Boolean Gossip Networks

Size: px
Start display at page:

Download "Boolean Gossip Networks"

Transcription

1 Boolean Gossip Networks Guodong Shi Research School of Engineering The Australian Na<onal University, Canberra, Australia ANU Workshop on Systems and Control,

2 Joint work with Bo Li and Hongsheng Qi, Academy of Mathema<cs and Systems Science, China Junfeng Wu, School of Control Automa<on, Zhejiang University, China and Alexandre Prou8ere, KTH Automa<c Control, Sweden 2

3 3

4 4

5 Genes are DNA and RNA that are biological codes of molecules for their func<ons 4

6 Genes are DNA and RNA that are biological codes of molecules for their func<ons Genes, when turned on, are expressed into RNA and protein as func<onal gene products 4

7 Genes are DNA and RNA that are biological codes of molecules for their func<ons Genes, when turned on, are expressed into RNA and protein as func<onal gene products Some genes (or proteins) can control the expressions of other genes, which are known as regulator genes 4

8 Genes are DNA and RNA that are biological codes of molecules for their func<ons Genes, when turned on, are expressed into RNA and protein as func<onal gene products Some genes (or proteins) can control the expressions of other genes, which are known as regulator genes Gene regulators interact with each other forming coupled dynamical evolu<ons 4

9 Gene Regulatory Networks Genes are DNA and RNA that are biological codes of molecules for their func<ons Genes, when turned on, are expressed into RNA and protein as func<onal gene products Some genes (or proteins) can control the expressions of other genes, which are known as regulator genes Gene regulators interact with each other forming coupled dynamical evolu<ons 4

10 Gene Regulatory Networks [Ma et al. 2014] 5

11 Kauffman s Probabilis<c Boolean Network 6

12 Kauffman s Probabilis<c Boolean Network In a network of n nodes, each node holds a binary state at discre<zed <me instants 6

13 Kauffman s Probabilis<c Boolean Network In a network of n nodes, each node holds a binary state at discre<zed <me instants There are a finite number of mappings from n-dimensional binary space to itself 6

14 Kauffman s Probabilis<c Boolean Network In a network of n nodes, each node holds a binary state at discre<zed <me instants There are a finite number of mappings from n-dimensional binary space to itself Each node randomly selects one of the mappings describing how it interacts with the remainder of the network 6

15 Kauffman s Probabilis<c Boolean Network In a network of n nodes, each node holds a binary state at discre<zed <me instants There are a finite number of mappings from n-dimensional binary space to itself Each node randomly selects one of the mappings describing how it interacts with the remainder of the network x i (t) 2 {0, 1} 6

16 Kauffman s Probabilis<c Boolean Network In a network of n nodes, each node holds a binary state at discre<zed <me instants There are a finite number of mappings from n-dimensional binary space to itself Each node randomly selects one of the mappings describing how it interacts with the remainder of the network x i (t) 2 {0, 1} x i (t +1)=f i x 1 (t),...,x n (t) 6

17 Kauffman s Probabilis<c Boolean Network x i (t +1)=f i x 1 (t),...,x n (t) x i (t) 2 {0, 1} [Kauffman 1969] 7

18 Kauffman s Probabilis<c Boolean Network x i (t +1)=f i x 1 (t),...,x n (t) 8

19 Kauffman s Probabilis<c Boolean Network x i (t +1)=f i x 1 (t),...,x n (t) Finding a singleton abractor is NP hard! [Akutsu et al. 1998] 8

20 Kauffman s Probabilis<c Boolean Network x i (t +1)=f i x 1 (t),...,x n (t) Finding a singleton abractor is NP hard! [Akutsu et al. 1998] [Shmulevich et al. 2002; Brun et al. 2005; Cheng and Qi 2009; Chaves and Carta 2014; ] 8

21 Kauffman s Proposal Revisited x i (t +1)=f i x 1 (t),...,x n (t) 9

22 Kauffman s Proposal Revisited x i (t +1)=f i x 1 (t),...,x n (t) Locality of gene interac<ons: each regulator gene interacts only with a few (2 or 3) neighboring genes. element received just two inputs from other elements is biologically reasonable [Kauffman 1969] 9

23 A Boolean Gossip Network Model 10

24 Pairwise Boolean Interac<ons V={1,...,n} G= V, E x i (t) 2 {0, 1} 11

25 Pairwise Boolean Interac<ons i j 12

26 Pairwise Boolean Interac<ons x i (t) 2 {0, 1} i j 12

27 Pairwise Boolean Interac<ons x i (t) 2 {0, 1} x j (t) 2 {0, 1} i j 12

28 Pairwise Boolean Interac<ons x i (t) 2 {0, 1} x j (t) 2 {0, 1} i j [Karp et al. 2000, Boyd et al. 2006] 12

29 Pairwise Boolean Interac<ons 13

30 Pairwise Boolean Interac<ons x i (t) 2 {0, 1} x j (t) 2 {0, 1} i H = 1,..., 9, A,..., F j 14

31 Pairwise Boolean Interac<ons x i (t) 2 {0, 1} x j (t) 2 {0, 1} i H = 1,..., 9, A,..., F Admissible interac<on set C = C 1,..., C q j 14

32 Boolean Gossip i x i (t) 2 {0, 1} x j (t) 2 {0, 1} H = 1,..., 9, A,..., F C = C 1,..., C q j 15

33 Boolean Gossip i x i (t) 2 {0, 1} x j (t) 2 {0, 1} H = 1,..., 9, A,..., F C = C 1,..., C q j 8 >< x i (t +1)=x i (t) C x k j (t), x >: j (t +1)=x j (t) C x l i (t), x m (t +1)=x m (t), m /2 {i, j}. 15

