Markov Chains Absorption Hamid R. Rabiee

Size: px
Start display at page:

Download "Markov Chains Absorption Hamid R. Rabiee"

Transcription

1 Markov Chains Absorption Hamid R. Rabiee

2 Absorbing Markov Chain An absorbing state is one in which the probability that the process remains in that state once it enters the state is (i.e., p ii = ). A Markov chain is absorbing if it has at least one absorbing state, and if from every state it is possible to go to an absorbing state (not necessarily in one step) States 0 and 4 are absorbing

3 The canonical form By separating transient (TR) and absorbing (ABS) states, the transition matrix of any absorbing Markov chain can be written as: And as time passes we can see that: 3

4 Absorption theorem In an absorbing MC the probability that the process will be absorbed is. (i.e. Q n 0 as n ). Proof sketch: By definition of an absorbing MC, There exist a path S from any non-absorbing state s j to an absorbing state. So there is a positive probability p j of taking this path every time the process starts from s j. Therefore there exists p and m, such that the probability of not absorbing after m steps is at most p. After km steps the probability of not being absorbed is at most p k, and as time goes to infinity this probability approaches zero. 4

5 The Fundamental Matrix Definition: For an absorbing Markov chain P, the following matrix is called the fundamental matrix for P. N = I Q Theorem: For an absorbing MC the matrix I Q has an inverse N, and N = I + Q + Q +. The ij-entry n ij of the Matrix N is the expected number of times the chain is in state s j, given that it starts in state s i. 5

6 Proof: I Q x = 0 x = Qx x = Q n x. Since Q n 0, we have Q n x 0, so x = 0. Thus x = 0 is the only point in the nullspace of I Q, therefore I Q = N exists. I Q I + Q + Q + + Q n = I Q n+ I + Q + Q + + Q n = N(I Q n+ ). Letting n tend to infinity we have: N = I + Q + Q + 6

7 Proof (cont d): Consider two transient states i and j, and suppose that S i is the initial state. X (k) : a R.V. which equals if the chain is in state s j after k steps, and equals 0 otherwise. We have: P X k = = (Q k ) ij The expected number of times the chain is in state s j in the first n steps, given that it starts in state s i is: E X 0 + X + + X n = (Q 0 ) ij + (Q ) ij + + (Q n ) ij As n goes to infinity we have: E X 0 + X + = (Q 0 ) ij + (Q ) ij + = N ij 7

8 Example: Consider the following Markov chain (D random walk with 5 states): The transition matrix in canonical form is: ; 8

9 Example (cont d): If we start in state, then the expected number of times in states, and 3 before being absorbed are, and. 9

10 Time to Absorption: Question: Given that the chain starts in state s i, what is the expected number of steps before the chain is absorbed? Reminder: Starting from s i, the expected number of steps the process will be in state s j before absorption is N ij. Therefor j N ij is the expected number of steps before absorption. Theorem: Let t i be the expected number of steps before the chain is absorbed, given that the chain starts in state s i, and let t be the column vector whose i-th entry is t i. Then t = Nc, where c is a column vector all of whose entries are. 0

11 Absorption Probabilities: Question: Given that the chain starts in the transient state s i, what is the probability that it will be absorbed in the absorbing state s j? Intuition: Starting from s i, the expected number the process will be in state s k before absorption is N ik. Each time, the probability to move to state s j is R kj (kj-th element of matrix R introduced in the canonical form).

12 Absorption Probabilities: Theorem: Let B ij be the probability that an absorbing chain will be absorbed in the absorbing state s j if it starts in the transient state s i. Let B be the matrix with entries b ij. Then B is a t-by-r matrix, and B = NR, where N is the fundamental matrix and R is as in the canonical form. Proof: B ij = n k (n) q ik rkj = k n (n) q ik rkj = = NR ij k n ik r kj

13 Example: In previous example (D random walk with 5 states) we found that: Hence The expected number of steps before absorption when the process starts from states,, 3 is 3, 4 and 3 respectively. 3

14 Example (cont d): From the canonical form: Hence Here the first row tells us that, starting from state, there is probability 3/4 of absorption in state 0 and /4 of absorption in state 4. 4

15 References Grinstead C. M, and Snell J. L, Introduction to probability, American Mathematical Society, 997 5

Markov Chains Absorption (cont d) Hamid R. Rabiee

Markov Chains Absorption (cont d) Hamid R. Rabiee Markov Chains Absorption (cont d) Hamid R. Rabiee 1 Absorbing Markov Chain An absorbing state is one in which the probability that the process remains in that state once it enters the state is 1 (i.e.,

