Evolutionary dynamics on graphs

Size: px
Start display at page:

Download "Evolutionary dynamics on graphs"

Transcription

1 Evolutionary dynamics on graphs Laura Hindersin May 4th 2015 Max-Planck-Institut für Evolutionsbiologie, Plön

2 Evolutionary dynamics Main ingredients: Fitness: The ability to survive and reproduce. Selection emerges when two or more individuals reproduce at different rates. Mutation: One type can change into another. Neutral drift: A finite population of two types will eventually consist of only one type. Laura Hindersin Evolutionary dynamics on graphs 1 / 40

3 How does spatial population structure change the dynamics of evolution? Empirical Theoretical Well-mixed = 1 1 r 1 1 r N 1-d lattice 2-d lattice A. W. Nolte et al. Proc. R. Soc. B (2005) Laura Hindersin Evolutionary dynamics on graphs 2 / 40

4 The Moran Process Discrete time stochastic process M := {M n }, n N 0. Birth-death process on a well-mixed population of N individuals. Here, the initial state of the population is: N 1 wild type individuals with fitness 1 1 mutant with fitness r > 0 Laura Hindersin Evolutionary dynamics on graphs 3 / 40

5 The Moran Process One reproductive event at each time step: Select one individual for birth at random, but with probability proportional to its fitness. This individual produces one clonal offspring. Randomly choose an individual to be replaced by the new offspring. Laura Hindersin Evolutionary dynamics on graphs 4 / 40

6 The Moran Process 1 r Replacement 1 r 1 1 r 1 r r Birth Death Laura Hindersin Evolutionary dynamics on graphs 5 / 40

7 The Moran Process 1 r Replacement 1 r 1 1 r 1 r r Birth Death Markov process on the number of mutants. State space S = {0, 1, 2,..., N} with initial state M 0 = 1. Assumption: no further mutations. Therefore, the states 0 and N are absorbing. Laura Hindersin Evolutionary dynamics on graphs 5 / 40

8 Transition Probabilities for the Moran Process The probability to increase or decrease the number of mutants, or to stay with i mutants at the next time step are: t + i := P (M n+1 = i + 1 M n = i) = t i := P (M n+1 = i 1 M n = i) = ri ri + N i N i N 1 N i ri + N i i N 1 t 0 i := P (M n+1 = i M n = i) = 1 t + i t i. for 0 i N. Laura Hindersin Evolutionary dynamics on graphs 6 / 40

9 Success Probability of the Mutants : Φ N i is the probability to reach state N from state i. 1 r r r 1 r r 1 r r Laura Hindersin Evolutionary dynamics on graphs 7 / 40

10 Success Probability of the Mutants Φ N i = t i ΦN i 1 + t+ i ΦN i+1 + (1 t i t + i )ΦN i where Φ N 0 = 0; ΦN N = 1. i 1 n t j Solving the recursion: Φ N i = n=0 j=1 t + j N 1 n t j n=0 j=1 t + j. For the Moran process in a well-mixed pop.: Φ N i = 1 1 r i 1 1 r N. Laura Hindersin Evolutionary dynamics on graphs 8 / 40

11 Conditional The expected time until absorption into the state N starting from one single mutant, given that it will succeed: τ N 1 = N 1 k k=1 l=1 Φ N l t + l k t m t + m=l+1 m. Laura Hindersin Evolutionary dynamics on graphs 9 / 40

12 Moran Process on Graphs Let G := (V, E) define a graph, consisting of a set of vertices V and edges E. Individuals inhabit the nodes of a graph and reproduce into their adjacent nodes. Laura Hindersin Evolutionary dynamics on graphs 10 / 40

13 Moran Process on Graphs Let G := (V, E) define a graph, consisting of a set of vertices V and edges E. Individuals inhabit the nodes of a graph and reproduce into their adjacent nodes. Birth death Replacement Wild-type: fitness 1 Mutant: fitness r Laura Hindersin Evolutionary dynamics on graphs 10 / 40

14 Moran Process on Graphs Extinction Initial State Fixation Laura Hindersin Evolutionary dynamics on graphs 11 / 40

15 Reference Case Well-mixed population Complete graph Laura Hindersin Evolutionary dynamics on graphs 12 / 40

16 Methods Different approaches for calculating the fixation probability and time in graphs: Individual-based simulations Transition matrix for up to 2 N states. Laura Hindersin Evolutionary dynamics on graphs 13 / 40

17 Transition matrix Renumber the s = t + a states. The transition matrix now has the following canonical form: ( ) Qt t R T s s = t a. 0 a t I a a Call F = n=0 Qn = (I Q) 1 the fundamental matrix of the Markov chain. The entry F i,j is the expected sojourn time in state j, given that the process starts in transient state i. C.M. Grinstead & J.L. Snell Introduction to Probability (1997) Laura Hindersin Evolutionary dynamics on graphs 14 / 40

18 Transition matrix Probability of absorption in state j after starting in state i: Φ j i = (FR) i,j. (1) Conditional fixation time 1 : τ N i = N 1 j=1 ( Φ N j Φ N i F i,j ). 1 W.J. Ewens. Theoretical Population Biology (1973) Laura Hindersin Evolutionary dynamics on graphs 15 / 40

19 Popular Examples Time M. Frean et al. Proc. R. Soc. B (2013) Laura Hindersin Evolutionary dynamics on graphs 16 / 40

20 Questions Question 1: Does every undirected graph that differs from the well-mixed population increase the fixation time of advantageous mutants? Question 2: Given any population structure, does the removal of one link always lead to a higher fixation time? Laura Hindersin Evolutionary dynamics on graphs 17 / 40

