Uncovering structure in biological networks: A model-based approach

Size: px
Start display at page:

Download "Uncovering structure in biological networks: A model-based approach"

Transcription

1 Uncovering structure in biological networks: A model-based approach J-J Daudin, F. Picard, S. Robin, M. Mariadassou UMR INA-PG / ENGREF / INRA, Paris Mathématique et Informatique Appliquées Statistics for Biological Sequences group (including E. Birmelé, C. Matias, S. Schbath) Examples of networks. Social: Internet: Biological: who knows who? connection between servers or web pages. which protein interacts with which? which gene regulates which? 1

2 Uncovering stucture in networks: A simple example

3 Random graphs Notation and definition. Given a set of n vertices (i = 1..n), X ij indicates the presence/absence of a (non oriented) edge between vertices i and j: X ij = X ji = Á{i j}, X ii =. The random graph is defined by the join distribution of all the {X ij } i,j. Typical characteristics. Degree of the vertices: K i = j i X ij Clustering coefficient: c = Pr{X jk = 1 X ij = X ik = 1} = Pr{ V} Diameter: Longest path between two vertices. Number of occurrences of some motifs: distribution of the number of triangles ( ), V, stars ( ), etc. 3

4 Erdös-Rényi mixture for graph (ERMG) Erdös-Rényi (ER) model. {X ij } i.i.d., Pr{i j} = π K i B(n 1, π) P[(n 1)π], c = π. This model fits poorly many real-world networks, probably because of some heterogeneity between the vertices. Mixture population of edges. We suppose that the edges belong to Q groups: α q = Pr{i q}, Z iq = Á{i q}. Conditional distribution of the edges. The edges {X ij } are conditionally independent given the group of the vertices: X ij {i q, j l} B(π ql ). π ql = π lq is the connection probability between groups q and l. A high value of π ql reveals a preferential connectivity between groups q and l. 4

5 Examples Network Q π Cluster. coef. Random 1 p p Independent model (product connectivity) Stars 4 ( ) a ab ab b (a + b ) (a + b) Clusters (affiliation networks) ( 1 ε ε 1 ) 1 + 3ε (1 + ε) Scale free network model (Barabasi & Albert, 99) can also be expressed in terms of ERMG. 5

6 Some properties of the ERMG model Conditional distribution of the degrees: Denoting π q = l α lπ ql, λ q = (n 1)π q K i {i q} B(n 1, π q ) P(λ q ). Marginal distribution of the degrees: we get a Poisson mixture K i q B(n 1, π q ) q α q P(λ q ). Between-group connectivity. Let A ql denote the number of edges between groups q and l. Its expectation in the ERMG model is (A ql ) = n(n 1) α q α l π ql. Clustering coefficient: c = Pr{ V} = Pr{ }/ Pr{V} = q,l,m α qα l α m π ql π qm π lm q,l,m α qα l α m π ql π qm. 6

7 Estimation of the parameters Denote X the set of random vertices and Z the set of labels. The aim is to maximize the log-likelihood L(X) which is not calculable (need to sum over all possible Z). We actually maximize J (R X ) = L(X) KL [R X (Z),Pr(Z X)] = H(R X ) Z R X (Z)L(X,Z) where H(R X ) is the entropy of R X : H(R X ) = Z R X(Z)ln(Z). The distribution R X (Z) is chosen to be the best approximation of Pr(Z X) in terms of Kullback-Leibler (KL) distance: R X (Z) = Pr(Z X) J (R X ) = L(X). Algorithm. We alternately optimize J (R X ) with respect (a) to R X and (b) to the parameter estimates ( α, π), so the proposed algorithm converges. 7

8 Why not use the standard E-M algorithm? E-M is very popular to fit mixture models. It requires to calculate the conditional distribution Pr{Z X } which is intractable. Dependency graph (oriented) Edge X ij only depends on its two parents Z 1 and Z Moral graph (parents are married) Conditional on the edges, labels Z i s all depend on each others X 1 X 1 Z Z X 3 Z 1 X 3 Z 1 Z 3 Z 3 X 13 X 13 All edges are actually neighbours. 8

9 Choice of the number of groups We propose a heuristic penalized likelihood criterion inspired from BIC. The completed log-likelihood L(X, Ẑ) is the sum of i q i q τ iq log α q which deals with (Q 1) independent proportions α q s and involves n terms, j>i l τ iq τ jl log b(x ij ;π ql ) which deals with Q(Q + 1)/ probabilities π ql s and involves n(n 1)/ terms. We propose the following heuristic criterion: L(X, Ẑ) + (Q 1) log n + Q(Q + 1) [ ] n(n 1) log. 9

