Parameter estimators of sparse random intersection graphs with thinned communities

Size: px
Start display at page:

Download "Parameter estimators of sparse random intersection graphs with thinned communities"

Transcription

1 Parameter estimators of sparse random intersection graphs with thinned communities Lasse Leskelä Aalto University Johan van Leeuwaarden Eindhoven University of Technology Joona Karjalainen Aalto University WAW 2018, Moscow, May 2018

2 Aalto University, Finland Established in 2010 as a merger of Helsinki University of Technology Helsinki School of Economics University of Art and Design Helsinki students 400 professors

3 Introduction: Triangle densities in graphs

4 Triangle densities Lovász 2012

5 Triangle densities Kruskal-Katona upper bound: #triangles (#links) 1.5 Lovász 2012

6 Triangle densities Kruskal-Katona upper bound: #triangles (#links) 1.5 Razborov lower bound Lovász 2012

7 Triangle densities Kruskal-Katona upper bound: #triangles (#links) 1.5 Razborov lower bound Sparse graphs live here Lovász 2012

8 Triangles in social networks Ugander, Backstrom, Kleinberg 2013

9 Triangles in social networks Erdös-Rényi graph #triangles = (#links) 3 Ugander, Backstrom, Kleinberg 2013

10 GOAL Develop a statistical graph model with Nontrivial transitivity (clustering) Heavy-tailed degree distributions A small number of parameters that can be consistently estimated in reasonable computational time from an observed graph sample

11 Network models Erdös-Rényi graphs Stochastic block models and graphons Uniform random graphs with given degree distribution Exponential random graphs Geometric random graphs Preferential attachment models

12 Random intersection graphs

13 Intersection graph Nodes Communities

14 Intersection graph Nodes Communities

15 Intersection graph Nodes Communities

16 Intersection graph Nodes Attributes Two nodes are connected when they share at least one community

17 Random intersection graph n nodes m communities

18 Random intersection graph V1 n nodes m communities

19 Random intersection graph V1 V2 n nodes m communities

20 Random intersection graph V1 V2 V3 n nodes m communities

21 Random intersection graph V1 V2 V3 n nodes m communities Communities V1,, Vm are independent random sets with random size

22 Random intersection graph V1 V2 V3 n nodes m communities Communities V1,, Vm are independent random sets with random size Random graph with n-by-n adjacency matrix

23 Random intersection graph V1 V2 V3 n nodes m communities Communities V1,, Vm are independent random sets with random size Random graph with n-by-n adjacency matrix Statistical model parametrized by (n,m,π), where π is the community size distribution [Godehardt, Jaworski 2001] [Bloznelis 2013] [Karjalainen, Leskelä 2017]

24 Random intersection graph The model can also be viewed as a random hypergraph with m hyperedges of random size Each community induces a clique -> Cliques overrepresented?

25 Thin random intersection graphs

26 Thin random intersection graph V1 V2 V3 n nodes m communities Random graph with n-by-n adjacency matrix

27 Thin random intersection graph V1 V2 V3 n nodes m communities Random graph with n-by-n adjacency matrix

28 Thin random intersection graph V1 V2 V3 n nodes m communities Cij,k are independent {0,1}-valued random variables with mean q Random graph with n-by-n adjacency matrix

29 Thin random intersection graph V1 V2 V3 n nodes m communities Cij,k are independent {0,1}-valued random variables with mean q Random graph with n-by-n adjacency matrix Statistical model parametrized by (n,m,π,q), where q is the community strength

30 Sparse parameter regime Mean number of communities covering a set of r nodes: is characterized by the factorial moments The model is sparse (Pr(link) << 1) if and only if

31 Subgraph densities

32 Subgraph densities In the sparse parameter regime with [Karjalainen Leskelä 2017] [Dewar Healy Perez-Gimenez Pralat Proos Reiniger Ternovsky 2017]