34 Induced Markov Chain 16

35 Induced Markov Chain X t = x 1 (t)... x n (t) > 16

36 Induced Markov Chain X t = x 1 (t)... x n (t) > S n = [s 1...s n ]: s i 2 {0, 1},i2 V 16

37 Induced Markov Chain X t = x 1 (t)... x n (t) > S n = [s 1...s n ]: s i 2 {0, 1},i2 V ] P = P [s1...s n ][q 1...q 2 R 2 n 2 n : n P [s1...s n ][q 1...q n ] := P X t+1 =[q 1...q n ] X t =[s 1...s n ]. 16

38 Induced Markov Chain M G (C) =(S n,p) X t = x 1 (t)... x n (t) > S n = [s 1...s n ]: s i 2 {0, 1},i2 V ] P = P [s1...s n ][q 1...q 2 R 2 n 2 n : n P [s1...s n ][q 1...q n ] := P X t+1 =[q 1...q n ] X t =[s 1...s n ]. 16

39 Posi<ve Boolean Interac<ons 17

40 Posi<ve Boolean Opera<ons ^ _ 18

41 Posi<ve Boolean Opera<ons ^ _ C pst = {_, ^} 18

42 Conven<onal Machinery: Convergence Proposition. There exists a Bernoulli random variable x such that P lim x i (t) =x, for all i 2 V =1. t!1 The limit x satisfies E{x } = (I 2 n 2 Q) 1 R X 0 [1...1]. 19

43 Mean-field Approxima<on for Regular Graphs (t) = nx i=1 x i (t)/n 20

44 Mean-field Approxima<on for Regular Graphs (t) = nx i=1 x i (t)/n d ds (s) =p 2 2 (s)(1 (s)) (1 p ) 2 2 (s)(1 (s)) 20

45 Mean-field Approxima<on for Regular Graphs (t) = nx i=1 x i (t)/n d ds (s) =p 2 2 (s)(1 (s)) (1 p ) 2 2 (s)(1 (s)) (s) = (0) (1 (0))e 2(1 2p )s + (0). 20

46 Numerical Example Node Proportion with State Simulated Realization p * =0.49 ODE Approximation p =0.49 * Simulated Realization p =0.51 * ODE Approximation p =0.51 * Time t 21 x 10 4

47 Communica<on Classes 22

48 Communica<on Classes In a Markov chain, two states in the state space communicate with each other if they are accessible from each other. 22

49 Communica<on Classes In a Markov chain, two states in the state space communicate with each other if they are accessible from each other. Communica<on rela<onship forms an equivalence rela<on over the state space; the resul<ng equivalence classes are called communica<on classes. 22

50 Communica<on Classes In a Markov chain, two states in the state space communicate with each other if they are accessible from each other. Communica<on rela<onship forms an equivalence rela<on over the state space; the resul<ng equivalence classes are called communica<on classes. M G (C) =(S n,p) 22

51 Communica<on Classes In a Markov chain, two states in the state space communicate with each other if they are accessible from each other. Communica<on rela<onship forms an equivalence rela<on over the state space; the resul<ng equivalence classes are called communica<on classes. M G (C) =(S n,p) C (G) 22

52 Communica<on Classes Theorem There hold (i) C pst (G) = 2n if G is a line graph; (ii) C pst (G) = m +3ifGisacyclegraphwithn =2m; C pst (G) = m +2 if G is a cycle graph with n =2m +1; (iii) (iv) C pst (G) = 5 if G is neither a line nor a cycle, and contains no odd cycle; C pst (G) = 3 if G is not a cycle graph but contains an odd cycle. 23

53 Communica<on Classes C pst (G) = 2n 24

54 Communica<on Classes 25

55 Communica<on Classes C pst (G) = 3 25

56 General Boolean Interac<ons 26

57 General Boolean Opera<ons H = 1,..., 9, A,..., F C = C 1,..., C q 27

58 General Boolean Opera<ons H = 1,..., 9, A,..., F C = C 1,..., C q =

59 General Boolean Opera<ons H = 1,..., 9, A,..., F C = C 1,..., C q =65535 B := B 1 S B2 B 1 = C 6= { A } 2 2 H : { A } C { 2, 3, A, B} B 2 = C 2 2 H : { 2, B} C { 2, 3, A, B} 27

60 General Boolean Opera<ons H = 1,..., 9, A,..., F C = C 1,..., C q = elements! B := B 1 S B2 B 1 = C 6= { A } 2 2 H : { A } C { 2, 3, A, B} B 2 = C 2 2 H : { 2, B} C { 2, 3, A, B} 27

61 Communica<on Classes C (G) 28

62 Communica<on Classes C (G) C = C1,..., Cq 28

63 Communica<on Classes C (G) C = C1,..., Cq 28

64 Absorbing Chain Theorem Suppose C 2 B. Then M G (C) isanabsorbingmarkovchainifandonlyifg does not contain an odd cycle. 29

65 Absorbing Chain Theorem Suppose C 2 2 H \ B. Then M G (C) isanabsorbingmarkovchainifandonly if one of the following two conditions holds (i) C { 0, 1, 2, 3, 4, 5, 6, 7}; (ii) C { 1, 3, 5, 7, 9, B, D, F }. 30