10 Application to E. coli reaction network n = 65 vertices (reactions) and 1 78 edges. reactions i and j are connected if the product of i is the substrate of j (or conversely). provided by V. Lacroix and M.-F. Sagot (INRIA Hélix). Number of groups. Pseudo-BIC selects Q = 1. Group proportions. α q (%) Many small groups actually correspond to cliques or pseudo-cliques. 1

11 Dot-plot representation of the graph. Biological interpretation: Groups 1 to gather reactions involving all the same compound either as a substrate or as a product. A compound (chorismate, pyruvate, ATP, etc) can be associated to each group Posterior probabilities τ iq

12 Zoom (bottom left). Submatrix of π: q, l Groups 1 and 16 both involve pyruvate, but only group 1 involves also CO (group 7) and acetylcoa (group 1). Vertices degree K i. Mean degree in the last group: K 1 =

13 Distribution of the degree. According to the ERMG, de degrees have a Poisson mixture distribution. Histogram + mixture distribution 5 1 P-P plot Clustering coefficient. Empirical ERMG (Q = 6) ERMG (Q = 1) ER (Q = 1)

14 Extension: Motif Statistics Joint work with E. Birmele, C. Matias (Evry), E. Roquain, S. Schbath (Jouy-en-Josas) The organisation of a network can be charaterized by the frequency of some specific motifs: Chain: Loop: Hub: For a given motif m, we denote its count N m (G) = number of occurrences of the motif m in the graph G Question: In a graph G of size n =, the motif m is observed N obs m = times. Is it exceptional? 14

15 Conclusions Past. The ERMG model is a flexible generalization of the ER model and a promising alternative to the scale-free model. It seems to fit well several real-world networks It is properly defined, so its properties can be properly studied. Future. Study the probabilistic properties of the ERMG model (diameter, sampling properties, distribution of the occurrences of specific motifs, etc). Study the statistical properties of the estimates; Derive a relevant criterion to select the number of groups. Extension to valued graphs: X ij not only /1, but some measure of the connection intensity. 15

Statistical analysis of biological networks.

Statistical analysis of biological networks. Statistical analysis of biological networks. Assessing the exceptionality of network motifs S. Schbath Jouy-en-Josas/Evry/Paris, France http://genome.jouy.inra.fr/ssb/ Colloquium interactions math/info,

More information

Bayesian methods for graph clustering

Bayesian methods for graph clustering Author manuscript, published in "Advances in data handling and business intelligence (2009) 229-239" DOI : 10.1007/978-3-642-01044-6 Bayesian methods for graph clustering P. Latouche, E. Birmelé, and C.

More information

IV. Analyse de réseaux biologiques

IV. Analyse de réseaux biologiques IV. Analyse de réseaux biologiques Catherine Matias CNRS - Laboratoire de Probabilités et Modèles Aléatoires, Paris catherine.matias@math.cnrs.fr http://cmatias.perso.math.cnrs.fr/ ENSAE - 2014/2015 Sommaire

More information

Bayesian Methods for Graph Clustering

Bayesian Methods for Graph Clustering Bayesian Methods for Graph Clustering by Pierre Latouche, Etienne Birmelé, and Christophe Ambroise Research Report No. 17 September 2008 Statistics for Systems Biology Group Jouy-en-Josas/Paris/Evry, France

More information

Modeling heterogeneity in random graphs

Modeling heterogeneity in random graphs Modeling heterogeneity in random graphs Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry (Soon: Laboratoire de Probabilités et Modèles Aléatoires, Paris) http://stat.genopole.cnrs.fr/ cmatias

More information

Mixtures and Hidden Markov Models for analyzing genomic data

Mixtures and Hidden Markov Models for analyzing genomic data Mixtures and Hidden Markov Models for analyzing genomic data Marie-Laure Martin-Magniette UMR AgroParisTech/INRA Mathématique et Informatique Appliquées, Paris UMR INRA/UEVE ERL CNRS Unité de Recherche

More information

MODELING HETEROGENEITY IN RANDOM GRAPHS THROUGH LATENT SPACE MODELS: A SELECTIVE REVIEW

MODELING HETEROGENEITY IN RANDOM GRAPHS THROUGH LATENT SPACE MODELS: A SELECTIVE REVIEW ESAIM: PROCEEDINGS AND SURVEYS, December 2014, Vol. 47, p. 55-74 F. Abergel, M. Aiguier, D. Challet, P.-H. Cournède, G. Faÿ, P. Lafitte, Editors MODELING HETEROGENEITY IN RANDOM GRAPHS THROUGH LATENT SPACE

More information

arxiv: v2 [stat.ap] 24 Jul 2010

arxiv: v2 [stat.ap] 24 Jul 2010 Variational Bayesian inference and complexity control for stochastic block models arxiv:0912.2873v2 [stat.ap] 24 Jul 2010 P. Latouche, E. Birmelé and C. Ambroise Laboratoire Statistique et Génome, UMR