More information

Markov Processes Hamid R. Rabiee

Markov Processes Hamid R. Rabiee Markov Processes Hamid R. Rabiee Overview Markov Property Markov Chains Definition Stationary Property Paths in Markov Chains Classification of States Steady States in MCs. 2 Markov Property A discrete

More information

Lecture 11: Introduction to Markov Chains. Copyright G. Caire (Sample Lectures) 321

Lecture 11: Introduction to Markov Chains. Copyright G. Caire (Sample Lectures) 321 Lecture 11: Introduction to Markov Chains Copyright G. Caire (Sample Lectures) 321 Discrete-time random processes A sequence of RVs indexed by a variable n 2 {0, 1, 2,...} forms a discretetime random process

More information

CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions

CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions CS145: Probability & Computing Lecture 18: Discrete Markov Chains, Equilibrium Distributions Instructor: Erik Sudderth Brown University Computer Science April 14, 215 Review: Discrete Markov Chains Some

More information

Markov Chains. Chapter Introduction. 1. w(1) = (.5,.25,.25) w(2) = (.4375,.1875,.375) w(3) = (.40625, , ) 1 0.

Markov Chains. Chapter Introduction. 1. w(1) = (.5,.25,.25) w(2) = (.4375,.1875,.375) w(3) = (.40625, , ) 1 0. Chapter 11 Markov Chains 111 Introduction 1 w(1) = (5 25 25) w(2) = (4375 1875 375) w(3) = (40625 203125 390625) ( 1 0 1 0 2 P = P 2 = 1 2 1 2 1 0 P n = 2 n 1 2 n 1 2 n 3 4 ( 1 0 1 0 ) 1 4 ) P 3 = ( 1

More information

Markov Chains Handout for Stat 110

Markov Chains Handout for Stat 110 Markov Chains Handout for Stat 0 Prof. Joe Blitzstein (Harvard Statistics Department) Introduction Markov chains were first introduced in 906 by Andrey Markov, with the goal of showing that the Law of

More information

ECE 541 Project Report: Modeling the Game of RISK Using Markov Chains

ECE 541 Project Report: Modeling the Game of RISK Using Markov Chains Contents ECE 541 Project Report: Modeling the Game of RISK Using Markov Chains Stochastic Signals and Systems Rutgers University, Fall 2014 Sijie Xiong, RUID: 151004243 Email: sx37@rutgers.edu 1 The Game

More information

Markov Chains. As part of Interdisciplinary Mathematical Modeling, By Warren Weckesser Copyright c 2006.

Markov Chains. As part of Interdisciplinary Mathematical Modeling, By Warren Weckesser Copyright c 2006. Markov Chains As part of Interdisciplinary Mathematical Modeling, By Warren Weckesser Copyright c 2006 1 Introduction A (finite) Markov chain is a process with a finite number of states (or outcomes, or

More information

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Waiting Time to Absorption

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Waiting Time to Absorption Steven R. Dunbar Department of Mathematics 203 Avery Hall University of Nebraska-Lincoln Lincoln, NE 6888-030 http://www.math.unl.edu Voice: 402-472-373 Fax: 402-472-8466 Topics in Probability Theory and

More information

The cost/reward formula has two specific widely used applications:

The cost/reward formula has two specific widely used applications: Applications of Absorption Probability and Accumulated Cost/Reward Formulas for FDMC Friday, October 21, 2011 2:28 PM No class next week. No office hours either. Next class will be 11/01. The cost/reward

More information

Markov Model. Model representing the different resident states of a system, and the transitions between the different states

Markov Model. Model representing the different resident states of a system, and the transitions between the different states Markov Model Model representing the different resident states of a system, and the transitions between the different states (applicable to repairable, as well as non-repairable systems) System behavior

More information

Markov Chains (Part 4)

Markov Chains (Part 4) Markov Chains (Part 4) Steady State Probabilities and First Passage Times Markov Chains - 1 Steady-State Probabilities Remember, for the inventory example we had (8) P &.286 =.286.286 %.286 For an irreducible

More information

Sequence modelling. Marco Saerens (UCL) Slides references

Sequence modelling. Marco Saerens (UCL) Slides references Sequence modelling Marco Saerens (UCL) Slides references Many slides and figures have been adapted from the slides associated to the following books: Alpaydin (2004), Introduction to machine learning.