66 Absorbing Chain Theorem Suppose C 2 2 H \ B. Then M G (C) isanabsorbingmarkovchainifandonly if one of the following two conditions holds (i) C { 0, 1, 2, 3, 4, 5, 6, 7}; (ii) C { 1, 3, 5, 7, 9, B, D, F }. Thank you! 30

Opinion Dynamics over Signed Social Networks

Opinion Dynamics over Signed Social Networks Opinion Dynamics over Signed Social Networks Guodong Shi Research School of Engineering The Australian Na@onal University, Canberra, Australia Ins@tute for Systems Research The University of Maryland,

More information

Network motifs in the transcriptional regulation network (of Escherichia coli):

Network motifs in the transcriptional regulation network (of Escherichia coli): Network motifs in the transcriptional regulation network (of Escherichia coli): Janne.Ravantti@Helsinki.Fi (disclaimer: IANASB) Contents: Transcription Networks (aka. The Very Boring Biology Part ) Network

More information

GLOBEX Bioinformatics (Summer 2015) Genetic networks and gene expression data

GLOBEX Bioinformatics (Summer 2015) Genetic networks and gene expression data GLOBEX Bioinformatics (Summer 2015) Genetic networks and gene expression data 1 Gene Networks Definition: A gene network is a set of molecular components, such as genes and proteins, and interactions between

More information

CSCI1950 Z Computa3onal Methods for Biology Lecture 24. Ben Raphael April 29, hgp://cs.brown.edu/courses/csci1950 z/ Network Mo3fs

CSCI1950 Z Computa3onal Methods for Biology Lecture 24. Ben Raphael April 29, hgp://cs.brown.edu/courses/csci1950 z/ Network Mo3fs CSCI1950 Z Computa3onal Methods for Biology Lecture 24 Ben Raphael April 29, 2009 hgp://cs.brown.edu/courses/csci1950 z/ Network Mo3fs Subnetworks with more occurrences than expected by chance. How to

More information

Input-State Incidence Matrix of Boolean Control Networks and Its Applications

Input-State Incidence Matrix of Boolean Control Networks and Its Applications Input-State Incidence Matrix of Boolean Control Networks and Its Applications Yin Zhao, Hongsheng Qi, Daizhan Cheng The Key Laboratory of Systems & Control Institute of Systems Science, Academy of Mathematics

More information

Networks. Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource

Networks. Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource Networks Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource Networks in biology Protein-Protein Interaction Network of Yeast Transcriptional regulatory network of E.coli Experimental

More information

Boolean models of gene regulatory networks. Matthew Macauley Math 4500: Mathematical Modeling Clemson University Spring 2016

Boolean models of gene regulatory networks. Matthew Macauley Math 4500: Mathematical Modeling Clemson University Spring 2016 Boolean models of gene regulatory networks Matthew Macauley Math 4500: Mathematical Modeling Clemson University Spring 2016 Gene expression Gene expression is a process that takes gene info and creates

More information

Boolean networks for modeling and analysis of gene regulation

Boolean networks for modeling and analysis of gene regulation Boolean networks for modeling and analysis of gene regulation Dao Zhou, Christoph Müssel, Ludwig Lausser, Martin Hopfensitz, Michael Kühl, Hans A. Kestler Ulmer Informatik-Berichte Nr. 2009-10 Oktober

More information

CSCI1950 Z Computa3onal Methods for Biology* (*Working Title) Lecture 1. Ben Raphael January 21, Course Par3culars

CSCI1950 Z Computa3onal Methods for Biology* (*Working Title) Lecture 1. Ben Raphael January 21, Course Par3culars CSCI1950 Z Computa3onal Methods for Biology* (*Working Title) Lecture 1 Ben Raphael January 21, 2009 Course Par3culars Three major topics 1. Phylogeny: ~50% lectures 2. Func3onal Genomics: ~25% lectures

More information

Polynomial dynamical systems over finite fields, with applications to modeling and simulation of biological networks.

Polynomial dynamical systems over finite fields, with applications to modeling and simulation of biological networks. Polynomial dynamical systems over finite fields, with applications to modeling and simulation of biological networks. IMA Workshop on Applications of Algebraic Geometry in Biology, Dynamics, and Statistics

More information

Simulation of Gene Regulatory Networks

Simulation of Gene Regulatory Networks Simulation of Gene Regulatory Networks Overview I have been assisting Professor Jacques Cohen at Brandeis University to explore and compare the the many available representations and interpretations of

More information

E-Companion to The Evolution of Beliefs over Signed Social Networks

E-Companion to The Evolution of Beliefs over Signed Social Networks OPERATIONS RESEARCH INFORMS E-Companion to The Evolution of Beliefs over Signed Social Networks Guodong Shi Research School of Engineering, CECS, The Australian National University, Canberra ACT 000, Australia

More information

NP and Computational Intractability

NP and Computational Intractability NP and Computational Intractability 1 Polynomial-Time Reduction Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time? don't confuse with reduces from Reduction.