21 There are six different connected graphs of size four: complete diamond ring shovel star line Laura Hindersin Evolutionary dynamics on graphs 18 / 40

22 States of the Moran process on the complete graph: V I II III IV complete ring Laura Hindersin Evolutionary dynamics on graphs 19 / 40

23 States of the Moran process on the complete graph: V I II III IV complete V I II III IV complete ring And on the ring: ring Laura Hindersin Evolutionary dynamics on graphs 19 / 40

24 Links s consider the structure Outlook: with Metapopulations five links again. The states I,II,...,IX are shown in figure 3.8. e are several mutant-node-configurations possible in this structure, which is why the states o longer just determined by the number of mutants on the graph. They are also determined e degree of the respective node. States of the Moran process on the diamond: III I VI IX IV VIII II VII V Laura Hindersin Evolutionary dynamics on graphs 20 / 40

25 Question 2: Does the removal of a link always lead to a higher fixation time? 12 Mean conditional fixation time Fitness of mutants Laura Hindersin Evolutionary dynamics on graphs 21 / 40

26 Question 2: Does the removal of a link always lead to a longer fixation time? 12 Mean conditional fixation time Fitness of mutants Laura Hindersin Evolutionary dynamics on graphs 21 / 40

27 Question 2: Does the removal of a link always lead to a longer fixation time? 12 Mean conditional fixation time Fitness of mutants Answer: No! Laura Hindersin Evolutionary dynamics on graphs 21 / 40

28 Is this effect still present in larger networks? average conditional fixation time ring ring plus one link r Figure : Influence of the extra link in rings of size four, six and eight. A mutant fitness r = 1.5 is used. Laura Hindersin Evolutionary dynamics on graphs 22 / 40

29 Is this effect still present in larger networks? Laura Hindersin Evolutionary dynamics on graphs 23 / 40

30 (a) 4000 Non-periodic boundary conditions 3000 A 2000 B 1000 C (b) r = Periodic boundary conditions 3000 D 2000 E 1000 F 0 r = Population Size size Mean Conditional conditional fixation Fixation time Time Mean Conditional conditional Fixation fixation time Time L. Hindersin & A. Traulsen. Proc. R. Soc. Interface (2014) Laura Hindersin Evolutionary dynamics on graphs 24 / 40

31 What makes it so hard to answer Question 1 Question 1: Does every graph that differs from the well-mixed population increase the fixation time of advantageous mutants? Problems: Non-trivial relationship of the fixation probability and time, because the fixation time depends on the probability. For non-isothermal graphs, the transition matrix does not have a tridiagonal shape, since it is generally not a simple birth-death process, can be very large. Laura Hindersin Evolutionary dynamics on graphs 25 / 40

32 Popular Examples Time M. Frean et al. Proc. R. Soc. B (2013) Laura Hindersin Evolutionary dynamics on graphs 26 / 40

33 Amplifier and Suppressor of Selection fixation probability Graph G is an amplifier of selection if r > 1 ρ G > ρ mix and r < 1 ρ G < ρ mix. G is a suppressor of selection if r > 1 ρ G < ρ mix and r < 1 ρ G > ρ mix. ρ star = 1 1 r r ρ mix = r 2N r N ρ directedline = 1 N Laura Hindersin Evolutionary dynamics on graphs 27 / 40

34 Amplifiers of Selection E. Lieberman et al. Nature (2005) Laura Hindersin Evolutionary dynamics on graphs 28 / 40

35 Node Properties Let G = (V, E) be an undirected graph with N nodes. The degree k i of a node i V is defined by the number of its neighbors: k i := {e i,j : e i,j E}. The temperature T i of a node i V is defined by the sum over all incoming links, weighted by their degree: T i := N j=1 e j,i k j. Laura Hindersin Evolutionary dynamics on graphs 29 / 40

36 Graph Properties A graph G = (V, E) is called isothermal if T i = T j for all i, j V. Denote the fixation probability of a single mutant in a well-mixed population as ρ mix := Φ N 1. A population structure represented by a graph G, where one mutant has fixation probability ρ G = ρ mix is called ρ-equivalent to the well-mixed population. Laura Hindersin Evolutionary dynamics on graphs 30 / 40

37 Isothermal Theorem Theorem A graph G is ρ-equivalent iff it is isothermal. A proof can be found in 2. 2 Lieberman et al. [2005]: Evolutionary dynamics on graphs. Nature, 433, Pages , Supplementary Notes. Laura Hindersin Evolutionary dynamics on graphs 31 / 40

38 Observation For size N = 4, all non-regular graphs are amplifiers of selection Fitness of mutants Laura Hindersin Evolutionary dynamics on graphs 32 / 40

39 Underlying Update Mechanisms Birth Bd death death db Birth Laura Hindersin Evolutionary dynamics on graphs 33 / 40

40 Procedure Generate an Erdős-Rényi random graph G for given N and p. Calculate the fixation probability ρ G. Compare it to the fixation probability ρ mix. Classify as amplifier or suppressor if possible. Laura Hindersin Evolutionary dynamics on graphs 34 / 40

41 Bd db L. Hindersin & A. Traulsen. arxiv: (2015) Laura Hindersin Evolutionary dynamics on graphs 35 / 40

42 Summary Changing the structure can have counterintuitive effects on the fixation time. Bd: almost all random networks are amplifiers. db: almost all random networks are suppressors. Mean conditional fixation time Fitness of mutants Bd db Laura Hindersin Evolutionary dynamics on graphs 36 / 40