More information

Lecture 20 : Markov Chains

Lecture 20 : Markov Chains CSCI 3560 Probability and Computing Instructor: Bogdan Chlebus Lecture 0 : Markov Chains We consider stochastic processes. A process represents a system that evolves through incremental changes called

More information

Absorbing Markov chains (sections 11.1 and 11.2)

Absorbing Markov chains (sections 11.1 and 11.2) Absorbing Markov chains (sections 11.1 and 11.2) What is a Markov chain, really? That is, what kind of mathematical object is it? It's NOT a special kind of stochastic matrix (although we do use stochastic

More information

Matrices: 2.1 Operations with Matrices

Matrices: 2.1 Operations with Matrices Goals In this chapter and section we study matrix operations: Define matrix addition Define multiplication of matrix by a scalar, to be called scalar multiplication. Define multiplication of two matrices,

More information

The Mabinogion Sheep Problem

The Mabinogion Sheep Problem The Mabinogion Sheep Problem Kun Dong Cornell University April 22, 2015 K. Dong (Cornell University) The Mabinogion Sheep Problem April 22, 2015 1 / 18 Introduction (Williams 1991) we are given a herd

More information

Mathematica reimbursement

Mathematica reimbursement Mathematica reimbursement Please hand in your Expense Approval forms (for purchase of copies of Mat hemat ica). Today will be your last chance to do this if you want to reimbursed anytime soon. Name of

More information

At the boundary states, we take the same rules except we forbid leaving the state space, so,.

At the boundary states, we take the same rules except we forbid leaving the state space, so,. Birth-death chains Monday, October 19, 2015 2:22 PM Example: Birth-Death Chain State space From any state we allow the following transitions: with probability (birth) with probability (death) with probability

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1

MATH 56A: STOCHASTIC PROCESSES CHAPTER 1 MATH 56A: STOCHASTIC PROCESSES CHAPTER. Finite Markov chains For the sake of completeness of these notes I decided to write a summary of the basic concepts of finite Markov chains. The topics in this chapter

More information

ISE/OR 760 Applied Stochastic Modeling

ISE/OR 760 Applied Stochastic Modeling ISE/OR 760 Applied Stochastic Modeling Topic 2: Discrete Time Markov Chain Yunan Liu Department of Industrial and Systems Engineering NC State University Yunan Liu (NC State University) ISE/OR 760 1 /

More information

4.7.1 Computing a stationary distribution

4.7.1 Computing a stationary distribution At a high-level our interest in the rest of this section will be to understand the limiting distribution, when it exists and how to compute it To compute it, we will try to reason about when the limiting

More information

6.842 Randomness and Computation March 3, Lecture 8

6.842 Randomness and Computation March 3, Lecture 8 6.84 Randomness and Computation March 3, 04 Lecture 8 Lecturer: Ronitt Rubinfeld Scribe: Daniel Grier Useful Linear Algebra Let v = (v, v,..., v n ) be a non-zero n-dimensional row vector and P an n n

More information

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018 Homework #1 Assigned: August 20, 2018 Review the following subjects involving systems of equations and matrices from Calculus II. Linear systems of equations Converting systems to matrix form Pivot entry

More information

Discrete time Markov chains. Discrete Time Markov Chains, Definition and classification. Probability axioms and first results

Discrete time Markov chains. Discrete Time Markov Chains, Definition and classification. Probability axioms and first results Discrete time Markov chains Discrete Time Markov Chains, Definition and classification 1 1 Applied Mathematics and Computer Science 02407 Stochastic Processes 1, September 5 2017 Today: Short recap of

More information

= P{X 0. = i} (1) If the MC has stationary transition probabilities then, = i} = P{X n+1

= P{X 0. = i} (1) If the MC has stationary transition probabilities then, = i} = P{X n+1 Properties of Markov Chains and Evaluation of Steady State Transition Matrix P ss V. Krishnan - 3/9/2 Property 1 Let X be a Markov Chain (MC) where X {X n : n, 1, }. The state space is E {i, j, k, }. The

More information

2. Transience and Recurrence

2. Transience and Recurrence Virtual Laboratories > 15. Markov Chains > 1 2 3 4 5 6 7 8 9 10 11 12 2. Transience and Recurrence The study of Markov chains, particularly the limiting behavior, depends critically on the random times

More information

CS100: DISCRETE STRUCTURES. Lecture 3 Matrices Ch 3 Pages:

CS100: DISCRETE STRUCTURES. Lecture 3 Matrices Ch 3 Pages: CS100: DISCRETE STRUCTURES Lecture 3 Matrices Ch 3 Pages: 246-262 Matrices 2 Introduction DEFINITION 1: A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called an m x n