33 Extremal triangle densities Kruskal-Katona upper bound: #triangles (#links) 1.5 Razborov lower bound Sparse graphs live here Lovász 2012

34 Triangles in social networks Kruskal-Katona upper bound: #triangles (#links) 1.5 Erdös-Rényi graph #triangles = (#links) 3 Ugander, Backstrom, Kleinberg 2013

35 Triangles in thin random intersection graphs Kruskal-Katona upper bound: #triangles (#links) 1.5 Thin RIGs in the sparse regime #triangles ~ c (#links) 2 Erdös-Rényi graph #triangles = (#links) 3

36 Degree distribution

37 Degree distribution

38 Balanced sparse regime: Number of communities: m/n ~ const Community strength: q ~ const Community size distribution: (π)r ~ const for r=1,2,3 Degree distribution

39 Balanced sparse regime: Number of communities: m/n ~ const Community strength: q ~ const Community size distribution: (π)r ~ const for r=1,2,3 Degree distribution Compound Poisson distribution

40 Balanced sparse regime: Number of communities: m/n ~ const Community strength: q ~ const Community size distribution: (π)r ~ const for r=1,2,3 Degree distribution Compound Poisson distribution k-fold convolution

41 Balanced sparse regime: Number of communities: m/n ~ const Community strength: q ~ const Community size distribution: (π)r ~ const for r=1,2,3 Degree distribution Compound Poisson distribution k-fold convolution Poisson rate

42 Balanced sparse regime: Number of communities: m/n ~ const Community strength: q ~ const Community size distribution: (π)r ~ const for r=1,2,3 Degree distribution Compound Poisson distribution k-fold convolution Poisson rate Downshifted sizebiased community size distribution

43 Balanced sparse regime: Number of communities: m/n ~ const Community strength: q ~ const Community size distribution: (π)r ~ const for r=1,2,3 Degree distribution Compound Poisson distribution k-fold convolution Poisson rate When the limiting community size distribution is heavy-tailed, so is the limiting degree distribution Joint work with Mindaugas Bloznelis (upcoming) Downshifted sizebiased community size distribution

44 Transitivity

45 Transitivity Probability that two random neighbors of a random node in G are connected

46 Realized vs. model transitivity Transitivity of a graph realization (a random variable)

47 Realized vs. model transitivity Transitivity of a graph realization (a random variable) Model transitivity (deterministic number)

48 Realized vs. model transitivity Transitivity of a graph realization (a random variable) Model transitivity (deterministic number) For a random node triplet (I1,I2,I3):

49 Realized vs. model transitivity Transitivity of a graph realization (a random variable) Model transitivity (deterministic number) For a random node triplet (I1,I2,I3): Conditional probability given the graph realization

50 Model transitivity In the balanced sparse regime the model transitivity is

51 Model transitivity In the balanced sparse regime the model transitivity is The model displays nontrivial transitivity in the balanced sparse parameter regime.

52 Model transitivity In the balanced sparse regime the model transitivity is But is the same true for the transitivity of graph realizations? The model displays nontrivial transitivity in the balanced sparse parameter regime.

53 Realized transitivity In the balanced sparse regime the model transitivity is whp when the community size distributions has bounded 6th factorial moments

54 Realized transitivity In the balanced sparse regime the model transitivity is whp when the community size distributions has bounded 6th factorial moments YES, the transitivity of the realized graph (and every sufficiently large subgraph) agrees with the model transitivity, with high probability

55 Statistical estimation

56 Fitting model to data Can we learn the model parameters from one observed graph sample? Balanced sparse regime: Number of communities: m/n ~ const Community strength: q ~ const Community size distribution: (π)r ~ const for r=1,2,3 Note: Maximum likelihood estimation is computationally intractable due to the nonlinear intersection map.