43 Applications Biological: Social: Experimental evolution: Using an amplifier graph increases fixation probability, but the time is increased as well. Biological networks, like protein or gene regulatory networks are often scale-free 3. Scale-free networks can amplify selection. Social networks: The spreading of ideas can be very likely, but may take a long time. Scientific collaborations networks are often scale-free. 3 R. Albert & A.-L. Barabási, Review of Modern Physics (2002) Laura Hindersin Evolutionary dynamics on graphs 37 / 40

44 Next Step Consider subpopulations at the nodes. The links determine the migration paths. Laura Hindersin Evolutionary dynamics on graphs 38 / 40

45 Next Step A. W. Nolte et al. Proc. R. Soc. B (2005) Laura Hindersin Evolutionary dynamics on graphs 39 / 40

46 The Moran Process Acknowledgements Department of Evolutionary Theory Arne Traulsen Julia n Garcia, Monash University Max-Planck-Institut für Evolutionsbiologie, Plön Laura Hindersin Evolutionary dynamics on graphs 40 / 40

An Introduction to Evolutionary Game Theory: Lecture 2

An Introduction to Evolutionary Game Theory: Lecture 2 An Introduction to Evolutionary Game Theory: Lecture 2 Mauro Mobilia Lectures delivered at the Graduate School on Nonlinear and Stochastic Systems in Biology held in the Department of Applied Mathematics,

More information

Markov Chains Absorption (cont d) Hamid R. Rabiee

Markov Chains Absorption (cont d) Hamid R. Rabiee Markov Chains Absorption (cont d) Hamid R. Rabiee 1 Absorbing Markov Chain An absorbing state is one in which the probability that the process remains in that state once it enters the state is 1 (i.e.,

More information

arxiv: v1 [q-bio.pe] 27 Sep 2018

arxiv: v1 [q-bio.pe] 27 Sep 2018 Fixation probability and fixation time in structured populations Josef Tkadlec a,, Andreas Pavlogiannis b,, Krishnendu Chatterjee a, and Martin A. Nowak c, arxiv:80.02687v [q-bio.pe] 27 Sep 208 a IST Austria,

More information

6.207/14.15: Networks Lecture 12: Generalized Random Graphs

6.207/14.15: Networks Lecture 12: Generalized Random Graphs 6.207/14.15: Networks Lecture 12: Generalized Random Graphs 1 Outline Small-world model Growing random networks Power-law degree distributions: Rich-Get-Richer effects Models: Uniform attachment model

More information

Evolutionary Dynamics on Graphs

Evolutionary Dynamics on Graphs Evolutionary Dynamics on Graphs Leslie Ann Goldberg, University of Oxford Absorption Time of the Moran Process (2014) with Josep Díaz, David Richerby and Maria Serna Approximating Fixation Probabilities

More information

arxiv: v2 [cs.dm] 14 May 2018

arxiv: v2 [cs.dm] 14 May 2018 Strong Amplifiers of Natural Selection: Proofs Andreas Pavlogiannis, Josef Tkadlec, Krishnendu Chatterjee, Martin A. Nowak 2 arxiv:802.02509v2 [cs.dm] 4 May 208 IST Austria, A-3400 Klosterneuburg, Austria

More information

AARMS Homework Exercises

AARMS Homework Exercises 1 For the gamma distribution, AARMS Homework Exercises (a) Show that the mgf is M(t) = (1 βt) α for t < 1/β (b) Use the mgf to find the mean and variance of the gamma distribution 2 A well-known inequality

More information

arxiv: v2 [math.pr] 8 Aug 2014

arxiv: v2 [math.pr] 8 Aug 2014 Fixation probabilities on superstars, revisited and revised Alastair Jamieson-Lane a,, Christoph Hauert a arxiv:1312.6333v2 [math.pr] 8 Aug 2014 a Mathematics Department, University of British Columbia,

More information

Markov Chains Absorption Hamid R. Rabiee

Markov Chains Absorption Hamid R. Rabiee Markov Chains Absorption Hamid R. Rabiee Absorbing Markov Chain An absorbing state is one in which the probability that the process remains in that state once it enters the state is (i.e., p ii = ). A

More information

Environmental Evolutionary Graph Theory

Environmental Evolutionary Graph Theory Environmental Evolutionary Graph Theory Wes Maciejewski, Gregory J. Puleo February 15, 2018 arxiv:1311.3214v1 [q-bio.pe] 13 Nov 2013 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Abstract

More information

The cost/reward formula has two specific widely used applications:

The cost/reward formula has two specific widely used applications: Applications of Absorption Probability and Accumulated Cost/Reward Formulas for FDMC Friday, October 21, 2011 2:28 PM No class next week. No office hours either. Next class will be 11/01. The cost/reward

More information

Faster Monte-Carlo Algorithms for Fixation Probability of the Moran Process on Undirected Graphs

Faster Monte-Carlo Algorithms for Fixation Probability of the Moran Process on Undirected Graphs Faster Monte-Carlo Algorithms for Fixation Probability of the Moran Process on Undirected Graphs Krishnendu Chatterjee, Rasmus Ibsen-Jensen 2, and Martin A. Nowak 3 IST Austria, Klosterneuburg, Austria

More information

How robust are the predictions of the W-F Model?

How robust are the predictions of the W-F Model? How robust are the predictions of the W-F Model? As simplistic as the Wright-Fisher model may be, it accurately describes the behavior of many other models incorporating additional complexity. Many population

More information

The Wright-Fisher Model and Genetic Drift

The Wright-Fisher Model and Genetic Drift The Wright-Fisher Model and Genetic Drift January 22, 2015 1 1 Hardy-Weinberg Equilibrium Our goal is to understand the dynamics of allele and genotype frequencies in an infinite, randomlymating population

More information

Exact results for fixation probability of bithermal evolutionary graphs.