More information

Deciphering and modeling heterogeneity in interaction networks

Deciphering and modeling heterogeneity in interaction networks Deciphering and modeling heterogeneity in interaction networks (using variational approximations) S. Robin INRA / AgroParisTech Mathematical Modeling of Complex Systems December 2013, Ecole Centrale de

More information

arxiv: v2 [math.st] 8 Dec 2010

arxiv: v2 [math.st] 8 Dec 2010 New consistent and asymptotically normal estimators for random graph mixture models arxiv:1003.5165v2 [math.st] 8 Dec 2010 Christophe Ambroise Catherine Matias Université d Évry val d Essonne - CNRS UMR

More information

Network models: random graphs

Network models: random graphs Network models: random graphs Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Structural Analysis

More information

Variational inference for the Stochastic Block-Model

Variational inference for the Stochastic Block-Model Variational inference for the Stochastic Block-Model S. Robin AgroParisTech / INRA Workshop on Random Graphs, April 2011, Lille S. Robin (AgroParisTech / INRA) Variational inference for SBM Random Graphs,

More information

1 Complex Networks - A Brief Overview

1 Complex Networks - A Brief Overview Power-law Degree Distributions 1 Complex Networks - A Brief Overview Complex networks occur in many social, technological and scientific settings. Examples of complex networks include World Wide Web, Internet,

More information

Goodness of fit of logistic models for random graphs: a variational Bayes approach

Goodness of fit of logistic models for random graphs: a variational Bayes approach Goodness of fit of logistic models for random graphs: a variational Bayes approach S. Robin Joint work with P. Latouche and S. Ouadah INRA / AgroParisTech MIAT Seminar, Toulouse, November 2016 S. Robin

More information

A segmentation-clustering problem for the analysis of array CGH data

A segmentation-clustering problem for the analysis of array CGH data A segmentation-clustering problem for the analysis of array CGH data F. Picard, S. Robin, E. Lebarbier, J-J. Daudin UMR INA P-G / ENGREF / INRA MIA 518 APPLIED STOCHASTIC MODELS AND DATA ANALYSIS Brest

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

Bayesian Machine Learning - Lecture 7

Bayesian Machine Learning - Lecture 7 Bayesian Machine Learning - Lecture 7 Guido Sanguinetti Institute for Adaptive and Neural Computation School of Informatics University of Edinburgh gsanguin@inf.ed.ac.uk March 4, 2015 Today s lecture 1

More information

Sampling and Estimation in Network Graphs

Sampling and Estimation in Network Graphs Sampling and Estimation in Network Graphs Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ March

More information

Bayesian non parametric inference of discrete valued networks

Bayesian non parametric inference of discrete valued networks Bayesian non parametric inference of discrete valued networks Laetitia Nouedoui, Pierre Latouche To cite this version: Laetitia Nouedoui, Pierre Latouche. Bayesian non parametric inference of discrete

More information

Minimum Message Length Inference and Mixture Modelling of Inverse Gaussian Distributions

Minimum Message Length Inference and Mixture Modelling of Inverse Gaussian Distributions Minimum Message Length Inference and Mixture Modelling of Inverse Gaussian Distributions Daniel F. Schmidt Enes Makalic Centre for Molecular, Environmental, Genetic & Analytic (MEGA) Epidemiology School

More information

Modeling of Growing Networks with Directional Attachment and Communities

Modeling of Growing Networks with Directional Attachment and Communities Modeling of Growing Networks with Directional Attachment and Communities Masahiro KIMURA, Kazumi SAITO, Naonori UEDA NTT Communication Science Laboratories 2-4 Hikaridai, Seika-cho, Kyoto 619-0237, Japan

More information

Mixture models for analysing transcriptome and ChIP-chip data

Mixture models for analysing transcriptome and ChIP-chip data Mixture models for analysing transcriptome and ChIP-chip data Marie-Laure Martin-Magniette French National Institute for agricultural research (INRA) Unit of Applied Mathematics and Informatics at AgroParisTech,

More information

Data Mining 2018 Bayesian Networks (1)

Data Mining 2018 Bayesian Networks (1) Data Mining 2018 Bayesian Networks (1) Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Data Mining 1 / 49 Do you like noodles? Do you like noodles? Race Gender Yes No Black Male 10

More information

13 : Variational Inference: Loopy Belief Propagation and Mean Field

13 : Variational Inference: Loopy Belief Propagation and Mean Field 10-708: Probabilistic Graphical Models 10-708, Spring 2012 13 : Variational Inference: Loopy Belief Propagation and Mean Field Lecturer: Eric P. Xing Scribes: Peter Schulam and William Wang 1 Introduction

More information

Networks: Lectures 9 & 10 Random graphs

Networks: Lectures 9 & 10 Random graphs Networks: Lectures 9 & 10 Random graphs Heather A Harrington Mathematical Institute University of Oxford HT 2017 What you re in for Week 1: Introduction and basic concepts Week 2: Small worlds Week 3:

More information

Graphical model inference with unobserved variables via latent tree aggregation

Graphical model inference with unobserved variables via latent tree aggregation Graphical model inference with unobserved variables via latent tree aggregation Geneviève Robin Christophe Ambroise Stéphane Robin UMR 518 AgroParisTech/INRA MIA Équipe Statistique et génome 15 decembre

More information

13: Variational inference II

13: Variational inference II 10-708: Probabilistic Graphical Models, Spring 2015 13: Variational inference II Lecturer: Eric P. Xing Scribes: Ronghuo Zheng, Zhiting Hu, Yuntian Deng 1 Introduction We started to talk about variational

More information

Consistency Under Sampling of Exponential Random Graph Models

Consistency Under Sampling of Exponential Random Graph Models Consistency Under Sampling of Exponential Random Graph Models Cosma Shalizi and Alessandro Rinaldo Summary by: Elly Kaizar Remember ERGMs (Exponential Random Graph Models) Exponential family models Sufficient

More information

6.207/14.15: Networks Lecture 12: Generalized Random Graphs

6.207/14.15: Networks Lecture 12: Generalized Random Graphs 6.207/14.15: Networks Lecture 12: Generalized Random Graphs 1 Outline Small-world model Growing random networks Power-law degree distributions: Rich-Get-Richer effects Models: Uniform attachment model

More information

BioControl - Week 6, Lecture 1

BioControl - Week 6, Lecture 1 BioControl - Week 6, Lecture 1 Goals of this lecture Large metabolic networks organization Design principles for small genetic modules - Rules based on gene demand - Rules based on error minimization Suggested

More information

Erzsébet Ravasz Advisor: Albert-László Barabási

Erzsébet Ravasz Advisor: Albert-László Barabási Hierarchical Networks Erzsébet Ravasz Advisor: Albert-László Barabási Introduction to networks How to model complex networks? Clustering and hierarchy Hierarchical organization of cellular metabolism The

More information

Lecture 8 Learning Sequence Motif Models Using Expectation Maximization (EM) Colin Dewey February 14, 2008

Lecture 8 Learning Sequence Motif Models Using Expectation Maximization (EM) Colin Dewey February 14, 2008 Lecture 8 Learning Sequence Motif Models Using Expectation Maximization (EM) Colin Dewey February 14, 2008 1 Sequence Motifs what is a sequence motif? a sequence pattern of biological significance typically

More information

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma

COMS 4771 Probabilistic Reasoning via Graphical Models. Nakul Verma COMS 4771 Probabilistic Reasoning via Graphical Models Nakul Verma Last time Dimensionality Reduction Linear vs non-linear Dimensionality Reduction Principal Component Analysis (PCA) Non-linear methods

More information

Overview course module Stochastic Modelling

Overview course module Stochastic Modelling Overview course module Stochastic Modelling I. Introduction II. Actor-based models for network evolution III. Co-evolution models for networks and behaviour IV. Exponential Random Graph Models A. Definition

More information

Parameter estimators of sparse random intersection graphs with thinned communities

Parameter estimators of sparse random intersection graphs with thinned communities Parameter estimators of sparse random intersection graphs with thinned communities Lasse Leskelä Aalto University Johan van Leeuwaarden Eindhoven University of Technology Joona Karjalainen Aalto University

More information

An Introduction to Exponential-Family Random Graph Models

An Introduction to Exponential-Family Random Graph Models An Introduction to Exponential-Family Random Graph Models Luo Lu Feb.8, 2011 1 / 11 Types of complications in social network Single relationship data A single relationship observed on a set of nodes at

More information

Adventures in random graphs: Models, structures and algorithms

Adventures in random graphs: Models, structures and algorithms BCAM January 2011 1 Adventures in random graphs: Models, structures and algorithms Armand M. Makowski ECE & ISR/HyNet University of Maryland at College Park armand@isr.umd.edu BCAM January 2011 2 Complex

More information

Modeling and Stability Analysis of a Communication Network System

Modeling and Stability Analysis of a Communication Network System Modeling and Stability Analysis of a Communication Network System Zvi Retchkiman Königsberg Instituto Politecnico Nacional e-mail: mzvi@cic.ipn.mx Abstract In this work, the modeling and stability problem

More information

Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling

Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling Learning Sequence Motif Models Using Expectation Maximization (EM) and Gibbs Sampling BMI/CS 776 www.biostat.wisc.edu/bmi776/ Spring 009 Mark Craven craven@biostat.wisc.edu Sequence Motifs what is a sequence

More information

Decision Making and Social Networks

Decision Making and Social Networks Decision Making and Social Networks Lecture 4: Models of Network Growth Umberto Grandi Summer 2013 Overview In the previous lecture: We got acquainted with graphs and networks We saw lots of definitions:

More information

Dispersion modeling for RNAseq differential analysis

Dispersion modeling for RNAseq differential analysis Dispersion modeling for RNAseq differential analysis E. Bonafede 1, F. Picard 2, S. Robin 3, C. Viroli 1 ( 1 ) univ. Bologna, ( 3 ) CNRS/univ. Lyon I, ( 3 ) INRA/AgroParisTech, Paris IBC, Victoria, July

More information

Complex networks: an introduction

Complex networks: an introduction Alain Barrat Complex networks: an introduction CPT, Marseille, France ISI, Turin, Italy http://www.cpt.univ-mrs.fr/~barrat http://cxnets.googlepages.com Plan of the lecture I. INTRODUCTION II. I. Networks:

More information

Undirected Graphical Models: Markov Random Fields

Undirected Graphical Models: Markov Random Fields Undirected Graphical Models: Markov Random Fields 40-956 Advanced Topics in AI: Probabilistic Graphical Models Sharif University of Technology Soleymani Spring 2015 Markov Random Field Structure: undirected

More information

Evolutionary dynamics on graphs

Evolutionary dynamics on graphs Evolutionary dynamics on graphs Laura Hindersin May 4th 2015 Max-Planck-Institut für Evolutionsbiologie, Plön Evolutionary dynamics Main ingredients: Fitness: The ability to survive and reproduce. Selection

More information

Mini course on Complex Networks

Mini course on Complex Networks Mini course on Complex Networks Massimo Ostilli 1 1 UFSC, Florianopolis, Brazil September 2017 Dep. de Fisica Organization of The Mini Course Day 1: Basic Topology of Equilibrium Networks Day 2: Percolation

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

1 Mechanistic and generative models of network structure

1 Mechanistic and generative models of network structure 1 Mechanistic and generative models of network structure There are many models of network structure, and these largely can be divided into two classes: mechanistic models and generative or probabilistic

More information

Convergence of the groups posterior distribution in latent or stochastic block models

Convergence of the groups posterior distribution in latent or stochastic block models Bernoulli 211, 2015, 537 573 DOI: 103150/13-BEJ579 Convergence of the groups posterior distribution in latent or stochastic block models MAHENDRA MARIADASSOU 1 and CATHERINE MATIAS 2 1 INRA, UR1077 Unité

More information

Nonparametric Bayesian Matrix Factorization for Assortative Networks

Nonparametric Bayesian Matrix Factorization for Assortative Networks Nonparametric Bayesian Matrix Factorization for Assortative Networks Mingyuan Zhou IROM Department, McCombs School of Business Department of Statistics and Data Sciences The University of Texas at Austin

More information

Self Similar (Scale Free, Power Law) Networks (I)

Self Similar (Scale Free, Power Law) Networks (I) Self Similar (Scale Free, Power Law) Networks (I) E6083: lecture 4 Prof. Predrag R. Jelenković Dept. of Electrical Engineering Columbia University, NY 10027, USA {predrag}@ee.columbia.edu February 7, 2007

More information

Learning Bayesian networks

Learning Bayesian networks 1 Lecture topics: Learning Bayesian networks from data maximum likelihood, BIC Bayesian, marginal likelihood Learning Bayesian networks There are two problems we have to solve in order to estimate Bayesian

More information

Chaos, Complexity, and Inference (36-462)

Chaos, Complexity, and Inference (36-462) Chaos, Complexity, and Inference (36-462) Lecture 21 Cosma Shalizi 3 April 2008 Models of Networks, with Origin Myths Erdős-Rényi Encore Erdős-Rényi with Node Types Watts-Strogatz Small World Graphs Exponential-Family

More information

networks in molecular biology Wolfgang Huber

networks in molecular biology Wolfgang Huber networks in molecular biology Wolfgang Huber networks in molecular biology Regulatory networks: components = gene products interactions = regulation of transcription, translation, phosphorylation... Metabolic

More information

Image segmentation combining Markov Random Fields and Dirichlet Processes

Image segmentation combining Markov Random Fields and Dirichlet Processes Image segmentation combining Markov Random Fields and Dirichlet Processes Jessica SODJO IMS, Groupe Signal Image, Talence Encadrants : A. Giremus, J.-F. Giovannelli, F. Caron, N. Dobigeon Jessica SODJO

More information

Networks. Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource

Networks. Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource Networks Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource Networks in biology Protein-Protein Interaction Network of Yeast Transcriptional regulatory network of E.coli Experimental

More information

Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features. Yangxin Huang

Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features. Yangxin Huang Bayesian Inference on Joint Mixture Models for Survival-Longitudinal Data with Multiple Features Yangxin Huang Department of Epidemiology and Biostatistics, COPH, USF, Tampa, FL yhuang@health.usf.edu January