57 Induced subgraph sampling V We observe a subgraph G (n 0 ) induced by a node set V (n 0 ).

58 Induced subgraph sampling V (n 0 ) V We observe a subgraph G (n 0 ) induced by a node set V (n 0 ).

59 Induced subgraph sampling V (n 0 ) We observe a subgraph G (n 0 ) induced by a node set V (n 0 ).

60 Induced subgraph sampling V (n 0 ) We observe a subgraph G (n 0 ) induced by a node set V (n 0 ). Can we infer the parameters of the statistical graph model from the observed subgraph?

61 MAIN RESULTS

62 Empirical subgraph counts Balanced sparse regime: Number of communities: m/n ~ const Community strength: q ~ const Community size distribution: (π)r ~ const for r=1,2,3

63 Fitting the Bernoulli model Community size distribution: π = Bin(n,p) with rate parameter Number of communities Model parametrized by (λ,μ,q) λ is the mean degree μ is the mean number of communities covering a node q is the community strength The parameters μ and q can be solved from the mean degree λ, degree variance σ 2, and transitivity τ via

64 Consistent moment estimators Model parametrized by (λ,μ,q) λ is the mean degree μ is the mean number of communities covering a node q is the community strength

65 Consistent moment estimators Model parametrized by (λ,μ,q) λ is the mean degree μ is the mean number of communities covering a node q is the community strength The model parameters can be consistently estimated from an induced subgraph of size n0 >> n 2/3 in O(Δn0) time

66 Numerical experiments

67 Simulated Bernoulli model (q=1), λ = 9, μ = 3, n0 = n Realized value of λ^ Realized value of μ^

68 Simulated Bernoulli model (q=1), λ = 9, μ = 3, n0 = n Expected value of λ^ Realized value of λ^ Realized value of μ^ Expected value of μ^

69 Fluctuations of the estimators Empirical distribution of μ^ computed from 1000 simulations, λ = 9, μ = 3, n0 = n = 750

70 Fluctuations of the estimators The fluctuations appear asymptotically Gaussian Empirical distribution of μ^ computed from 1000 simulations, λ = 9, μ = 3, n0 = n = 750

71 Data experiments

72 Fitting a Bernoulli model

73 Fitting a Bernoulli model

74 Fitting a Bernoulli model

75 Fitting a Bernoulli model Relatively strong communities identified for citation networks

76 Fitting a Bernoulli model Relatively strong communities identified for citation networks Moderately strong communities identified for , Facebook and Flickr data

77 Fitting a Bernoulli model Relatively strong communities identified for citation networks Moderately strong communities identified for , Facebook and Flickr data Two moderately strong communities identified for US airport network

78 Fitting a Bernoulli model Relatively strong communities identified for citation networks Moderately strong communities identified for , Facebook and Flickr data Future work: Can you identify the (overlapping) communities? Two moderately strong communities identified for US airport network

79 Fitting a standard random intersection graph (q=1) Fitted values when for a model with q=1

80 Fitting a standard random intersection graph (q=1) Fitted values when for a model with q=1

81 Fitting a standard random intersection graph (q=1) Fitted values when for a model with q=1

82 Fitting a standard random intersection graph (q=1) Fitted values when for a model with q=1

83 Fitting a standard random intersection graph (q=1) Fitted values when for a model with q=1

84 Proofs

85 Proof ingredients Combinatorial analysis of graph patterns resulting from unions of links, 2-stars, and triangles Computing asymptotically the most likely bipartite pattern to induce a given graph motif Second moment method

86 Graph obtained as unions of overlapping triangles

87 Graph obtained as unions of overlapping 2-stars

88 Approximate densities of some graph patterns

89 Minimal covering families of some graph patterns

90 Summary

91 GOAL REVISITED Develop a statistical graph model with Nontrivial transitivity (clustering) Heavy-tailed degree distributions A small number of parameters that can be consistently estimated in reasonable computational time from an observed graph sample