Exact results for fixation probability of bithermal evolutionary graphs. Exact results for fixation probability of bithermal evolutionary graphs. Bahram Houchmandzadeh, Marcel Vallade To cite this version: Bahram Houchmandzadeh, Marcel Vallade. Exact results for fixation probability

More information

Anomalous metastability and fixation properties of evolutionary games on scale-free graphs

Anomalous metastability and fixation properties of evolutionary games on scale-free graphs Anomalous metastability and fixation properties of evolutionary games on scale-free graphs Michael Assaf 1 and Mauro Mobilia 2 1 Racah Institute of Physics, Hebrew University of Jerusalem Jerusalem 9194,

More information

stochastic, evolutionary game dynamics in finite populations

stochastic, evolutionary game dynamics in finite populations PHYSICAL REVIEW E 80, 011909 2009 Deterministic evolutionary game dynamics in finite populations Philipp M. Altrock* and Arne Traulsen Emmy-Noether Group of Evolutionary Dynamics, Department of Evolutionary

More information

Modelling evolution in structured populations involving multiplayer interactions

Modelling evolution in structured populations involving multiplayer interactions Modelling evolution in structured populations involving multiplayer interactions Mark Broom City University London Game Theoretical Modelling of Evolution in Structured Populations NIMBioS Knoxville 25-27

More information

THE EVOLUTION OF POPULATIONS THE EVOLUTION OF POPULATIONS

THE EVOLUTION OF POPULATIONS THE EVOLUTION OF POPULATIONS WHAT IS LIFE? A GUIDE TO BIOLOGY, ART NOTEBOOK, PAGE 8 THE OF POPULATIONS Figure 8-10, part 1 Evolution defined. THE OF POPULATIONS TIGER POPULATION Allele frequencies: Proportion of orange fur-pigment

More information

SARAH P. OTTO and TROY DAY

SARAH P. OTTO and TROY DAY A Biologist's Guide to Mathematical Modeling in Ecology and Evolution SARAH P. OTTO and TROY DAY Univsr?.ltats- und Lender bibliolhek Darmstadt Bibliothek Biotogi Princeton University Press Princeton and

More information

Stochastic modelling of epidemic spread

Stochastic modelling of epidemic spread Stochastic modelling of epidemic spread Julien Arino Centre for Research on Inner City Health St Michael s Hospital Toronto On leave from Department of Mathematics University of Manitoba Julien Arino@umanitoba.ca

More information

Elementary Applications of Probability Theory

Elementary Applications of Probability Theory Elementary Applications of Probability Theory With an introduction to stochastic differential equations Second edition Henry C. Tuckwell Senior Research Fellow Stochastic Analysis Group of the Centre for

More information

The One-Third Law of Evolutionary Dynamics

The One-Third Law of Evolutionary Dynamics The One-Third Law of Evolutionary Dynamics The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Ohtsuki Hisashi, Pedro Bordalo,

More information

Evolution & Natural Selection

Evolution & Natural Selection Evolution & Natural Selection Learning Objectives Know what biological evolution is and understand the driving force behind biological evolution. know the major mechanisms that change allele frequencies

More information

Social network analysis: social learning

Social network analysis: social learning Social network analysis: social learning Donglei Du (ddu@unb.edu) Faculty of Business Administration, University of New Brunswick, NB Canada Fredericton E3B 9Y2 October 20, 2016 Donglei Du (UNB) AlgoTrading

More information

Problems on Evolutionary dynamics

Problems on Evolutionary dynamics Problems on Evolutionary dynamics Doctoral Programme in Physics José A. Cuesta Lausanne, June 10 13, 2014 Replication 1. Consider the Galton-Watson process defined by the offspring distribution p 0 =

More information

arxiv: v2 [cond-mat.stat-mech] 5 Jan 2009

arxiv: v2 [cond-mat.stat-mech] 5 Jan 2009 Fixation and consensus times on a network: a unified approach arxiv:0801.3083v2 [cond-mat.stat-mech] 5 Jan 2009 G. J. Baxter, 1 R. A. Blythe, 2 and A. J. McKane 3 1 School of Mathematics, Statistics and

More information

Examples of Countable State Markov Chains Thursday, October 16, :12 PM

Examples of Countable State Markov Chains Thursday, October 16, :12 PM stochnotes101608 Page 1 Examples of Countable State Markov Chains Thursday, October 16, 2008 12:12 PM Homework 2 solutions will be posted later today. A couple of quick examples. Queueing model (without

More information

Markov Chains Handout for Stat 110

Markov Chains Handout for Stat 110 Markov Chains Handout for Stat 0 Prof. Joe Blitzstein (Harvard Statistics Department) Introduction Markov chains were first introduced in 906 by Andrey Markov, with the goal of showing that the Law of

More information

Homework 3 posted, due Tuesday, November 29.