More information

Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother

Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother Mahdi Imani and Ulisses Braga-Neto Department of Electrical and Computer Engineering Texas A&M University College

More information

Algorithms and Theory of Computation. Lecture 22: NP-Completeness (2)

Algorithms and Theory of Computation. Lecture 22: NP-Completeness (2) Algorithms and Theory of Computation Lecture 22: NP-Completeness (2) Xiaohui Bei MAS 714 November 8, 2018 Nanyang Technological University MAS 714 November 8, 2018 1 / 20 Set Cover Set Cover Input: a set

More information

Introduction to Bioinformatics

Introduction to Bioinformatics CSCI8980: Applied Machine Learning in Computational Biology Introduction to Bioinformatics Rui Kuang Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu History of Bioinformatics

More information

Gene Regulatory Networks II Computa.onal Genomics Seyoung Kim

Gene Regulatory Networks II Computa.onal Genomics Seyoung Kim Gene Regulatory Networks II 02-710 Computa.onal Genomics Seyoung Kim Goal: Discover Structure and Func;on of Complex systems in the Cell Identify the different regulators and their target genes that are

More information

Priors in Dependency network learning

Priors in Dependency network learning Priors in Dependency network learning Sushmita Roy sroy@biostat.wisc.edu Computa:onal Network Biology Biosta2s2cs & Medical Informa2cs 826 Computer Sciences 838 hbps://compnetbiocourse.discovery.wisc.edu

More information

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks Recap Probability, stochastic processes, Markov chains ELEC-C7210 Modeling and analysis of communication networks 1 Recap: Probability theory important distributions Discrete distributions Geometric distribution

More information

DESIGN OF EXPERIMENTS AND BIOCHEMICAL NETWORK INFERENCE

DESIGN OF EXPERIMENTS AND BIOCHEMICAL NETWORK INFERENCE DESIGN OF EXPERIMENTS AND BIOCHEMICAL NETWORK INFERENCE REINHARD LAUBENBACHER AND BRANDILYN STIGLER Abstract. Design of experiments is a branch of statistics that aims to identify efficient procedures

More information

arxiv: v1 [cs.sy] 25 Oct 2017

arxiv: v1 [cs.sy] 25 Oct 2017 Reconstruct the Logical Network from the Transition Matrix Cailu Wang, Yuegang Tao School of Control Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China arxiv:1710.09681v1

More information

Measures for information propagation in Boolean networks

Measures for information propagation in Boolean networks Physica D 227 (2007) 100 104 www.elsevier.com/locate/physd Measures for information propagation in Boolean networks Pauli Rämö a,, Stuart Kauffman b, Juha Kesseli a, Olli Yli-Harja a a Institute of Signal

More information

Approximate inference for stochastic dynamics in large biological networks

Approximate inference for stochastic dynamics in large biological networks MID-TERM REVIEW Institut Henri Poincaré, Paris 23-24 January 2014 Approximate inference for stochastic dynamics in large biological networks Ludovica Bachschmid Romano Supervisor: Prof. Manfred Opper Artificial

More information

From Distributions to Markov Networks. Sargur Srihari

From Distributions to Markov Networks. Sargur Srihari From Distributions to Markov Networks Sargur srihari@cedar.buffalo.edu 1 Topics The task: How to encode independencies in given distribution P in a graph structure G Theorems concerning What type of Independencies?

More information

Cybergenetics: Control theory for living cells

Cybergenetics: Control theory for living cells Department of Biosystems Science and Engineering, ETH-Zürich Cybergenetics: Control theory for living cells Corentin Briat Joint work with Ankit Gupta and Mustafa Khammash Introduction Overview Cybergenetics:

More information

3 : Representation of Undirected GM

3 : Representation of Undirected GM 10-708: Probabilistic Graphical Models 10-708, Spring 2016 3 : Representation of Undirected GM Lecturer: Eric P. Xing Scribes: Longqi Cai, Man-Chia Chang 1 MRF vs BN There are two types of graphical models:

More information

Quantized Average Consensus on Gossip Digraphs

Quantized Average Consensus on Gossip Digraphs Quantized Average Consensus on Gossip Digraphs Hideaki Ishii Tokyo Institute of Technology Joint work with Kai Cai Workshop on Uncertain Dynamical Systems Udine, Italy August 25th, 2011 Multi-Agent Consensus

More information

Solutions to Problem Set 5

Solutions to Problem Set 5 UC Berkeley, CS 74: Combinatorics and Discrete Probability (Fall 00 Solutions to Problem Set (MU 60 A family of subsets F of {,,, n} is called an antichain if there is no pair of sets A and B in F satisfying

More information

CSCI1950 Z Computa4onal Methods for Biology Lecture 4. Ben Raphael February 2, hhp://cs.brown.edu/courses/csci1950 z/ Algorithm Summary

CSCI1950 Z Computa4onal Methods for Biology Lecture 4. Ben Raphael February 2, hhp://cs.brown.edu/courses/csci1950 z/ Algorithm Summary CSCI1950 Z Computa4onal Methods for Biology Lecture 4 Ben Raphael February 2, 2009 hhp://cs.brown.edu/courses/csci1950 z/ Algorithm Summary Parsimony Probabilis4c Method Input Output Sankoff s & Fitch

More information

arxiv:math/ v2 [math.ds] 3 Apr 2006

arxiv:math/ v2 [math.ds] 3 Apr 2006 GENETIC SEQUENTIAL DYNAMICAL SYSTEMS arxiv:math/0603370v2 [math.ds] 3 Apr 2006 M. A. AVIÑO, H. ORTIZ, AND O. MORENO Abstract. The whole complex process to obtain a protein encoded by a gene is difficult

More information

10-810: Advanced Algorithms and Models for Computational Biology. microrna and Whole Genome Comparison

10-810: Advanced Algorithms and Models for Computational Biology. microrna and Whole Genome Comparison 10-810: Advanced Algorithms and Models for Computational Biology microrna and Whole Genome Comparison Central Dogma: 90s Transcription factors DNA transcription mrna translation Proteins Central Dogma:

More information

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models

Computational Genomics. Systems biology. Putting it together: Data integration using graphical models 02-710 Computational Genomics Systems biology Putting it together: Data integration using graphical models High throughput data So far in this class we discussed several different types of high throughput

