Session https://www.surveymonkey.com/r/s_sss

More information

Definition: Let f(x) be a function of one variable with continuous derivatives of all orders at a the point x 0, then the series.

Definition: Let f(x) be a function of one variable with continuous derivatives of all orders at a the point x 0, then the series. 2.4 Local properties o unctions o several variables In this section we will learn how to address three kinds o problems which are o great importance in the ield o applied mathematics: how to obtain the

More information

4 The Cartesian Coordinate System- Pictures of Equations

4 The Cartesian Coordinate System- Pictures of Equations 4 The Cartesian Coordinate System- Pictures of Equations Concepts: The Cartesian Coordinate System Graphs of Equations in Two Variables x-intercepts and y-intercepts Distance in Two Dimensions and the

More information

Infinite Limits. Infinite Limits. Infinite Limits. Previously, we discussed the limits of rational functions with the indeterminate form 0/0.

Infinite Limits. Infinite Limits. Infinite Limits. Previously, we discussed the limits of rational functions with the indeterminate form 0/0. Infinite Limits Return to Table of Contents Infinite Limits Infinite Limits Previously, we discussed the limits of rational functions with the indeterminate form 0/0. Now we will consider rational functions

More information

PTF #AB 21 Mean Value Theorem & Rolle s Theorem

PTF #AB 21 Mean Value Theorem & Rolle s Theorem PTF #AB 1 Mean Value Theorem & Rolle s Theorem Mean Value Theorem: What you need: a function that is continuous and differentiable on a closed interval f() b f() a What you get: f '( c) where c is an x

More information

Analyzing Functions Maximum & Minimum Points Lesson 75

Analyzing Functions Maximum & Minimum Points Lesson 75 (A) Lesson Objectives a. Understand what is meant by the term extrema as it relates to functions b. Use graphic and algebraic methods to determine extrema of a function c. Apply the concept of extrema

More information

whose domain D is a set of n-tuples in is defined. The range of f is the set of all values f x1,..., x n

whose domain D is a set of n-tuples in is defined. The range of f is the set of all values f x1,..., x n Grade (MCV4UE) - AP Calculus Etended Page o A unction o n-variales is a real-valued unction... n whose domain D is a set o n-tuples... n in which... n is deined. The range o is the set o all values...

More information

APPENDIX 1 ERROR ESTIMATION

APPENDIX 1 ERROR ESTIMATION 1 APPENDIX 1 ERROR ESTIMATION Measurements are always subject to some uncertainties no matter how modern and expensive equipment is used or how careully the measurements are perormed These uncertainties

More information

4.3 How derivatives affect the shape of a graph. The first derivative test and the second derivative test.

4.3 How derivatives affect the shape of a graph. The first derivative test and the second derivative test. Chapter 4: Applications of Differentiation In this chapter we will cover: 41 Maximum and minimum values The critical points method for finding extrema 43 How derivatives affect the shape of a graph The

More information

Greenwich Public Schools Mathematics Curriculum Objectives. Calculus

Greenwich Public Schools Mathematics Curriculum Objectives. Calculus Mathematics Curriculum Objectives Calculus June 30, 2006 NUMERICAL AND PROPORTIONAL REASONING Quantitative relationships can be expressed numerically in multiple ways in order to make connections and simplify

More information

The Mean Value Theorem. Oct

The Mean Value Theorem. Oct The Mean Value Theorem Oct 14 2011 The Mean Value Theorem Theorem Suppose that f is defined and continuous on a closed interval [a, b], and suppose that f exists on the open interval (a, b). Then there

More information

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Exercise 3 5 6 Total Points Department de Economics Mathematicas I Final Exam January 0th 07 Exam time: hours. LAST NAME: FIRST NAME: ID: DEGREE: GROUP: () Consider the

More information

5.1 Extreme Values of Functions. Borax Mine, Boron, CA Photo by Vickie Kelly, 2004 Greg Kelly, Hanford High School, Richland, Washington

5.1 Extreme Values of Functions. Borax Mine, Boron, CA Photo by Vickie Kelly, 2004 Greg Kelly, Hanford High School, Richland, Washington 5.1 Extreme Values of Functions Borax Mine, Boron, CA Photo by Vickie Kelly, 2004 Greg Kelly, Hanford High School, Richland, Washington 5.1 Extreme Values of Functions Borax Plant, Boron, CA Photo by Vickie

More information

Math6100 Day 8 Notes 6.1, 6.2 & 6.3, Area

Math6100 Day 8 Notes 6.1, 6.2 & 6.3, Area Math6100 Day 8 Notes 6.1, 6.2 & 6.3, Area 6.1 Area of Polygonal Regions Let's first derive formulas for the area of these shapes. 1. Rectangle 2. Parallelogram 3. Triangle 4. Trapezoid 1 Ex 1: Find the

More information

Math 2204 Multivariable Calculus Chapter 14: Partial Derivatives Sec. 14.7: Maximum and Minimum Values

Math 2204 Multivariable Calculus Chapter 14: Partial Derivatives Sec. 14.7: Maximum and Minimum Values Math 2204 Multivariable Calculus Chapter 14: Partial Derivatives Sec. 14.7: Maximum and Minimum Values I. Review from 1225 A. Definitions 1. Local Extreme Values (Relative) a. A function f has a local

More information

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question.