More information

Chaos, Complexity, and Inference (36-462)

Chaos, Complexity, and Inference (36-462) Chaos, Complexity, and Inference (36-462) Lecture 21: More Networks: Models and Origin Myths Cosma Shalizi 31 March 2009 New Assignment: Implement Butterfly Mode in R Real Agenda: Models of Networks, with

More information

7.32/7.81J/8.591J: Systems Biology. Fall Exam #1

7.32/7.81J/8.591J: Systems Biology. Fall Exam #1 7.32/7.81J/8.591J: Systems Biology Fall 2013 Exam #1 Instructions 1) Please do not open exam until instructed to do so. 2) This exam is closed- book and closed- notes. 3) Please do all problems. 4) Use

More information

The Probabilistic Method

The Probabilistic Method The Probabilistic Method Janabel Xia and Tejas Gopalakrishna MIT PRIMES Reading Group, mentors Gwen McKinley and Jake Wellens December 7th, 2018 Janabel Xia and Tejas Gopalakrishna Probabilistic Method

More information

Gibbs Sampling Methods for Multiple Sequence Alignment

Gibbs Sampling Methods for Multiple Sequence Alignment Gibbs Sampling Methods for Multiple Sequence Alignment Scott C. Schmidler 1 Jun S. Liu 2 1 Section on Medical Informatics and 2 Department of Statistics Stanford University 11/17/99 1 Outline Statistical

More information

CSEP 590A Summer Lecture 4 MLE, EM, RE, Expression

CSEP 590A Summer Lecture 4 MLE, EM, RE, Expression CSEP 590A Summer 2006 Lecture 4 MLE, EM, RE, Expression 1 FYI, re HW #2: Hemoglobin History Alberts et al., 3rd ed.,pg389 2 Tonight MLE: Maximum Likelihood Estimators EM: the Expectation Maximization Algorithm

More information

An Introduction to mixture models

An Introduction to mixture models An Introduction to mixture models by Franck Picard Research Report No. 7 March 2007 Statistics for Systems Biology Group Jouy-en-Josas/Paris/Evry, France http://genome.jouy.inra.fr/ssb/ An introduction

More information

Lecture 4 October 18th

Lecture 4 October 18th Directed and undirected graphical models Fall 2017 Lecture 4 October 18th Lecturer: Guillaume Obozinski Scribe: In this lecture, we will assume that all random variables are discrete, to keep notations

More information

Exam: high-dimensional data analysis January 20, 2014

Exam: high-dimensional data analysis January 20, 2014 Exam: high-dimensional data analysis January 20, 204 Instructions: - Write clearly. Scribbles will not be deciphered. - Answer each main question not the subquestions on a separate piece of paper. - Finish

More information

{ p if x = 1 1 p if x = 0

{ p if x = 1 1 p if x = 0 Discrete random variables Probability mass function Given a discrete random variable X taking values in X = {v 1,..., v m }, its probability mass function P : X [0, 1] is defined as: P (v i ) = Pr[X =

More information

CSEP 590A Summer Tonight MLE. FYI, re HW #2: Hemoglobin History. Lecture 4 MLE, EM, RE, Expression. Maximum Likelihood Estimators

CSEP 590A Summer Tonight MLE. FYI, re HW #2: Hemoglobin History. Lecture 4 MLE, EM, RE, Expression. Maximum Likelihood Estimators CSEP 59A Summer 26 Lecture 4 MLE, EM, RE, Expression FYI, re HW #2: Hemoglobin History 1 Alberts et al., 3rd ed.,pg389 2 Tonight MLE: Maximum Likelihood Estimators EM: the Expectation Maximization Algorithm

More information

Different points of view for selecting a latent structure model

Different points of view for selecting a latent structure model Different points of view for selecting a latent structure model Gilles Celeux Inria Saclay-Île-de-France, Université Paris-Sud Latent structure models: two different point of views Density estimation LSM

More information

Mixtures and Hidden Markov Models for genomics data

Mixtures and Hidden Markov Models for genomics data Mixtures and Hidden Markov Models for genomics data M.-L. Martin-Magniette marie laure.martin@agroparistech.fr Researcher at the French National Institut for Agricultural Research Plant Science Institut

More information

Assessing the Validity Domains of Graphical Gaussian Models in order to Infer Relationships among Components of Complex Biological Systems

Assessing the Validity Domains of Graphical Gaussian Models in order to Infer Relationships among Components of Complex Biological Systems * Assessing the Validity Domains of Graphical Gaussian Models in order to Infer Relationships among Components of Complex Biological Systems by Fanny Villers, Brigitte Schaeffer, Caroline Bertin and Sylvie