More information

Rela%ons and Their Proper%es. Slides by A. Bloomfield

Rela%ons and Their Proper%es. Slides by A. Bloomfield Rela%ons and Their Proper%es Slides by A. Bloomfield What is a rela%on Let A and B be sets. A binary rela%on R is a subset of A B Example Let A be the students in a the CS major A = {Alice, Bob, Claire,

More information

3.3 Increasing & Decreasing Functions and The First Derivative Test

3.3 Increasing & Decreasing Functions and The First Derivative Test 3.3 Increasing & Decreasing Functions and The First Derivative Test Definitions of Increasing and Decreasing Functions: A funcon f is increasing on an interval if for any two numbers x 1 and x 2 in the

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Networks in systems biology

Networks in systems biology Networks in systems biology Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4500, Spring 2017 M. Macauley (Clemson) Networks in systems

More information

Lecture Notes: Markov chains

Lecture Notes: Markov chains Computational Genomics and Molecular Biology, Fall 5 Lecture Notes: Markov chains Dannie Durand At the beginning of the semester, we introduced two simple scoring functions for pairwise alignments: a similarity

More information

Random Boolean Networks

Random Boolean Networks Random Boolean Networks Boolean network definition The first Boolean networks were proposed by Stuart A. Kauffman in 1969, as random models of genetic regulatory networks (Kauffman 1969, 1993). A Random

More information

3.2 Configuration model

3.2 Configuration model 3.2 Configuration model 3.2.1 Definition. Basic properties Assume that the vector d = (d 1,..., d n ) is graphical, i.e., there exits a graph on n vertices such that vertex 1 has degree d 1, vertex 2 has

More information

Warm-Up. Explain how a secondary messenger is activated, and how this affects gene expression. (LO 3.22)

Warm-Up. Explain how a secondary messenger is activated, and how this affects gene expression. (LO 3.22) Warm-Up Explain how a secondary messenger is activated, and how this affects gene expression. (LO 3.22) Yesterday s Picture The first cell on Earth (approx. 3.5 billion years ago) was simple and prokaryotic,

More information

Lecture Notes: Markov chains Tuesday, September 16 Dannie Durand

Lecture Notes: Markov chains Tuesday, September 16 Dannie Durand Computational Genomics and Molecular Biology, Lecture Notes: Markov chains Tuesday, September 6 Dannie Durand In the last lecture, we introduced Markov chains, a mathematical formalism for modeling how

More information

Graph structure learning for network inference

Graph structure learning for network inference Graph structure learning for network inference Sushmita Roy sroy@biostat.wisc.edu Computa9onal Network Biology Biosta2s2cs & Medical Informa2cs 826 Computer Sciences 838 hbps://compnetbiocourse.discovery.wisc.edu

More information

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes Lecture Notes 7 Random Processes Definition IID Processes Bernoulli Process Binomial Counting Process Interarrival Time Process Markov Processes Markov Chains Classification of States Steady State Probabilities

More information

A Simple Protein Synthesis Model

A Simple Protein Synthesis Model A Simple Protein Synthesis Model James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 3, 213 Outline A Simple Protein Synthesis Model

More information

Some thoughts on linearity, nonlinearity, and partial separability

Some thoughts on linearity, nonlinearity, and partial separability Some thoughts on linearity, nonlinearity, and partial separability Paul Hovland Argonne Na0onal Laboratory Joint work with Boyana Norris, Sri Hari Krishna Narayanan, Jean Utke, Drew Wicke Argonne Na0onal

More information

Collaborators. Simon Levin Princeton University. James Elser Arizona State University

Collaborators. Simon Levin Princeton University. James Elser Arizona State University Collaborators Simon Levin Princeton University James Elser Arizona State University Patterns in molecules and oceans: linking cellular machinery to global N:P ratios Irakli Loladze Department of Mathematics

More information

W3203 Discrete Mathema1cs. Number Theory. Spring 2015 Instructor: Ilia Vovsha. hcp://www.cs.columbia.edu/~vovsha/w3203

W3203 Discrete Mathema1cs. Number Theory. Spring 2015 Instructor: Ilia Vovsha. hcp://www.cs.columbia.edu/~vovsha/w3203 W3203 Discrete Mathema1cs Number Theory Spring 2015 Instructor: Ilia Vovsha hcp://www.cs.columbia.edu/~vovsha/w3203 1 Outline Communica1on, encryp1on Number system Divisibility Prime numbers Greatest Common

More information

Polynomial Functions

Polynomial Functions Polynomial Functions Equations and Graphs Characteristics The Factor Theorem The Remainder Theorem http://www.purplemath.com/modules/polyends5.htm 1 A cross-section of a honeycomb has a pattern with one

More information

How much non-coding DNA do eukaryotes require?