92 SUMMARY Thin random intersection graphs are statistical graph models with overlapping communities: Nontrivial transitivity (clustering) Possibly heavy-tailed degree distributions Model parameters (one-parameter community size distribution) can be consistently estimated in O(Δn0) computational time from an observed subgraph of size n0 >> n 2/3

93 ONGOING/FUTURE WORK Extend to parametric families of community size distributions (e.g. power laws) Develop estimators for biased subgraph samples (network crawling, snowball sampling) Prove asymptotic normality Develop goodness-of-fit tests Learn the (overlapping) community structure

arxiv: v1 [math.pr] 4 Feb 2018

arxiv: v1 [math.pr] 4 Feb 2018 Parameter estimators of sparse random intersection graphs with thinned communities Joona Karjalainen, Johan S.H. van Leeuwaarden and Lasse Leskelä arxiv:180.01171v1 [math.pr] 4 Feb 018 Aalto University,

More information

Asymptotic normality of global clustering coefficient of uniform random intersection graph

Asymptotic normality of global clustering coefficient of uniform random intersection graph Asymptotic normality of global clustering coefficient of uniform random intersection graph Mindaugas Bloznelis joint work with Jerzy Jaworski Vilnius University, Lithuania http://wwwmifvult/ bloznelis

More information

Ground states for exponential random graphs

Ground states for exponential random graphs Ground states for exponential random graphs Mei Yin Department of Mathematics, University of Denver March 5, 2018 We propose a perturbative method to estimate the normalization constant in exponential

More information

Network models: random graphs

Network models: random graphs Network models: random graphs Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Structural Analysis

More information

Recent Progress in Complex Network Analysis. Properties of Random Intersection Graphs

Recent Progress in Complex Network Analysis. Properties of Random Intersection Graphs Recent Progress in Complex Network Analysis. Properties of Random Intersection Graphs Mindaugas Bloznelis, Erhard Godehardt, Jerzy Jaworski, Valentas Kurauskas, Katarzyna Rybarczyk Adam Mickiewicz University,

More information

Sharp threshold functions for random intersection graphs via a coupling method.

Sharp threshold functions for random intersection graphs via a coupling method. Sharp threshold functions for random intersection graphs via a coupling method. Katarzyna Rybarczyk Faculty of Mathematics and Computer Science, Adam Mickiewicz University, 60 769 Poznań, Poland kryba@amu.edu.pl

More information

Supporting Statistical Hypothesis Testing Over Graphs

Supporting Statistical Hypothesis Testing Over Graphs Supporting Statistical Hypothesis Testing Over Graphs Jennifer Neville Departments of Computer Science and Statistics Purdue University (joint work with Tina Eliassi-Rad, Brian Gallagher, Sergey Kirshner,

More information

Diclique clustering in a directed network

Diclique clustering in a directed network Diclique clustering in a directed network Mindaugas Bloznelis and Lasse Leskelä Vilnius University and Aalto University October 17, 016 Abstract We discuss a notion of clustering for directed graphs, which

More information

Network models: dynamical growth and small world

Network models: dynamical growth and small world Network models: dynamical growth and small world Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics

More information

1 Mechanistic and generative models of network structure

1 Mechanistic and generative models of network structure 1 Mechanistic and generative models of network structure There are many models of network structure, and these largely can be divided into two classes: mechanistic models and generative or probabilistic

More information

Graph Detection and Estimation Theory

Graph Detection and Estimation Theory Introduction Detection Estimation Graph Detection and Estimation Theory (and algorithms, and applications) Patrick J. Wolfe Statistics and Information Sciences Laboratory (SISL) School of Engineering and

More information

Consistency Under Sampling of Exponential Random Graph Models

Consistency Under Sampling of Exponential Random Graph Models Consistency Under Sampling of Exponential Random Graph Models Cosma Shalizi and Alessandro Rinaldo Summary by: Elly Kaizar Remember ERGMs (Exponential Random Graph Models) Exponential family models Sufficient