More information

ISyE 6650 Probabilistic Models Fall 2007

ISyE 6650 Probabilistic Models Fall 2007 ISyE 6650 Probabilistic Models Fall 2007 Homework 4 Solution 1. (Ross 4.3) In this case, the state of the system is determined by the weather conditions in the last three days. Letting D indicate a dry

More information

ISM206 Lecture, May 12, 2005 Markov Chain

ISM206 Lecture, May 12, 2005 Markov Chain ISM206 Lecture, May 12, 2005 Markov Chain Instructor: Kevin Ross Scribe: Pritam Roy May 26, 2005 1 Outline of topics for the 10 AM lecture The topics are: Discrete Time Markov Chain Examples Chapman-Kolmogorov

More information

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65

MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65 MATH 56A SPRING 2008 STOCHASTIC PROCESSES 65 2.2.5. proof of extinction lemma. The proof of Lemma 2.3 is just like the proof of the lemma I did on Wednesday. It goes like this. Suppose that â is the smallest

More information

Problems. HW problem 5.7 Math 504. Spring CSUF by Nasser Abbasi

Problems. HW problem 5.7 Math 504. Spring CSUF by Nasser Abbasi Problems HW problem 5.7 Math 504. Spring 2008. CSUF by Nasser Abbasi 1 Problem 6.3 Part(A) Let I n be an indicator variable de ned as 1 when (n = jj I n = 0 = i) 0 otherwise Hence Now we see that E (V

More information

Lesson Plan. AM 121: Introduction to Optimization Models and Methods. Lecture 17: Markov Chains. Yiling Chen SEAS. Stochastic process Markov Chains

Lesson Plan. AM 121: Introduction to Optimization Models and Methods. Lecture 17: Markov Chains. Yiling Chen SEAS. Stochastic process Markov Chains AM : Introduction to Optimization Models and Methods Lecture 7: Markov Chains Yiling Chen SEAS Lesson Plan Stochastic process Markov Chains n-step probabilities Communicating states, irreducibility Recurrent

More information

Math 21b Final Exam Thursday, May 15, 2003 Solutions

Math 21b Final Exam Thursday, May 15, 2003 Solutions Math 2b Final Exam Thursday, May 5, 2003 Solutions. (20 points) True or False. No justification is necessary, simply circle T or F for each statement. T F (a) If W is a subspace of R n and x is not in

More information

Chapter 3: Markov Processes First hitting times

Chapter 3: Markov Processes First hitting times Chapter 3: Markov Processes First hitting times L. Breuer University of Kent, UK November 3, 2010 Example: M/M/c/c queue Arrivals: Poisson process with rate λ > 0 Example: M/M/c/c queue Arrivals: Poisson

More information

Chapter 29 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M.

Chapter 29 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. 29 Markov Chains Definition of a Markov Chain Markov chains are one of the most fun tools of probability; they give a lot of power for very little effort. We will restrict ourselves to finite Markov chains.

More information

P i [B k ] = lim. n=1 p(n) ii <. n=1. V i :=

P i [B k ] = lim. n=1 p(n) ii <. n=1. V i := 2.7. Recurrence and transience Consider a Markov chain {X n : n N 0 } on state space E with transition matrix P. Definition 2.7.1. A state i E is called recurrent if P i [X n = i for infinitely many n]

More information

Birth-death chain models (countable state)

Birth-death chain models (countable state) Countable State Birth-Death Chains and Branching Processes Tuesday, March 25, 2014 1:59 PM Homework 3 posted, due Friday, April 18. Birth-death chain models (countable state) S = We'll characterize the

More information

Social network analysis: social learning

Social network analysis: social learning Social network analysis: social learning Donglei Du (ddu@unb.edu) Faculty of Business Administration, University of New Brunswick, NB Canada Fredericton E3B 9Y2 October 20, 2016 Donglei Du (UNB) AlgoTrading

More information

Chapter 35 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal.