How much non-coding DNA do eukaryotes require? How much non-coding DNA do eukaryotes require? Andrei Zinovyev UMR U900 Computational Systems Biology of Cancer Institute Curie/INSERM/Ecole de Mine Paritech Dr. Sebastian Ahnert Dr. Thomas Fink Bioinformatics

More information

The Rules. The Math Game. More Rules. Teams. 1. Slope of tangent line. Are you ready??? 10/24/17

The Rules. The Math Game. More Rules. Teams. 1. Slope of tangent line. Are you ready??? 10/24/17 The Rules The Math Game Four Teams 1-2 players per team at the buzzers each =me. First to buzz in gets to answer Q. Correct answer: 1 point for your team, and con=nue playing Incorrect answer/ no answer/

More information

CSCI 1010 Models of Computa3on. Lecture 02 Func3ons and Circuits

CSCI 1010 Models of Computa3on. Lecture 02 Func3ons and Circuits CSCI 1010 Models of Computa3on Lecture 02 Func3ons and Circuits Overview Func3ons and languages Designing circuits from func3ons Minterms and the DNF Maxterms and CNF Circuit complexity Algebra of Boolean

More information

Probabilistic Gene Network

Probabilistic Gene Network Probabilistic Gene Network Kristine Joy E. Carpio,3, Gilles Bernot 2, Jean-Paul Comet 2 and Francine Diener Laboratoire J.A. Dieudonné, Université de Nice - Sophia Antipolis, France 2 CNRS UMR 727, Laboratoire

More information

Written Exam 15 December Course name: Introduction to Systems Biology Course no

Written Exam 15 December Course name: Introduction to Systems Biology Course no Technical University of Denmark Written Exam 15 December 2008 Course name: Introduction to Systems Biology Course no. 27041 Aids allowed: Open book exam Provide your answers and calculations on separate

More information

Irreducibility. Irreducible. every state can be reached from every other state For any i,j, exist an m 0, such that. Absorbing state: p jj =1

Irreducibility. Irreducible. every state can be reached from every other state For any i,j, exist an m 0, such that. Absorbing state: p jj =1 Irreducibility Irreducible every state can be reached from every other state For any i,j, exist an m 0, such that i,j are communicate, if the above condition is valid Irreducible: all states are communicate

More information

Introduction to Bioinformatics. Shifra Ben-Dor Irit Orr

Introduction to Bioinformatics. Shifra Ben-Dor Irit Orr Introduction to Bioinformatics Shifra Ben-Dor Irit Orr Lecture Outline: Technical Course Items Introduction to Bioinformatics Introduction to Databases This week and next week What is bioinformatics? A

More information

Chemical Reac+ons and Enzymes. Lesson Overview. Lesson Overview. 2.4 Chemical Reactions and Enzymes

Chemical Reac+ons and Enzymes. Lesson Overview. Lesson Overview. 2.4 Chemical Reactions and Enzymes Lesson Overview Chemical Reac+ons and Enzymes Lesson Overview 2.4 Chemical Reactions and Enzymes THINK ABOUT IT Living things are made up of chemical compounds, but chemistry isn t just what life is made

More information

EVOLUTIONARY DISTANCES

EVOLUTIONARY DISTANCES EVOLUTIONARY DISTANCES FROM STRINGS TO TREES Luca Bortolussi 1 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste luca@dmi.units.it Trieste, 14 th November 2007 OUTLINE 1 STRINGS:

More information

CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions

CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions Instructor: Erik Sudderth Brown University Computer Science April 14, 215 Review: Discrete Markov Chains Some

More information

CHAPTER 1 Life: Biological Principles and the Science of Zoology

CHAPTER 1 Life: Biological Principles and the Science of Zoology CHAPTER 1 Life: Biological Principles and the Science of Zoology 1-1 Zoology: The Uses of Principles The scientific study of animal life Does Life Have Defining Properties? No simple definition The history

More information

Algorithmic Approach to Counting of Certain Types m-ary Partitions

Algorithmic Approach to Counting of Certain Types m-ary Partitions Algorithmic Approach to Counting of Certain Types m-ary Partitions Valentin P. Bakoev Abstract Partitions of integers of the type m n as a sum of powers of m (the so called m-ary partitions) and their

More information

FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models

FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models Markus W. Covert Stanford University 0 CRC Press Taylor & Francis Group Boca Raton London New York Contents /... Preface, xi

More information

STOCHASTIC PROCESSES Basic notions

STOCHASTIC PROCESSES Basic notions J. Virtamo 38.3143 Queueing Theory / Stochastic processes 1 STOCHASTIC PROCESSES Basic notions Often the systems we consider evolve in time and we are interested in their dynamic behaviour, usually involving

More information

Metabolic networks: Activity detection and Inference

Metabolic networks: Activity detection and Inference 1 Metabolic networks: Activity detection and Inference Jean-Philippe.Vert@mines.org Ecole des Mines de Paris Computational Biology group Advanced microarray analysis course, Elsinore, Denmark, May 21th,

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

Announcements. Topics: Homework: - sec0ons 1.2, 1.3, and 2.1 * Read these sec0ons and study solved examples in your textbook!

Announcements. Topics: Homework: - sec0ons 1.2, 1.3, and 2.1 * Read these sec0ons and study solved examples in your textbook! Announcements Topics: - sec0ons 1.2, 1.3, and 2.1 * Read these sec0ons and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on prac0ce problems from the textbook

More information

Distributed Optimization over Networks Gossip-Based Algorithms

Distributed Optimization over Networks Gossip-Based Algorithms Distributed Optimization over Networks Gossip-Based Algorithms Angelia Nedić angelia@illinois.edu ISE Department and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Outline Random

More information

Rapid Introduction to Machine Learning/ Deep Learning

Rapid Introduction to Machine Learning/ Deep Learning Rapid Introduction to Machine Learning/ Deep Learning Hyeong In Choi Seoul National University 1/24 Lecture 5b Markov random field (MRF) November 13, 2015 2/24 Table of contents 1 1. Objectives of Lecture

More information

General Synchronization of Cascaded Boolean Networks Within Different Domains of Attraction

General Synchronization of Cascaded Boolean Networks Within Different Domains of Attraction Proceedings of the 2nd International Conference of Control, Dynamic Systems, and Robotics Ottawa, Ontario, Canada, May 7-8 2015 Paper No. 173 General Synchronization of Cascaded Boolean Networks Within