More information

Undecidability of Linear Inequalities Between Graph Homomorphism Densities

Undecidability of Linear Inequalities Between Graph Homomorphism Densities Undecidability of Linear Inequalities Between Graph Homomorphism Densities Hamed Hatami joint work with Sergey Norin School of Computer Science McGill University December 4, 2013 Hamed Hatami (McGill University)

More information

Degree distribution of an inhomogeneous random intersection graph

Degree distribution of an inhomogeneous random intersection graph Degree distribution of an inhomogeneous random intersection graph Mindaugas Bloznelis Faculty of mathematics and informatics Vilnius University Vilnius, Lithuania mindaugas.bloznelis@mif.vu.lt Julius Damarackas

More information

Statistical and Computational Phase Transitions in Planted Models

Statistical and Computational Phase Transitions in Planted Models Statistical and Computational Phase Transitions in Planted Models Jiaming Xu Joint work with Yudong Chen (UC Berkeley) Acknowledgement: Prof. Bruce Hajek November 4, 203 Cluster/Community structure in

More information

Statistical analysis of biological networks.

Statistical analysis of biological networks. Statistical analysis of biological networks. Assessing the exceptionality of network motifs S. Schbath Jouy-en-Josas/Evry/Paris, France http://genome.jouy.inra.fr/ssb/ Colloquium interactions math/info,

More information

Lecture 6: Gaussian Mixture Models (GMM)

Lecture 6: Gaussian Mixture Models (GMM) Helsinki Institute for Information Technology Lecture 6: Gaussian Mixture Models (GMM) Pedram Daee 3.11.2015 Outline Gaussian Mixture Models (GMM) Models Model families and parameters Parameter learning

More information

Erdős-Rényi random graph

Erdős-Rényi random graph Erdős-Rényi random graph introduction to network analysis (ina) Lovro Šubelj University of Ljubljana spring 2016/17 graph models graph model is ensemble of random graphs algorithm for random graphs of

More information

Szemerédi s regularity lemma revisited. Lewis Memorial Lecture March 14, Terence Tao (UCLA)

Szemerédi s regularity lemma revisited. Lewis Memorial Lecture March 14, Terence Tao (UCLA) Szemerédi s regularity lemma revisited Lewis Memorial Lecture March 14, 2008 Terence Tao (UCLA) 1 Finding models of large dense graphs Suppose we are given a large dense graph G = (V, E), where V is a

More information

Modeling of Growing Networks with Directional Attachment and Communities

Modeling of Growing Networks with Directional Attachment and Communities Modeling of Growing Networks with Directional Attachment and Communities Masahiro KIMURA, Kazumi SAITO, Naonori UEDA NTT Communication Science Laboratories 2-4 Hikaridai, Seika-cho, Kyoto 619-0237, Japan

More information

3.2 Configuration model

3.2 Configuration model 3.2 Configuration model 3.2.1 Definition. Basic properties Assume that the vector d = (d 1,..., d n ) is graphical, i.e., there exits a graph on n vertices such that vertex 1 has degree d 1, vertex 2 has

More information

Networks as vectors of their motif frequencies and 2-norm distance as a measure of similarity

Networks as vectors of their motif frequencies and 2-norm distance as a measure of similarity Networks as vectors of their motif frequencies and 2-norm distance as a measure of similarity CS322 Project Writeup Semih Salihoglu Stanford University 353 Serra Street Stanford, CA semih@stanford.edu

More information

Graph limits Graph convergence Approximate asymptotic properties of large graphs Extremal combinatorics/computer science : flag algebra method, proper

Graph limits Graph convergence Approximate asymptotic properties of large graphs Extremal combinatorics/computer science : flag algebra method, proper Jacob Cooper Dan Král Taísa Martins University of Warwick Monash University - Discrete Maths Research Group Graph limits Graph convergence Approximate asymptotic properties of large graphs Extremal combinatorics/computer

More information

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed.