Chapter 35 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal. 35 Mixed Chains In this chapter we learn how to analyze Markov chains that consists of transient and absorbing states. Later we will see that this analysis extends easily to chains with (nonabsorbing)

More information

Classification of Countable State Markov Chains

Classification of Countable State Markov Chains Classification of Countable State Markov Chains Friday, March 21, 2014 2:01 PM How can we determine whether a communication class in a countable state Markov chain is: transient null recurrent positive

More information

8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains

8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains 8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains 8.1 Review 8.2 Statistical Equilibrium 8.3 Two-State Markov Chain 8.4 Existence of P ( ) 8.5 Classification of States

More information

Markov Chains. Chapter Introduction. Specifying a Markov Chain

Markov Chains. Chapter Introduction. Specifying a Markov Chain Chapter 11 Markov Chains 11.1 Introduction Most of our study of probability has dealt with independent trials processes. These processes are the basis of classical probability theory and much of statistics.

More information

STOCHASTIC PROCESSES Basic notions

STOCHASTIC PROCESSES Basic notions J. Virtamo 38.3143 Queueing Theory / Stochastic processes 1 STOCHASTIC PROCESSES Basic notions Often the systems we consider evolve in time and we are interested in their dynamic behaviour, usually involving

More information

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

Markov chains (week 6) Solutions

Markov chains (week 6) Solutions Markov chains (week 6) Solutions 1 Ranking of nodes in graphs. A Markov chain model. The stochastic process of agent visits A N is a Markov chain (MC). Explain. The stochastic process of agent visits A

More information

Countable state discrete time Markov Chains

Countable state discrete time Markov Chains Countable state discrete time Markov Chains Tuesday, March 18, 2014 2:12 PM Readings: Lawler Ch. 2 Karlin & Taylor Chs. 2 & 3 Resnick Ch. 1 Countably infinite state spaces are of practical utility in situations

More information

Mathematics 13: Lecture 10

Mathematics 13: Lecture 10 Mathematics 13: Lecture 10 Matrices Dan Sloughter Furman University January 25, 2008 Dan Sloughter (Furman University) Mathematics 13: Lecture 10 January 25, 2008 1 / 19 Matrices Recall: A matrix is a

More information

IEOR 6711: Professor Whitt. Introduction to Markov Chains

IEOR 6711: Professor Whitt. Introduction to Markov Chains IEOR 6711: Professor Whitt Introduction to Markov Chains 1. Markov Mouse: The Closed Maze We start by considering how to model a mouse moving around in a maze. The maze is a closed space containing nine

More information

The Boundary Problem: Markov Chain Solution

The Boundary Problem: Markov Chain Solution MATH 529 The Boundary Problem: Markov Chain Solution Consider a random walk X that starts at positive height j, and on each independent step, moves upward a units with probability p, moves downward b units

More information

CHAPTER 6. Markov Chains

CHAPTER 6. Markov Chains CHAPTER 6 Markov Chains 6.1. Introduction A(finite)Markovchainisaprocess withafinitenumberofstates (or outcomes, or events) in which the probability of being in a particular state at step n+1depends only

More information

Statistics 150: Spring 2007

Statistics 150: Spring 2007 Statistics 150: Spring 2007 April 23, 2008 0-1 1 Limiting Probabilities If the discrete-time Markov chain with transition probabilities p ij is irreducible and positive recurrent; then the limiting probabilities

More information

EE263 Review Session 1

EE263 Review Session 1 EE263 Review Session 1 October 5, 2018 0.1 Importing Variables from a MALAB.m file If you are importing variables given in file vars.m, use the following code at the beginning of your script. close a l

More information

ORF 522. Linear Programming and Convex Analysis

ORF 522. Linear Programming and Convex Analysis ORF 522 Linear Programming and Convex Analysis The Simplex Method Marco Cuturi Princeton ORF-522 1 Reminder: Basic Feasible Solutions, Extreme points, Optima Some important theorems last time for standard

More information

Lecture 10: Powers of Matrices, Difference Equations

Lecture 10: Powers of Matrices, Difference Equations Lecture 10: Powers of Matrices, Difference Equations Difference Equations A difference equation, also sometimes called a recurrence equation is an equation that defines a sequence recursively, i.e. each

More information

Introduction General Framework Toy models Discrete Markov model Data Analysis Conclusion. The Micro-Price. Sasha Stoikov. Cornell University

Introduction General Framework Toy models Discrete Markov model Data Analysis Conclusion. The Micro-Price. Sasha Stoikov. Cornell University The Micro-Price Sasha Stoikov Cornell University Jim Gatheral @ NYU High frequency traders (HFT) HFTs are good: Optimal order splitting Pairs trading / statistical arbitrage Market making / liquidity provision

More information

Continuous Time Markov Chain Examples

Continuous Time Markov Chain Examples Continuous Markov Chain Examples Example Consider a continuous time Markov chain on S {,, } The Markov chain is a model that describes the current status of a match between two particular contestants:

More information

Markov Chains. Sarah Filippi Department of Statistics TA: Luke Kelly

Markov Chains. Sarah Filippi Department of Statistics  TA: Luke Kelly Markov Chains Sarah Filippi Department of Statistics http://www.stats.ox.ac.uk/~filippi TA: Luke Kelly With grateful acknowledgements to Prof. Yee Whye Teh's slides from 2013 14. Schedule 09:30-10:30 Lecture:

More information

Markov Chains, Random Walks on Graphs, and the Laplacian

Markov Chains, Random Walks on Graphs, and the Laplacian Markov Chains, Random Walks on Graphs, and the Laplacian CMPSCI 791BB: Advanced ML Sridhar Mahadevan Random Walks! There is significant interest in the problem of random walks! Markov chain analysis! Computer

More information

Markov Chains CK eqns Classes Hitting times Rec./trans. Strong Markov Stat. distr. Reversibility * Markov Chains

Markov Chains CK eqns Classes Hitting times Rec./trans. Strong Markov Stat. distr. Reversibility * Markov Chains Markov Chains A random process X is a family {X t : t T } of random variables indexed by some set T. When T = {0, 1, 2,... } one speaks about a discrete-time process, for T = R or T = [0, ) one has a continuous-time

More information

Markov Chains. CS70 Summer Lecture 6B. David Dinh 26 July UC Berkeley

Markov Chains. CS70 Summer Lecture 6B. David Dinh 26 July UC Berkeley Markov Chains CS70 Summer 2016 - Lecture 6B David Dinh 26 July 2016 UC Berkeley Agenda Quiz is out! Due: Friday at noon. What are Markov Chains? State machine and matrix representations. Hitting Time 1

More information

Evolutionary dynamics on graphs

Evolutionary dynamics on graphs Evolutionary dynamics on graphs Laura Hindersin May 4th 2015 Max-Planck-Institut für Evolutionsbiologie, Plön Evolutionary dynamics Main ingredients: Fitness: The ability to survive and reproduce. Selection

More information

Convergence Rate of Markov Chains

Convergence Rate of Markov Chains Convergence Rate of Markov Chains Will Perkins April 16, 2013 Convergence Last class we saw that if X n is an irreducible, aperiodic, positive recurrent Markov chain, then there exists a stationary distribution

More information

Chapter 16 focused on decision making in the face of uncertainty about one future

Chapter 16 focused on decision making in the face of uncertainty about one future 9 C H A P T E R Markov Chains Chapter 6 focused on decision making in the face of uncertainty about one future event (learning the true state of nature). However, some decisions need to take into account

More information

2. The Power Method for Eigenvectors

2. The Power Method for Eigenvectors 2. Power Method We now describe the power method for computing the dominant eigenpair. Its extension to the inverse power method is practical for finding any eigenvalue provided that a good initial approximation

More information

2 Discrete-Time Markov Chains

2 Discrete-Time Markov Chains 2 Discrete-Time Markov Chains Angela Peace Biomathematics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information

1.3 Convergence of Regular Markov Chains

1.3 Convergence of Regular Markov Chains Markov Chains and Random Walks on Graphs 3 Applying the same argument to A T, which has the same λ 0 as A, yields the row sum bounds Corollary 0 Let P 0 be the transition matrix of a regular Markov chain

More information

Markov Chains and Transition Probabilities

Markov Chains and Transition Probabilities Hinthada University Research Journal 215, Vol. 6, No. 1 3 Markov Chains and Transition Probabilities Ko Ko Oo Abstract Markov chain is widely applicable to the study of many real-world phenomene. We represent

More information

Markov Chains (Part 3)

Markov Chains (Part 3) Markov Chains (Part 3) State Classification Markov Chains - State Classification Accessibility State j is accessible from state i if p ij (n) > for some n>=, meaning that starting at state i, there is

More information

Definition 2.3. We define addition and multiplication of matrices as follows.

Definition 2.3. We define addition and multiplication of matrices as follows. 14 Chapter 2 Matrices In this chapter, we review matrix algebra from Linear Algebra I, consider row and column operations on matrices, and define the rank of a matrix. Along the way prove that the row

More information

Markov Processes Cont d. Kolmogorov Differential Equations

Markov Processes Cont d. Kolmogorov Differential Equations Markov Processes Cont d Kolmogorov Differential Equations The Kolmogorov Differential Equations characterize the transition functions {P ij (t)} of a Markov process. The time-dependent behavior of the

More information

TMA 4265 Stochastic Processes Semester project, fall 2014 Student number and

TMA 4265 Stochastic Processes Semester project, fall 2014 Student number and TMA 4265 Stochastic Processes Semester project, fall 2014 Student number 730631 and 732038 Exercise 1 We shall study a discrete Markov chain (MC) {X n } n=0 with state space S = {0, 1, 2, 3, 4, 5, 6}.