More information

Plan for today. ! Part 1: (Hidden) Markov models. ! Part 2: String matching and read mapping

Plan for today. ! Part 1: (Hidden) Markov models. ! Part 2: String matching and read mapping Plan for today! Part 1: (Hidden) Markov models! Part 2: String matching and read mapping! 2.1 Exact algorithms! 2.2 Heuristic methods for approximate search (Hidden) Markov models Why consider probabilistics

More information

Discrete and Indiscrete Models of Biological Networks

Discrete and Indiscrete Models of Biological Networks Discrete and Indiscrete Models of Biological Networks Winfried Just Ohio University November 17, 2010 Who are we? What are we doing here? Who are we? What are we doing here? A population of interacting

More information

Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863

Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863 Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863 Daniel, Edmundo, Rosa Terceiro trimestre de 2012 UFRJ - COPPE Programa de Engenharia de Sistemas e Computação Bayesian Networks

More information

Today s Lecture: HMMs

Today s Lecture: HMMs Today s Lecture: HMMs Definitions Examples Probability calculations WDAG Dynamic programming algorithms: Forward Viterbi Parameter estimation Viterbi training 1 Hidden Markov Models Probability models

More information

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization.

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization. 3.B.1 Gene Regulation Gene regulation results in differential gene expression, leading to cell specialization. We will focus on gene regulation in prokaryotes first. Gene regulation accounts for some of

More information

Evolutionary dynamics on graphs

Evolutionary dynamics on graphs Evolutionary dynamics on graphs Laura Hindersin May 4th 2015 Max-Planck-Institut für Evolutionsbiologie, Plön Evolutionary dynamics Main ingredients: Fitness: The ability to survive and reproduce. Selection

More information

ON SPATIAL GOSSIP ALGORITHMS FOR AVERAGE CONSENSUS. Michael G. Rabbat

ON SPATIAL GOSSIP ALGORITHMS FOR AVERAGE CONSENSUS. Michael G. Rabbat ON SPATIAL GOSSIP ALGORITHMS FOR AVERAGE CONSENSUS Michael G. Rabbat Dept. of Electrical and Computer Engineering McGill University, Montréal, Québec Email: michael.rabbat@mcgill.ca ABSTRACT This paper

More information

CSCI1950 Z Computa4onal Methods for Biology Lecture 5

CSCI1950 Z Computa4onal Methods for Biology Lecture 5 CSCI1950 Z Computa4onal Methods for Biology Lecture 5 Ben Raphael February 6, 2009 hip://cs.brown.edu/courses/csci1950 z/ Alignment vs. Distance Matrix Mouse: ACAGTGACGCCACACACGT Gorilla: CCTGCGACGTAACAAACGC

More information

ALMOST SURE CONVERGENCE OF RANDOM GOSSIP ALGORITHMS

ALMOST SURE CONVERGENCE OF RANDOM GOSSIP ALGORITHMS ALMOST SURE CONVERGENCE OF RANDOM GOSSIP ALGORITHMS Giorgio Picci with T. Taylor, ASU Tempe AZ. Wofgang Runggaldier s Birthday, Brixen July 2007 1 CONSENSUS FOR RANDOM GOSSIP ALGORITHMS Consider a finite

More information

Distributed learning in potential games over large-scale networks

Distributed learning in potential games over large-scale networks Distributed learning in potential games over large-scale networks Fabio Fagnani, DISMA, Politecnico di Torino joint work with Giacomo Como, Lund University Sandro Zampieri, DEI, University of Padova Networking

More information

Graph Alignment and Biological Networks

Graph Alignment and Biological Networks Graph Alignment and Biological Networks Johannes Berg http://www.uni-koeln.de/ berg Institute for Theoretical Physics University of Cologne Germany p.1/12 Networks in molecular biology New large-scale

More information

A linear control model for gene intervention in a genetic regulatory network

A linear control model for gene intervention in a genetic regulatory network Title A linear control model for gene intervention in a genetic regulatory network Author(s) Zhang, SQ; Ng, MK; Ching, WK; Akutsu, T Citation 2005 Ieee International Conference On Granular Computing, 2005,

More information

Traveling spots in an excitable medium and ventricular fibrillation

Traveling spots in an excitable medium and ventricular fibrillation Meiji University School of Interdisciplinary Mathematical Sciences 1 Traveling spots in an excitable medium and ventricular fibrillation Hirokazu Ninomiya Meiji University School of Interdisciplinary Mathematical

More information

Persistence of Activity in Random Boolean Networks

Persistence of Activity in Random Boolean Networks Persistence of Activity in Random Boolean Networks Shirshendu Chatterjee and Rick Durrett Cornell University December 20, 2008 Abstract We consider a model for gene regulatory networks that is a modification

More information

Hamiltonian Simula,on of Discrete and Con,nuous- Variable Quantum Systems

Hamiltonian Simula,on of Discrete and Con,nuous- Variable Quantum Systems Hamiltonian Simula,on of Discrete and Con,nuous- Variable Quantum Systems Rolando D. Somma Los Alamos Na*onal Laboratory, Los Alamos, NM Berry, Childs, Cleve, Kothari, RS, PRL 114, 090502 (2015) Berry,

More information

CS6750: Cryptography and Communica7on Security

CS6750: Cryptography and Communica7on Security CS6750: Cryptography and Communica7on Security Class 6: Simple Number Theory Dr. Erik- Oliver Blass Plan 1. Role of number theory in cryptography 2. Classical problems in computa7onal number theory 3.