Homework 3 posted, due Tuesday, November 29. Classification of Birth-Death Chains Tuesday, November 08, 2011 2:02 PM Homework 3 posted, due Tuesday, November 29. Continuing with our classification of birth-death chains on nonnegative integers. Last

More information

Evolution 1 Star. 6. The different tools used during the beaks of finches lab represented. A. feeding adaptations in finches

Evolution 1 Star. 6. The different tools used during the beaks of finches lab represented. A. feeding adaptations in finches Name: Date: 1. ccording to modern evolutionary theory, genes responsible for new traits that help a species survive in a particular environment will usually. not change in frequency. decrease gradually

More information

Social Influence in Online Social Networks. Epidemiological Models. Epidemic Process

Social Influence in Online Social Networks. Epidemiological Models. Epidemic Process Social Influence in Online Social Networks Toward Understanding Spatial Dependence on Epidemic Thresholds in Networks Dr. Zesheng Chen Viral marketing ( word-of-mouth ) Blog information cascading Rumor

More information

Irreducibility. Irreducible. every state can be reached from every other state For any i,j, exist an m 0, such that. Absorbing state: p jj =1

Irreducibility. Irreducible. every state can be reached from every other state For any i,j, exist an m 0, such that. Absorbing state: p jj =1 Irreducibility Irreducible every state can be reached from every other state For any i,j, exist an m 0, such that i,j are communicate, if the above condition is valid Irreducible: all states are communicate

More information

Network models: dynamical growth and small world

Network models: dynamical growth and small world Network models: dynamical growth and small world Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics

More information

1 Complex Networks - A Brief Overview

1 Complex Networks - A Brief Overview Power-law Degree Distributions 1 Complex Networks - A Brief Overview Complex networks occur in many social, technological and scientific settings. Examples of complex networks include World Wide Web, Internet,

More information

Die-out Probability in SIS Epidemic Processes on Networks

Die-out Probability in SIS Epidemic Processes on Networks Die-out Probability in SIS Epidemic Processes on etworks Qiang Liu and Piet Van Mieghem Abstract An accurate approximate formula of the die-out probability in a SIS epidemic process on a network is proposed.

More information

Evolutionary dynamics of populations with genotype-phenotype map

Evolutionary dynamics of populations with genotype-phenotype map Evolutionary dynamics of populations with genotype-phenotype map Esther Ibáñez Marcelo, Tomas Alarcon Cor Biomat 2013: Mathematics of Planet Earth CENTRE DE RECERCA MATEMÀTICA 17-21 June 2013 Esther Ibáñez

More information

Major questions of evolutionary genetics. Experimental tools of evolutionary genetics. Theoretical population genetics.

Major questions of evolutionary genetics. Experimental tools of evolutionary genetics. Theoretical population genetics. Evolutionary Genetics (for Encyclopedia of Biodiversity) Sergey Gavrilets Departments of Ecology and Evolutionary Biology and Mathematics, University of Tennessee, Knoxville, TN 37996-6 USA Evolutionary

More information

Outlines. Discrete Time Markov Chain (DTMC) Continuous Time Markov Chain (CTMC)

Outlines. Discrete Time Markov Chain (DTMC) Continuous Time Markov Chain (CTMC) Markov Chains (2) Outlines Discrete Time Markov Chain (DTMC) Continuous Time Markov Chain (CTMC) 2 pj ( n) denotes the pmf of the random variable p ( n) P( X j) j We will only be concerned with homogenous

More information

EVOLUTION OF COMPLEX FOOD WEB STRUCTURE BASED ON MASS EXTINCTION

EVOLUTION OF COMPLEX FOOD WEB STRUCTURE BASED ON MASS EXTINCTION EVOLUTION OF COMPLEX FOOD WEB STRUCTURE BASED ON MASS EXTINCTION Kenichi Nakazato Nagoya University Graduate School of Human Informatics nakazato@create.human.nagoya-u.ac.jp Takaya Arita Nagoya University

More information

At the boundary states, we take the same rules except we forbid leaving the state space, so,.

At the boundary states, we take the same rules except we forbid leaving the state space, so,. Birth-death chains Monday, October 19, 2015 2:22 PM Example: Birth-Death Chain State space From any state we allow the following transitions: with probability (birth) with probability (death) with probability

More information

Birth and Death Processes. Birth and Death Processes. Linear Growth with Immigration. Limiting Behaviour for Birth and Death Processes

Birth and Death Processes. Birth and Death Processes. Linear Growth with Immigration. Limiting Behaviour for Birth and Death Processes DTU Informatics 247 Stochastic Processes 6, October 27 Today: Limiting behaviour of birth and death processes Birth and death processes with absorbing states Finite state continuous time Markov chains

More information

Reproduction- passing genetic information to the next generation

Reproduction- passing genetic information to the next generation 166 166 Essential Question: How has biological evolution led to the diversity of life? B-5 Natural Selection Traits that make an organism more or less likely to survive in an environment and reproduce

More information

3.2 Configuration model

3.2 Configuration model 3.2 Configuration model 3.2.1 Definition. Basic properties Assume that the vector d = (d 1,..., d n ) is graphical, i.e., there exits a graph on n vertices such that vertex 1 has degree d 1, vertex 2 has

More information

The fate of beneficial mutations in a range expansion

The fate of beneficial mutations in a range expansion The fate of beneficial mutations in a range expansion R. Lehe (Paris) O. Hallatschek (Göttingen) L. Peliti (Naples) February 19, 2015 / Rutgers Outline Introduction The model Results Analysis Range expansion

More information

Chapter 16: Evolutionary Theory

Chapter 16: Evolutionary Theory Chapter 16: Evolutionary Theory Section 1: Developing a Theory Evolution: Artificial Selection: Evolution: I. A Theory to Explain Change Over Time B. Charles Darwin C. Theory: D. Modern evolutionary theory

More information

Complex networks and evolutionary games

Complex networks and evolutionary games Volume 2 Complex networks and evolutionary games Michael Kirley Department of Computer Science and Software Engineering The University of Melbourne, Victoria, Australia Email: mkirley@cs.mu.oz.au Abstract