More information

Transience: Whereas a finite closed communication class must be recurrent, an infinite closed communication class can be transient:

Transience: Whereas a finite closed communication class must be recurrent, an infinite closed communication class can be transient: Stochastic2010 Page 1 Long-Time Properties of Countable-State Markov Chains Tuesday, March 23, 2010 2:14 PM Homework 2: if you turn it in by 5 PM on 03/25, I'll grade it by 03/26, but you can turn it in

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Lecture notes for the course Games on Graphs B. Srivathsan Chennai Mathematical Institute, India 1 Markov Chains We will define Markov chains in a manner that will be useful to

More information

Continuous Time Markov Chains

Continuous Time Markov Chains Continuous Time Markov Chains Stochastic Processes - Lecture Notes Fatih Cavdur to accompany Introduction to Probability Models by Sheldon M. Ross Fall 2015 Outline Introduction Continuous-Time Markov

More information

Lecture 9 Classification of States

Lecture 9 Classification of States Lecture 9: Classification of States of 27 Course: M32K Intro to Stochastic Processes Term: Fall 204 Instructor: Gordan Zitkovic Lecture 9 Classification of States There will be a lot of definitions and

More information

88 CONTINUOUS MARKOV CHAINS

88 CONTINUOUS MARKOV CHAINS 88 CONTINUOUS MARKOV CHAINS 3.4. birth-death. Continuous birth-death Markov chains are very similar to countable Markov chains. One new concept is explosion which means that an infinite number of state

More information

IFT 6760A - Lecture 1 Linear Algebra Refresher

IFT 6760A - Lecture 1 Linear Algebra Refresher IFT 6760A - Lecture 1 Linear Algebra Refresher Scribe(s): Tianyu Li Instructor: Guillaume Rabusseau 1 Summary In the previous lecture we have introduced some applications of linear algebra in machine learning,

More information

The Distribution of Mixing Times in Markov Chains

The Distribution of Mixing Times in Markov Chains The Distribution of Mixing Times in Markov Chains Jeffrey J. Hunter School of Computing & Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand December 2010 Abstract The distribution

More information

Example: physical systems. If the state space. Example: speech recognition. Context can be. Example: epidemics. Suppose each infected

Example: physical systems. If the state space. Example: speech recognition. Context can be. Example: epidemics. Suppose each infected 4. Markov Chains A discrete time process {X n,n = 0,1,2,...} with discrete state space X n {0,1,2,...} is a Markov chain if it has the Markov property: P[X n+1 =j X n =i,x n 1 =i n 1,...,X 0 =i 0 ] = P[X

More information

Midterm 2 Review. CS70 Summer Lecture 6D. David Dinh 28 July UC Berkeley

Midterm 2 Review. CS70 Summer Lecture 6D. David Dinh 28 July UC Berkeley Midterm 2 Review CS70 Summer 2016 - Lecture 6D David Dinh 28 July 2016 UC Berkeley Midterm 2: Format 8 questions, 190 points, 110 minutes (same as MT1). Two pages (one double-sided sheet) of handwritten

More information

1 Gambler s Ruin Problem

1 Gambler s Ruin Problem 1 Gambler s Ruin Problem Consider a gambler who starts with an initial fortune of $1 and then on each successive gamble either wins $1 or loses $1 independent of the past with probabilities p and q = 1

More information

Disjointness and Additivity

Disjointness and Additivity Midterm 2: Format Midterm 2 Review CS70 Summer 2016 - Lecture 6D David Dinh 28 July 2016 UC Berkeley 8 questions, 190 points, 110 minutes (same as MT1). Two pages (one double-sided sheet) of handwritten

More information

Irreducibility. Irreducible. every state can be reached from every other state For any i,j, exist an m 0, such that. Absorbing state: p jj =1

Irreducibility. Irreducible. every state can be reached from every other state For any i,j, exist an m 0, such that. Absorbing state: p jj =1 Irreducibility Irreducible every state can be reached from every other state For any i,j, exist an m 0, such that i,j are communicate, if the above condition is valid Irreducible: all states are communicate

More information

Chapter 5. Continuous-Time Markov Chains. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan

Chapter 5. Continuous-Time Markov Chains. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Chapter 5. Continuous-Time Markov Chains Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Continuous-Time Markov Chains Consider a continuous-time stochastic process

More information

30.4. Matrix Norms. Introduction. Prerequisites. Learning Outcomes

30.4. Matrix Norms. Introduction. Prerequisites. Learning Outcomes Matrix Norms 304 Introduction A matrix norm is a number defined in terms of the entries of the matrix The norm is a useful quantity which can give important information about a matrix Prerequisites Before

More information

Practice problems. Practice problems. Example. Grocery store example 2 dairies. Creamwood Cheesedale. Next week This week Creamwood 1 Cheesedale 2

Practice problems. Practice problems. Example. Grocery store example 2 dairies. Creamwood Cheesedale. Next week This week Creamwood 1 Cheesedale 2 Practice problems Grocery store example dairies Next week This week Creamwood Cheesedale Creamwood Cheesedale.7.4.6 Example.7.7.4.7.4.6.7.6.4.6 Practice problems Probability of purchasing Cheesedale in

More information

Linear Algebra Solutions 1

Linear Algebra Solutions 1 Math Camp 1 Do the following: Linear Algebra Solutions 1 1. Let A = and B = 3 8 5 A B = 3 5 9 A + B = 9 11 14 4 AB = 69 3 16 BA = 1 4 ( 1 3. Let v = and u = 5 uv = 13 u v = 13 v u = 13 Math Camp 1 ( 7

More information

18.175: Lecture 30 Markov chains

18.175: Lecture 30 Markov chains 18.175: Lecture 30 Markov chains Scott Sheffield MIT Outline Review what you know about finite state Markov chains Finite state ergodicity and stationarity More general setup Outline Review what you know

More information

MATH 446/546 Test 2 Fall 2014

MATH 446/546 Test 2 Fall 2014 MATH 446/546 Test 2 Fall 204 Note the problems are separated into two sections a set for all students and an additional set for those taking the course at the 546 level. Please read and follow all of these

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms : Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA 2 Department of Computer

More information

Matrix Multiplication

Matrix Multiplication 3.2 Matrix Algebra Matrix Multiplication Example Foxboro Stadium has three main concession stands, located behind the south, north and west stands. The top-selling items are peanuts, hot dogs and soda.

More information

Linear Algebra I Lecture 10

Linear Algebra I Lecture 10 Linear Algebra I Lecture 10 Xi Chen 1 1 University of Alberta January 30, 2019 Outline 1 Gauss-Jordan Algorithm ] Let A = [a ij m n be an m n matrix. To reduce A to a reduced row echelon form using elementary

More information

Math 597/697: Solution 5

Math 597/697: Solution 5 Math 597/697: Solution 5 The transition between the the ifferent states is governe by the transition matrix 0 6 3 6 0 2 2 P = 4 0 5, () 5 4 0 an v 0 = /4, v = 5, v 2 = /3, v 3 = /5 Hence the generator

More information

Lectures on Probability and Statistical Models

Lectures on Probability and Statistical Models Lectures on Probability and Statistical Models Phil Pollett Professor of Mathematics The University of Queensland c These materials can be used for any educational purpose provided they are are not altered

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2016 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

ECE-517: Reinforcement Learning in Artificial Intelligence. Lecture 4: Discrete-Time Markov Chains

ECE-517: Reinforcement Learning in Artificial Intelligence. Lecture 4: Discrete-Time Markov Chains ECE-517: Reinforcement Learning in Artificial Intelligence Lecture 4: Discrete-Time Markov Chains September 1, 215 Dr. Itamar Arel College of Engineering Department of Electrical Engineering & Computer

More information

Markov chains and the number of occurrences of a word in a sequence ( , 11.1,2,4,6)

Markov chains and the number of occurrences of a word in a sequence ( , 11.1,2,4,6) Markov chains and the number of occurrences of a word in a sequence (4.5 4.9,.,2,4,6) Prof. Tesler Math 283 Fall 208 Prof. Tesler Markov Chains Math 283 / Fall 208 / 44 Locating overlapping occurrences

More information

Daily Update. Math 290: Elementary Linear Algebra Fall 2018

Daily Update. Math 290: Elementary Linear Algebra Fall 2018 Daily Update Math 90: Elementary Linear Algebra Fall 08 Lecture 7: Tuesday, December 4 After reviewing the definitions of a linear transformation, and the kernel and range of a linear transformation, we

More information