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question. Mth Calculus Practice Eam Questions NOTE: These questions should not be taken as a complete list o possible problems. The are merel intended to be eamples o the diicult level o the regular eam questions.

More information

1 y = Recitation Worksheet 1A. 1. Simplify the following: b. ( ) a. ( x ) Solve for y : 3. Plot these points in the xy plane:

1 y = Recitation Worksheet 1A. 1. Simplify the following: b. ( ) a. ( x ) Solve for y : 3. Plot these points in the xy plane: Math 13 Recitation Worksheet 1A 1 Simplify the following: a ( ) 7 b ( ) 3 4 9 3 5 3 c 15 3 d 3 15 Solve for y : 8 y y 5= 6 3 3 Plot these points in the y plane: A ( 0,0 ) B ( 5,0 ) C ( 0, 4) D ( 3,5) 4

More information

1.5 Continuity Continued & IVT

1.5 Continuity Continued & IVT 1.5 Continuity Continued & IVT A continuous function A non-continuous function To review the 3-step definition of continuity at a point, A function f ( x) is continuous at a point x = c if lim ( ) = (

More information

! " k x 2k$1 # $ k x 2k. " # p $ 1! px! p " p 1 # !"#$%&'"()'*"+$",&-('./&-/. !"#$%&'()"*#%+!'",' -./#")'.,&'+.0#.1)2,'!%)2%! !"#$%&'"%(")*$+&#,*$,#

!  k x 2k$1 # $ k x 2k.  # p $ 1! px! p  p 1 # !#$%&'()'*+$,&-('./&-/. !#$%&'()*#%+!',' -./#)'.,&'+.0#.1)2,'!%)2%! !#$%&'%()*$+&#,*$,# "#$%&'()"*#%+'",' -./#")'.,&'+.0#.1)2,' %)2% "#$%&'"()'*"+$",&-('./&-/. Taylor Series o a unction at x a is " # a k " # " x a# k k0 k It is a Power Series centered at a. Maclaurin Series o a unction is

More information

Mat 241 Homework Set 7key Due Professor David Schultz

Mat 241 Homework Set 7key Due Professor David Schultz Mat 1 Homework Set 7ke Due Proessor David Schultz Directions: Show all algebraic steps neatl and concisel using proper mathematical smbolism. When graphs and technolog are to be implemented, do so appropriatel.

More information

9.1 The Square Root Function

9.1 The Square Root Function Section 9.1 The Square Root Function 869 9.1 The Square Root Function In this section we turn our attention to the square root unction, the unction deined b the equation () =. (1) We begin the section

More information

1.2. Direction Fields: Graphical Representation of the ODE and its Solution Let us consider a first order differential equation of the form dy

1.2. Direction Fields: Graphical Representation of the ODE and its Solution Let us consider a first order differential equation of the form dy .. Direction Fields: Graphical Representation of the ODE and its Solution Let us consider a first order differential equation of the form dy = f(x, y). In this section we aim to understand the solution

More information

ELEG 3143 Probability & Stochastic Process Ch. 4 Multiple Random Variables

ELEG 3143 Probability & Stochastic Process Ch. 4 Multiple Random Variables Department o Electrical Engineering University o Arkansas ELEG 3143 Probability & Stochastic Process Ch. 4 Multiple Random Variables Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Two discrete random variables

More information

Warm-Up. Given f ( x) = x 2 + 3x 5, find the function value when x = 4. Solve for x using two methods: 3x 2 + 7x 20 = 0

Warm-Up. Given f ( x) = x 2 + 3x 5, find the function value when x = 4. Solve for x using two methods: 3x 2 + 7x 20 = 0 Warm-Up y CST/CAHSEE: Algebra 2 24.0 Review: Algebra 2 8.0 Given f ( x) = x 2 + 3x 5, find the function value when x = 4. Solve for x using two methods: 3x 2 + 7x 20 = 0 Which method do you find easier?