More information

Stochastic modelling of epidemic spread

Stochastic modelling of epidemic spread Stochastic modelling of epidemic spread Julien Arino Department of Mathematics University of Manitoba Winnipeg Julien Arino@umanitoba.ca 19 May 2012 1 Introduction 2 Stochastic processes 3 The SIS model

More information

Introduction to Digital Evolution Handout Answers

Introduction to Digital Evolution Handout Answers Introduction to Digital Evolution Handout Answers Note to teacher: The questions in this handout and the suggested answers (in red, below) are meant to guide discussion, not be an assessment. It is recommended

More information

Three Disguises of 1 x = e λx

Three Disguises of 1 x = e λx Three Disguises of 1 x = e λx Chathuri Karunarathna Mudiyanselage Rabi K.C. Winfried Just Department of Mathematics, Ohio University Mathematical Biology and Dynamical Systems Seminar Ohio University November

More information

networks in molecular biology Wolfgang Huber

networks in molecular biology Wolfgang Huber networks in molecular biology Wolfgang Huber networks in molecular biology Regulatory networks: components = gene products interactions = regulation of transcription, translation, phosphorylation... Metabolic

More information

A A A A B B1

A A A A B B1 LEARNING OBJECTIVES FOR EACH BIG IDEA WITH ASSOCIATED SCIENCE PRACTICES AND ESSENTIAL KNOWLEDGE Learning Objectives will be the target for AP Biology exam questions Learning Objectives Sci Prac Es Knowl

More information

I. Aim # 40: Classification 1. Why do we classify organisms? II. 2. Define taxonomy: 3. Who is Carlous Linnaeus? What is he known for?

I. Aim # 40: Classification 1. Why do we classify organisms? II. 2. Define taxonomy: 3. Who is Carlous Linnaeus? What is he known for? Name: Date: Period: Living Environment Unit 8 Evolution Study Guide Due Date: Test Date: Unit 8 Important Topics: Aim # 40: Classification Aim # 41: Dichotomous Keys Aim # 42: Cladograms Aim # 43: Evolutionary

More information

Networks as vectors of their motif frequencies and 2-norm distance as a measure of similarity

Networks as vectors of their motif frequencies and 2-norm distance as a measure of similarity Networks as vectors of their motif frequencies and 2-norm distance as a measure of similarity CS322 Project Writeup Semih Salihoglu Stanford University 353 Serra Street Stanford, CA semih@stanford.edu

More information

The Combinatorial Interpretation of Formulas in Coalescent Theory

The Combinatorial Interpretation of Formulas in Coalescent Theory The Combinatorial Interpretation of Formulas in Coalescent Theory John L. Spouge National Center for Biotechnology Information NLM, NIH, DHHS spouge@ncbi.nlm.nih.gov Bldg. A, Rm. N 0 NCBI, NLM, NIH Bethesda

More information

Markov Chains, Random Walks on Graphs, and the Laplacian

Markov Chains, Random Walks on Graphs, and the Laplacian Markov Chains, Random Walks on Graphs, and the Laplacian CMPSCI 791BB: Advanced ML Sridhar Mahadevan Random Walks! There is significant interest in the problem of random walks! Markov chain analysis! Computer

More information

The Fastest Evolutionary Trajectory

The Fastest Evolutionary Trajectory The Fastest Evolutionary Trajectory The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Traulsen, Arne, Yoh Iwasa, and Martin

More information

Deterministic Decentralized Search in Random Graphs

Deterministic Decentralized Search in Random Graphs Deterministic Decentralized Search in Random Graphs Esteban Arcaute 1,, Ning Chen 2,, Ravi Kumar 3, David Liben-Nowell 4,, Mohammad Mahdian 3, Hamid Nazerzadeh 1,, and Ying Xu 1, 1 Stanford University.

More information

Basic graph theory 18.S995 - L26.

Basic graph theory 18.S995 - L26. Basic graph theory 18.S995 - L26 dunkel@math.mit.edu http://java.dzone.com/articles/algorithm-week-graphs-and no cycles Isomorphic graphs f(a) = 1 f(b) = 6 f(c) = 8 f(d) = 3 f(g) = 5 f(h) = 2 f(i) = 4

More information

So in terms of conditional probability densities, we have by differentiating this relationship:

So in terms of conditional probability densities, we have by differentiating this relationship: Modeling with Finite State Markov Chains Tuesday, September 27, 2011 1:54 PM Homework 1 due Friday, September 30 at 2 PM. Office hours on 09/28: Only 11 AM-12 PM (not at 3 PM) Important side remark about

More information

6 Evolution of Networks

6 Evolution of Networks last revised: March 2008 WARNING for Soc 376 students: This draft adopts the demography convention for transition matrices (i.e., transitions from column to row). 6 Evolution of Networks 6. Strategic network

More information

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution.