More information

Recent Advances in Bayesian Inference Techniques

Recent Advances in Bayesian Inference Techniques Recent Advances in Bayesian Inference Techniques Christopher M. Bishop Microsoft Research, Cambridge, U.K. research.microsoft.com/~cmbishop SIAM Conference on Data Mining, April 2004 Abstract Bayesian

More information

Generative and Discriminative Approaches to Graphical Models CMSC Topics in AI

Generative and Discriminative Approaches to Graphical Models CMSC Topics in AI Generative and Discriminative Approaches to Graphical Models CMSC 35900 Topics in AI Lecture 2 Yasemin Altun January 26, 2007 Review of Inference on Graphical Models Elimination algorithm finds single

More information

EM-algorithm for motif discovery

EM-algorithm for motif discovery EM-algorithm for motif discovery Xiaohui Xie University of California, Irvine EM-algorithm for motif discovery p.1/19 Position weight matrix Position weight matrix representation of a motif with width

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 4 May 2000

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 4 May 2000 Topology of evolving networks: local events and universality arxiv:cond-mat/0005085v1 [cond-mat.dis-nn] 4 May 2000 Réka Albert and Albert-László Barabási Department of Physics, University of Notre-Dame,

More information

Variable selection for model-based clustering

Variable selection for model-based clustering Variable selection for model-based clustering Matthieu Marbac (Ensai - Crest) Joint works with: M. Sedki (Univ. Paris-sud) and V. Vandewalle (Univ. Lille 2) The problem Objective: Estimation of a partition

More information

Probabilistic Graphical Models (I)

Probabilistic Graphical Models (I) Probabilistic Graphical Models (I) Hongxin Zhang zhx@cad.zju.edu.cn State Key Lab of CAD&CG, ZJU 2015-03-31 Probabilistic Graphical Models Modeling many real-world problems => a large number of random

More information

Chapter 20. Deep Generative Models

Chapter 20. Deep Generative Models Peng et al.: Deep Learning and Practice 1 Chapter 20 Deep Generative Models Peng et al.: Deep Learning and Practice 2 Generative Models Models that are able to Provide an estimate of the probability distribution

More information

The Beginning of Graph Theory. Theory and Applications of Complex Networks. Eulerian paths. Graph Theory. Class Three. College of the Atlantic

The Beginning of Graph Theory. Theory and Applications of Complex Networks. Eulerian paths. Graph Theory. Class Three. College of the Atlantic Theory and Applications of Complex Networs 1 Theory and Applications of Complex Networs 2 Theory and Applications of Complex Networs Class Three The Beginning of Graph Theory Leonhard Euler wonders, can

More information

Almost giant clusters for percolation on large trees

Almost giant clusters for percolation on large trees for percolation on large trees Institut für Mathematik Universität Zürich Erdős-Rényi random graph model in supercritical regime G n = complete graph with n vertices Bond percolation with parameter p(n)

More information

Learning Bayesian Networks

Learning Bayesian Networks Learning Bayesian Networks Probabilistic Models, Spring 2011 Petri Myllymäki, University of Helsinki V-1 Aspects in learning Learning the parameters of a Bayesian network Marginalizing over all all parameters

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Curve Fitting Re-visited, Bishop1.2.5

Curve Fitting Re-visited, Bishop1.2.5 Curve Fitting Re-visited, Bishop1.2.5 Maximum Likelihood Bishop 1.2.5 Model Likelihood differentiation p(t x, w, β) = Maximum Likelihood N N ( t n y(x n, w), β 1). (1.61) n=1 As we did in the case of the

More information

TCOM 501: Networking Theory & Fundamentals. Lecture 6 February 19, 2003 Prof. Yannis A. Korilis

TCOM 501: Networking Theory & Fundamentals. Lecture 6 February 19, 2003 Prof. Yannis A. Korilis TCOM 50: Networking Theory & Fundamentals Lecture 6 February 9, 003 Prof. Yannis A. Korilis 6- Topics Time-Reversal of Markov Chains Reversibility Truncating a Reversible Markov Chain Burke s Theorem Queues

More information

Simultaneous and sequential detection of multiple interacting change points

Simultaneous and sequential detection of multiple interacting change points Simultaneous and sequential detection of multiple interacting change points Long Nguyen Department of Statistics University of Michigan Joint work with Ram Rajagopal (Stanford University) 1 Introduction

More information

6.867 Machine learning, lecture 23 (Jaakkola)

6.867 Machine learning, lecture 23 (Jaakkola) Lecture topics: Markov Random Fields Probabilistic inference Markov Random Fields We will briefly go over undirected graphical models or Markov Random Fields (MRFs) as they will be needed in the context

More information

Parameter learning in CRF s

Parameter learning in CRF s Parameter learning in CRF s June 01, 2009 Structured output learning We ish to learn a discriminant (or compatability) function: F : X Y R (1) here X is the space of inputs and Y is the space of outputs.