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. STAT 302 Introduction to Probability Learning Outcomes Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. Chapter 1: Combinatorial Analysis Demonstrate the ability to solve combinatorial

More information

The chromatic number of random regular graphs

The chromatic number of random regular graphs The chromatic number of random regular graphs Xavier Pérez Giménez Stochastics Numerics Seminar Models of random graphs Erdős & Rényi classic models (G n,p, G n,m ) Fixed degree sequence Regular graphs

More information

Characterizing extremal limits

Characterizing extremal limits Characterizing extremal limits Oleg Pikhurko University of Warwick ICERM, 11 February 2015 Rademacher Problem g(n, m) := min{#k 3 (G) : v(g) = n, e(g) = m} Mantel 1906, Turán 41: max{m : g(n, m) = 0} =

More information

Applications of the Lopsided Lovász Local Lemma Regarding Hypergraphs

Applications of the Lopsided Lovász Local Lemma Regarding Hypergraphs Regarding Hypergraphs Ph.D. Dissertation Defense April 15, 2013 Overview The Local Lemmata 2-Coloring Hypergraphs with the Original Local Lemma Counting Derangements with the Lopsided Local Lemma Lopsided

More information

Learning Objectives for Stat 225

Learning Objectives for Stat 225 Learning Objectives for Stat 225 08/20/12 Introduction to Probability: Get some general ideas about probability, and learn how to use sample space to compute the probability of a specific event. Set Theory:

More information

Reconstruction in the Generalized Stochastic Block Model

Reconstruction in the Generalized Stochastic Block Model Reconstruction in the Generalized Stochastic Block Model Marc Lelarge 1 Laurent Massoulié 2 Jiaming Xu 3 1 INRIA-ENS 2 INRIA-Microsoft Research Joint Centre 3 University of Illinois, Urbana-Champaign GDR

More information

The Union and Intersection for Different Configurations of Two Events Mutually Exclusive vs Independency of Events

The Union and Intersection for Different Configurations of Two Events Mutually Exclusive vs Independency of Events Section 1: Introductory Probability Basic Probability Facts Probabilities of Simple Events Overview of Set Language Venn Diagrams Probabilities of Compound Events Choices of Events The Addition Rule Combinations

More information

arxiv: v1 [math.co] 21 Sep 2017

arxiv: v1 [math.co] 21 Sep 2017 Chromatic number, Clique number, and Lovász s bound: In a comparison Hamid Reza Daneshpajouh a,1 a School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran, P.O. Box 19395-5746

More information

A Random Dot Product Model for Weighted Networks arxiv: v1 [stat.ap] 8 Nov 2016

A Random Dot Product Model for Weighted Networks arxiv: v1 [stat.ap] 8 Nov 2016 A Random Dot Product Model for Weighted Networks arxiv:1611.02530v1 [stat.ap] 8 Nov 2016 Daryl R. DeFord 1 Daniel N. Rockmore 1,2,3 1 Department of Mathematics, Dartmouth College, Hanover, NH, USA 03755

More information

6.207/14.15: Networks Lecture 12: Generalized Random Graphs

6.207/14.15: Networks Lecture 12: Generalized Random Graphs 6.207/14.15: Networks Lecture 12: Generalized Random Graphs 1 Outline Small-world model Growing random networks Power-law degree distributions: Rich-Get-Richer effects Models: Uniform attachment model

More information

Uncovering structure in biological networks: A model-based approach

Uncovering structure in biological networks: A model-based approach Uncovering structure in biological networks: A model-based approach J-J Daudin, F. Picard, S. Robin, M. Mariadassou UMR INA-PG / ENGREF / INRA, Paris Mathématique et Informatique Appliquées Statistics

More information

The Lopsided Lovász Local Lemma

The Lopsided Lovász Local Lemma Department of Mathematics Nebraska Wesleyan University With Linyuan Lu and László Székely, University of South Carolina Note on Probability Spaces For this talk, every a probability space Ω is assumed