More information

INTRODUCTORY MATHEMATICAL ANALYSIS

INTRODUCTORY MATHEMATICAL ANALYSIS INTRODUCTORY MATHEMATICAL ANALYSIS For Business, Economics, and the Lie and Social Sciences Chapter 11 Dierentiation 011 Pearson Education, Inc. Chapter 11: Dierentiation Chapter Objectives To compute

More information

AP Calculus AB. Chapter IV Lesson B. Curve Sketching

AP Calculus AB. Chapter IV Lesson B. Curve Sketching AP Calculus AB Chapter IV Lesson B Curve Sketching local maxima Absolute maximum F I A B E G C J Absolute H K minimum D local minima Summary of trip along curve critical points occur where the derivative

More information

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f()

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f() 4.1 & 4. Student Notes Using the First and Second Derivatives Deinition A unction has an absolute maimum (or global maimum) at c i ( c) ( ) or all in D, where D is the domain o. The number () c is called

More information

Review D: Potential Energy and the Conservation of Mechanical Energy

Review D: Potential Energy and the Conservation of Mechanical Energy MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics 8. Spring 4 Review D: Potential Energy and the Conservation o Mechanical Energy D.1 Conservative and Non-conservative Force... D.1.1 Introduction...

More information

5.1 The derivative or the gradient of a curve. Definition and finding the gradient from first principles

5.1 The derivative or the gradient of a curve. Definition and finding the gradient from first principles Capter 5: Dierentiation In tis capter, we will study: 51 e derivative or te gradient o a curve Deinition and inding te gradient ro irst principles 5 Forulas or derivatives 5 e equation o te tangent line

More information

(One Dimension) Problem: for a function f(x), find x 0 such that f(x 0 ) = 0. f(x)

(One Dimension) Problem: for a function f(x), find x 0 such that f(x 0 ) = 0. f(x) Solving Nonlinear Equations & Optimization One Dimension Problem: or a unction, ind 0 such that 0 = 0. 0 One Root: The Bisection Method This one s guaranteed to converge at least to a singularity, i not

More information

x x implies that f x f x.

x x implies that f x f x. Section 3.3 Intervals of Increase and Decrease and Extreme Values Let f be a function whose domain includes an interval I. We say that f is increasing on I if for every two numbers x 1, x 2 in I, x x implies

More information

converges to a root, it may not always be the root you have in mind.

converges to a root, it may not always be the root you have in mind. Math 1206 Calculus Sec. 4.9: Newton s Method I. Introduction For linear and quadratic equations there are simple formulas for solving for the roots. For third- and fourth-degree equations there are also

More information

Example 1: Inverse Functions Show that the functions are inverse functions of each other (if they are inverses, )

Example 1: Inverse Functions Show that the functions are inverse functions of each other (if they are inverses, ) p332 Section 5.3: Inverse Functions By switching the x & y coordinates of an ordered pair, the inverse function can be formed. (The domain and range switch places) Denoted by f 1 Definition of Inverse

More information

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then Lectures 1/18 Derivatives and Graphs When we have a picture of the graph of a function f(x), we can make a picture of the derivative f (x) using the slopes of the tangents to the graph of f. In this section

More information

University of Toronto MAT137Y1 Calculus! Test 2 1 December 2017 Time: 110 minutes

University of Toronto MAT137Y1 Calculus! Test 2 1 December 2017 Time: 110 minutes University of Toronto MAT137Y1 Calculus! Test 2 1 December 2017 Time: 110 minutes Please complete this cover page with ALL CAPITAL LETTERS. Last name......................................................................................

More information

Lab on Taylor Polynomials. This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor.

Lab on Taylor Polynomials. This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor. Lab on Taylor Polynomials This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor. In this Lab we will approimate complicated unctions by simple unctions. The

More information

Unit #16 : Differential Equations

Unit #16 : Differential Equations Unit #16 : Differential Equations Goals: To introduce the concept of a differential equation. Discuss the relationship between differential equations and slope fields. Discuss Euler s method for solving

More information

MATH CALCULUS I 4.1: Area and Distance

MATH CALCULUS I 4.1: Area and Distance MATH 12002 - CALCULUS I 4.1: Area and Distance Professor Donald L. White Department of Mathematical Sciences Kent State University D.L. White (Kent State University) 1 / 8 The Area and Distance Problems

More information

Math 131. The Derivative and the Tangent Line Problem Larson Section 2.1

Math 131. The Derivative and the Tangent Line Problem Larson Section 2.1 Math 131. The Derivative and the Tangent Line Problem Larson Section.1 From precalculus, the secant line through the two points (c, f(c)) and (c +, f(c + )) is given by m sec = rise f(c + ) f(c) f(c +

More information

Anna D Aloise May 2, 2017 INTD 302: Final Project. Demonstrate an Understanding of the Fundamental Concepts of Calculus

Anna D Aloise May 2, 2017 INTD 302: Final Project. Demonstrate an Understanding of the Fundamental Concepts of Calculus Anna D Aloise May 2, 2017 INTD 302: Final Project Demonstrate an Understanding of the Fundamental Concepts of Calculus Analyzing the concept of limit numerically, algebraically, graphically, and in writing.

More information