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution. The AP Biology course is designed to enable you to develop advanced inquiry and reasoning skills, such as designing a plan for collecting data, analyzing data, applying mathematical routines, and connecting

More information

A symmetry of fixation times in evoultionary dynamics

A symmetry of fixation times in evoultionary dynamics Journal of Theoretical Biology 243 (2006) 245 25 elseviercom/locate/yjtbi A symmetry of fixation times in evoultionary dynamics Christine Taylor a,, Yoh Iasa b, Martin A Noak a a Program for Evolutionary

More information

Spectral Analysis of Directed Complex Networks. Tetsuro Murai

Spectral Analysis of Directed Complex Networks. Tetsuro Murai MASTER THESIS Spectral Analysis of Directed Complex Networks Tetsuro Murai Department of Physics, Graduate School of Science and Engineering, Aoyama Gakuin University Supervisors: Naomichi Hatano and Kenn

More information

Evolutionary dynamics of cancer: A spatial model of cancer initiation

Evolutionary dynamics of cancer: A spatial model of cancer initiation Evolutionary dynamics of cancer: A spatial model of cancer initiation Jasmine Foo University of Minnesota School of Mathematics May 8, 2014 Collaborators Rick Durrett Kevin Leder Marc Ryser Next talk by

More information

MATHEMATICAL MODELS - Vol. III - Mathematical Modeling and the Human Genome - Hilary S. Booth MATHEMATICAL MODELING AND THE HUMAN GENOME

MATHEMATICAL MODELS - Vol. III - Mathematical Modeling and the Human Genome - Hilary S. Booth MATHEMATICAL MODELING AND THE HUMAN GENOME MATHEMATICAL MODELING AND THE HUMAN GENOME Hilary S. Booth Australian National University, Australia Keywords: Human genome, DNA, bioinformatics, sequence analysis, evolution. Contents 1. Introduction:

More information

Processes of Evolution

Processes of Evolution 15 Processes of Evolution Forces of Evolution Concept 15.4 Selection Can Be Stabilizing, Directional, or Disruptive Natural selection can act on quantitative traits in three ways: Stabilizing selection

More information

Spatial and Temporal Behaviors in a Modified Evolution Model Based on Small World Network

Spatial and Temporal Behaviors in a Modified Evolution Model Based on Small World Network Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 242 246 c International Academic Publishers Vol. 42, No. 2, August 15, 2004 Spatial and Temporal Behaviors in a Modified Evolution Model Based on Small

More information

Big Idea 1: The process of evolution drives the diversity and unity of life.

Big Idea 1: The process of evolution drives the diversity and unity of life. Big Idea 1: The process of evolution drives the diversity and unity of life. understanding 1.A: Change in the genetic makeup of a population over time is evolution. 1.A.1: Natural selection is a major

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Recitation 13 10/31/2008. Markov Chains

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Recitation 13 10/31/2008. Markov Chains MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/5.085J Fall 008 Recitation 3 0/3/008 Marko Chains Problem 9 from Poisson process exercises in [BT] Fact: If there is a single recurrent class, the frequency

More information

AP Curriculum Framework with Learning Objectives

AP Curriculum Framework with Learning Objectives Big Ideas Big Idea 1: The process of evolution drives the diversity and unity of life. AP Curriculum Framework with Learning Objectives Understanding 1.A: Change in the genetic makeup of a population over

More information

Distributed learning in potential games over large-scale networks

Distributed learning in potential games over large-scale networks Distributed learning in potential games over large-scale networks Fabio Fagnani, DISMA, Politecnico di Torino joint work with Giacomo Como, Lund University Sandro Zampieri, DEI, University of Padova Networking

More information

Symbiotic Sympatric Speciation: Compliance with Interaction-driven Phenotype Differentiation from a Single Genotype

Symbiotic Sympatric Speciation: Compliance with Interaction-driven Phenotype Differentiation from a Single Genotype Symbiotic Sympatric Speciation: Compliance with Interaction-driven Phenotype Differentiation from a Single Genotype Kunihiko Kaneko (Univ of Tokyo, Komaba) with Tetsuya Yomo (Osaka Univ.) experiment Akiko

More information

Population Genetics I. Bio

Population Genetics I. Bio Population Genetics I. Bio5488-2018 Don Conrad dconrad@genetics.wustl.edu Why study population genetics? Functional Inference Demographic inference: History of mankind is written in our DNA. We can learn

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 18 Feb 2004 Diego Garlaschelli a,b and Maria I. Loffredo b,c

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 18 Feb 2004 Diego Garlaschelli a,b and Maria I. Loffredo b,c Wealth Dynamics on Complex Networks arxiv:cond-mat/0402466v1 [cond-mat.dis-nn] 18 Feb 2004 Diego Garlaschelli a,b and Maria I. Loffredo b,c a Dipartimento di Fisica, Università di Siena, Via Roma 56, 53100

More information

Are there species smaller than 1mm?

Are there species smaller than 1mm? Are there species smaller than 1mm? Alan McKane Theoretical Physics Division, University of Manchester Warwick, September 9, 2013 Alan McKane (Manchester) Are there species smaller than 1mm? Warwick, September

More information

arxiv: v1 [q-bio.pe] 20 Sep 2018

arxiv: v1 [q-bio.pe] 20 Sep 2018 SAIONARY FREQUENCIES AND MIXING IMES FOR NEURAL DRIF PROCESSES WIH SPAIAL SRUCURE ALEX MCAVOY 1, BEN ADLAM 1,2, BENJAMIN ALLEN 1,3, MARIN A. NOWAK 1,4,5 arxiv:1809.07788v1 q-bio.pe 20 Sep 2018 1 Program

More information

An Introduction to Evolutionary Game Theory

An Introduction to Evolutionary Game Theory An Introduction to Evolutionary Game Theory Lectures delivered at the Graduate School on Nonlinear and Stochastic Systems in Biology held in the Department of Applied Mathematics, School of Mathematics

More information

An Introduction to Exponential-Family Random Graph Models

An Introduction to Exponential-Family Random Graph Models An Introduction to Exponential-Family Random Graph Models Luo Lu Feb.8, 2011 1 / 11 Types of complications in social network Single relationship data A single relationship observed on a set of nodes at