More information

Parameterizing Exponential Family Models for Random Graphs: Current Methods and New Directions

Parameterizing Exponential Family Models for Random Graphs: Current Methods and New Directions Carter T. Butts p. 1/2 Parameterizing Exponential Family Models for Random Graphs: Current Methods and New Directions Carter T. Butts Department of Sociology and Institute for Mathematical Behavioral Sciences

More information

Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach

Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach Author: Jaewon Yang, Jure Leskovec 1 1 Venue: WSDM 2013 Presenter: Yupeng Gu 1 Stanford University 1 Background Community

More information

RETRIEVAL MODELS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

RETRIEVAL MODELS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS RETRIEVAL MODELS Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Retrieval models Boolean model Vector space model Probabilistic

More information

Spectra of Large Random Stochastic Matrices & Relaxation in Complex Systems

Spectra of Large Random Stochastic Matrices & Relaxation in Complex Systems Spectra of Large Random Stochastic Matrices & Relaxation in Complex Systems Reimer Kühn Disordered Systems Group Department of Mathematics, King s College London Random Graphs and Random Processes, KCL

More information

Series 7, May 22, 2018 (EM Convergence)

Series 7, May 22, 2018 (EM Convergence) Exercises Introduction to Machine Learning SS 2018 Series 7, May 22, 2018 (EM Convergence) Institute for Machine Learning Dept. of Computer Science, ETH Zürich Prof. Dr. Andreas Krause Web: https://las.inf.ethz.ch/teaching/introml-s18

More information

arxiv: v1 [math.ac] 11 Dec 2013

arxiv: v1 [math.ac] 11 Dec 2013 A KOSZUL FILTRATION FOR THE SECOND SQUAREFREE VERONESE SUBRING arxiv:1312.3076v1 [math.ac] 11 Dec 2013 TAKAYUKI HIBI, AYESHA ASLOOB QURESHI AND AKIHIRO SHIKAMA Abstract. The second squarefree Veronese

More information

13 : Variational Inference: Loopy Belief Propagation

13 : Variational Inference: Loopy Belief Propagation 10-708: Probabilistic Graphical Models 10-708, Spring 2014 13 : Variational Inference: Loopy Belief Propagation Lecturer: Eric P. Xing Scribes: Rajarshi Das, Zhengzhong Liu, Dishan Gupta 1 Introduction

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models David Sontag New York University Lecture 4, February 16, 2012 David Sontag (NYU) Graphical Models Lecture 4, February 16, 2012 1 / 27 Undirected graphical models Reminder

More information

Link Prediction. Eman Badr Mohammed Saquib Akmal Khan

Link Prediction. Eman Badr Mohammed Saquib Akmal Khan Link Prediction Eman Badr Mohammed Saquib Akmal Khan 11-06-2013 Link Prediction Which pair of nodes should be connected? Applications Facebook friend suggestion Recommendation systems Monitoring and controlling

More information

Variational Scoring of Graphical Model Structures

Variational Scoring of Graphical Model Structures Variational Scoring of Graphical Model Structures Matthew J. Beal Work with Zoubin Ghahramani & Carl Rasmussen, Toronto. 15th September 2003 Overview Bayesian model selection Approximations using Variational

More information

Hidden Markov Models (I)

Hidden Markov Models (I) GLOBEX Bioinformatics (Summer 2015) Hidden Markov Models (I) a. The model b. The decoding: Viterbi algorithm Hidden Markov models A Markov chain of states At each state, there are a set of possible observables

More information

Measuring the shape of degree distributions

Measuring the shape of degree distributions Measuring the shape of degree distributions Dr Jennifer Badham Visiting Fellow SEIT, UNSW Canberra research@criticalconnections.com.au Overview Context What does shape mean for degree distribution Why

More information

12 : Variational Inference I

12 : Variational Inference I 10-708: Probabilistic Graphical Models, Spring 2015 12 : Variational Inference I Lecturer: Eric P. Xing Scribes: Fattaneh Jabbari, Eric Lei, Evan Shapiro 1 Introduction Probabilistic inference is one of

More information

Some Statistical Models and Algorithms for Change-Point Problems in Genomics

Some Statistical Models and Algorithms for Change-Point Problems in Genomics Some Statistical Models and Algorithms for Change-Point Problems in Genomics S. Robin UMR 518 AgroParisTech / INRA Applied MAth & Comput. Sc. Journées SMAI-MAIRCI Grenoble, September 2012 S. Robin (AgroParisTech

More information

Systemic Risk in Stochastic Financial Networks

Systemic Risk in Stochastic Financial Networks Systemic Risk in Stochastic Financial Networks Hamed Amini Mathematics Department, University of Miami joint with Rama Cont and Andreea Minca Eastern Conference on Mathematical Finance, WPI, Worcester,

More information