More information

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period:

AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period: WORKSHEET: Series, Taylor Series AP Calculus (BC) Chapter 9 Test No Calculator Section Name: Date: Period: 1 Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.) 1. The

More information

Time Reversibility and Burke s Theorem

Time Reversibility and Burke s Theorem Queuing Analysis: Time Reversibility and Burke s Theorem Hongwei Zhang http://www.cs.wayne.edu/~hzhang Acknowledgement: this lecture is partially based on the slides of Dr. Yannis A. Korilis. Outline Time-Reversal

More information

Information Theory. Lecture 5 Entropy rate and Markov sources STEFAN HÖST

Information Theory. Lecture 5 Entropy rate and Markov sources STEFAN HÖST Information Theory Lecture 5 Entropy rate and Markov sources STEFAN HÖST Universal Source Coding Huffman coding is optimal, what is the problem? In the previous coding schemes (Huffman and Shannon-Fano)it

More information

Lecture 1: Brief Review on Stochastic Processes

Lecture 1: Brief Review on Stochastic Processes Lecture 1: Brief Review on Stochastic Processes A stochastic process is a collection of random variables {X t (s) : t T, s S}, where T is some index set and S is the common sample space of the random variables.

More information

ACTA PHYSICA DEBRECINA XLVI, 47 (2012) MODELLING GENE REGULATION WITH BOOLEAN NETWORKS. Abstract

ACTA PHYSICA DEBRECINA XLVI, 47 (2012) MODELLING GENE REGULATION WITH BOOLEAN NETWORKS. Abstract ACTA PHYSICA DEBRECINA XLVI, 47 (2012) MODELLING GENE REGULATION WITH BOOLEAN NETWORKS E. Fenyvesi 1, G. Palla 2 1 University of Debrecen, Department of Experimental Physics, 4032 Debrecen, Egyetem 1,

More information

NP-Complete Problems

NP-Complete Problems NP-Complete Problems Max Bisection Is NP-Complete max cut becomes max bisection if we require that S = V S. We shall reduce the more general max cut to max bisection. Add V isolated nodes to G to yield

More information

Attractor computation using interconnected Boolean networks: testing growth rate models in E. Coli

Attractor computation using interconnected Boolean networks: testing growth rate models in E. Coli Attractor computation using interconnected Boolean networks: testing growth rate models in E. Coli Madalena Chaves, Alfonso Carta To cite this version: Madalena Chaves, Alfonso Carta. Attractor computation

More information

Lecture 20 : Markov Chains

Lecture 20 : Markov Chains CSCI 3560 Probability and Computing Instructor: Bogdan Chlebus Lecture 0 : Markov Chains We consider stochastic processes. A process represents a system that evolves through incremental changes called

More information

March Algebra 2 Question 1. March Algebra 2 Question 1

March Algebra 2 Question 1. March Algebra 2 Question 1 March Algebra 2 Question 1 If the statement is always true for the domain, assign that part a 3. If it is sometimes true, assign it a 2. If it is never true, assign it a 1. Your answer for this question

More information

Modelling of Equipment, Processes, and Systems

Modelling of Equipment, Processes, and Systems 1 Modelling of Equipment, Processes, and Systems 2 Modelling Tools Simple Programs Spreadsheet tools like Excel Mathema7cal Tools MatLab, Mathcad, Maple, and Mathema7ca Special Purpose Codes Macroflow,

More information

86 Part 4 SUMMARY INTRODUCTION

86 Part 4 SUMMARY INTRODUCTION 86 Part 4 Chapter # AN INTEGRATION OF THE DESCRIPTIONS OF GENE NETWORKS AND THEIR MODELS PRESENTED IN SIGMOID (CELLERATOR) AND GENENET Podkolodny N.L. *1, 2, Podkolodnaya N.N. 1, Miginsky D.S. 1, Poplavsky

More information

Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence

Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence Graphical models and causality: Directed acyclic graphs (DAGs) and conditional (in)dependence General overview Introduction Directed acyclic graphs (DAGs) and conditional independence DAGs and causal effects

More information

Bioelectrical Circuits: Lecture 9

Bioelectrical Circuits: Lecture 9 City University of New York (CUNY) CUNY Academic Works Open Educational Resources City College of New York 2019 Bioelectrical Circuits: Lecture 9 Jacek P. Dmochowski CUNY City College Luis Cardoso CUNY

More information

Lecture 4: State Estimation in Hidden Markov Models (cont.)

Lecture 4: State Estimation in Hidden Markov Models (cont.) EE378A Statistical Signal Processing Lecture 4-04/13/2017 Lecture 4: State Estimation in Hidden Markov Models (cont.) Lecturer: Tsachy Weissman Scribe: David Wugofski In this lecture we build on previous

More information

Consensus Problems on Small World Graphs: A Structural Study

Consensus Problems on Small World Graphs: A Structural Study Consensus Problems on Small World Graphs: A Structural Study Pedram Hovareshti and John S. Baras 1 Department of Electrical and Computer Engineering and the Institute for Systems Research, University of

More information

State-Feedback Control of Partially-Observed Boolean Dynamical Systems Using RNA-Seq Time Series Data

State-Feedback Control of Partially-Observed Boolean Dynamical Systems Using RNA-Seq Time Series Data State-Feedback Control of Partially-Observed Boolean Dynamical Systems Using RNA-Seq Time Series Data Mahdi Imani and Ulisses Braga-Neto Department of Electrical and Computer Engineering Texas A&M University

More information