More information

Nonlinear Dynamical Behavior in BS Evolution Model Based on Small-World Network Added with Nonlinear Preference

Nonlinear Dynamical Behavior in BS Evolution Model Based on Small-World Network Added with Nonlinear Preference Commun. Theor. Phys. (Beijing, China) 48 (2007) pp. 137 142 c International Academic Publishers Vol. 48, No. 1, July 15, 2007 Nonlinear Dynamical Behavior in BS Evolution Model Based on Small-World Network

More information

Chaos, Complexity, and Inference (36-462)

Chaos, Complexity, and Inference (36-462) Chaos, Complexity, and Inference (36-462) Lecture 21: More Networks: Models and Origin Myths Cosma Shalizi 31 March 2009 New Assignment: Implement Butterfly Mode in R Real Agenda: Models of Networks, with

More information

Inclusive Fitness on Evolutionary Graphs

Inclusive Fitness on Evolutionary Graphs Inclusive Fitness on Evolutionary Graphs by Wes Maciejewski A thesis submitted to the Department of Mathematics and Statistics in conformity with the requirements for the degree of Doctor of Philosophy

More information

URN MODELS: the Ewens Sampling Lemma

URN MODELS: the Ewens Sampling Lemma Department of Computer Science Brown University, Providence sorin@cs.brown.edu October 3, 2014 1 2 3 4 Mutation Mutation: typical values for parameters Equilibrium Probability of fixation 5 6 Ewens Sampling

More information

2 Discrete-Time Markov Chains

2 Discrete-Time Markov Chains 2 Discrete-Time Markov Chains Angela Peace Biomathematics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information

Population Genetics: a tutorial

Population Genetics: a tutorial : a tutorial Institute for Science and Technology Austria ThRaSh 2014 provides the basic mathematical foundation of evolutionary theory allows a better understanding of experiments allows the development

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

Measuring the shape of degree distributions

Measuring the shape of degree distributions Measuring the shape of degree distributions Dr Jennifer Badham Visiting Fellow SEIT, UNSW Canberra research@criticalconnections.com.au Overview Context What does shape mean for degree distribution Why

More information

IEOR 6711: Professor Whitt. Introduction to Markov Chains

IEOR 6711: Professor Whitt. Introduction to Markov Chains IEOR 6711: Professor Whitt Introduction to Markov Chains 1. Markov Mouse: The Closed Maze We start by considering how to model a mouse moving around in a maze. The maze is a closed space containing nine

More information

The SIS and SIR stochastic epidemic models revisited

The SIS and SIR stochastic epidemic models revisited The SIS and SIR stochastic epidemic models revisited Jesús Artalejo Faculty of Mathematics, University Complutense of Madrid Madrid, Spain jesus_artalejomat.ucm.es BCAM Talk, June 16, 2011 Talk Schedule

More information

Uncovering structure in biological networks: A model-based approach

Uncovering structure in biological networks: A model-based approach Uncovering structure in biological networks: A model-based approach J-J Daudin, F. Picard, S. Robin, M. Mariadassou UMR INA-PG / ENGREF / INRA, Paris Mathématique et Informatique Appliquées Statistics

More information

A representation for the semigroup of a two-level Fleming Viot process in terms of the Kingman nested coalescent

A representation for the semigroup of a two-level Fleming Viot process in terms of the Kingman nested coalescent A representation for the semigroup of a two-level Fleming Viot process in terms of the Kingman nested coalescent Airam Blancas June 11, 017 Abstract Simple nested coalescent were introduced in [1] to model

More information

MS-LS3-1 Heredity: Inheritance and Variation of Traits

MS-LS3-1 Heredity: Inheritance and Variation of Traits MS-LS3-1 Heredity: Inheritance and Variation of Traits MS-LS3-1. Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

Network models: random graphs

Network models: random graphs Network models: random graphs Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Structural Analysis

More information

Group Formation: Fragmentation Transitions in Network Coevolution Dynamics

Group Formation: Fragmentation Transitions in Network Coevolution Dynamics - Mallorca - Spain Workshop on Challenges and Visions in the Social Sciences, ETH August 08 Group Formation: Fragmentation Transitions in Network Coevolution Dynamics MAXI SAN MIGUEL CO-EVOLUTION Dynamics

More information

Ecology Regulation, Fluctuations and Metapopulations

Ecology Regulation, Fluctuations and Metapopulations Ecology Regulation, Fluctuations and Metapopulations The Influence of Density on Population Growth and Consideration of Geographic Structure in Populations Predictions of Logistic Growth The reality of

More information

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes

Lecture Notes 7 Random Processes. Markov Processes Markov Chains. Random Processes Lecture Notes 7 Random Processes Definition IID Processes Bernoulli Process Binomial Counting Process Interarrival Time Process Markov Processes Markov Chains Classification of States Steady State Probabilities

More information

Computational Systems Biology: Biology X

Computational Systems Biology: Biology X Bud Mishra Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA Human Population Genomics Outline 1 2 Damn the Human Genomes. Small initial populations; genes too distant; pestered with transposons;

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Recitation 3 1 Gaussian Graphical Models: Schur s Complement Consider

More information

Chaos, Complexity, and Inference (36-462)

Chaos, Complexity, and Inference (36-462) Chaos, Complexity, and Inference (36-462) Lecture 21 Cosma Shalizi 3 April 2008 Models of Networks, with Origin Myths Erdős-Rényi Encore Erdős-Rényi with Node Types Watts-Strogatz Small World Graphs Exponential-Family

More information