More information

An Efficient reconciliation algorithm for social networks

An Efficient reconciliation algorithm for social networks An Efficient reconciliation algorithm for social networks Silvio Lattanzi (Google Research NY) Joint work with: Nitish Korula (Google Research NY) ICERM Stochastic Graph Models Outline Graph reconciliation

More information

Preface Introduction to Statistics and Data Analysis Overview: Statistical Inference, Samples, Populations, and Experimental Design The Role of

Preface Introduction to Statistics and Data Analysis Overview: Statistical Inference, Samples, Populations, and Experimental Design The Role of Preface Introduction to Statistics and Data Analysis Overview: Statistical Inference, Samples, Populations, and Experimental Design The Role of Probability Sampling Procedures Collection of Data Measures

More information

Learning from Sensor Data: Set II. Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University

Learning from Sensor Data: Set II. Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University Learning from Sensor Data: Set II Behnaam Aazhang J.S. Abercombie Professor Electrical and Computer Engineering Rice University 1 6. Data Representation The approach for learning from data Probabilistic

More information

Adventures in random graphs: Models, structures and algorithms

Adventures in random graphs: Models, structures and algorithms BCAM January 2011 1 Adventures in random graphs: Models, structures and algorithms Armand M. Makowski ECE & ISR/HyNet University of Maryland at College Park armand@isr.umd.edu BCAM January 2011 2 Complex

More information

1 Complex Networks - A Brief Overview

1 Complex Networks - A Brief Overview Power-law Degree Distributions 1 Complex Networks - A Brief Overview Complex networks occur in many social, technological and scientific settings. Examples of complex networks include World Wide Web, Internet,

More information

Clustering means geometry in sparse graphs. Dmitri Krioukov Northeastern University Workshop on Big Graphs UCSD, San Diego, CA, January 2016

Clustering means geometry in sparse graphs. Dmitri Krioukov Northeastern University Workshop on Big Graphs UCSD, San Diego, CA, January 2016 in sparse graphs Dmitri Krioukov Northeastern University Workshop on Big Graphs UCSD, San Diego, CA, January 206 Motivation Latent space models Successfully used in sociology since the 70ies Recently shown

More information

GraphRNN: A Deep Generative Model for Graphs (24 Feb 2018)

GraphRNN: A Deep Generative Model for Graphs (24 Feb 2018) GraphRNN: A Deep Generative Model for Graphs (24 Feb 2018) Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, Jure Leskovec Presented by: Jesse Bettencourt and Harris Chan March 9, 2018 University

More information

CMPUT651: Differential Privacy

CMPUT651: Differential Privacy CMPUT65: Differential Privacy Homework assignment # 2 Due date: Apr. 3rd, 208 Discussion and the exchange of ideas are essential to doing academic work. For assignments in this course, you are encouraged

More information

Asymptotics and Extremal Properties of the Edge-Triangle Exponential Random Graph Model

Asymptotics and Extremal Properties of the Edge-Triangle Exponential Random Graph Model Asymptotics and Extremal Properties of the Edge-Triangle Exponential Random Graph Model Alessandro Rinaldo Carnegie Mellon University joint work with Mei Yin, Sukhada Fadnavis, Stephen E. Fienberg and

More information

Random Networks. Complex Networks CSYS/MATH 303, Spring, Prof. Peter Dodds

Random Networks. Complex Networks CSYS/MATH 303, Spring, Prof. Peter Dodds Complex Networks CSYS/MATH 303, Spring, 2011 Prof. Peter Dodds Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont Licensed under the

More information

A graph contains a set of nodes (vertices) connected by links (edges or arcs)

A graph contains a set of nodes (vertices) connected by links (edges or arcs) BOLTZMANN MACHINES Generative Models Graphical Models A graph contains a set of nodes (vertices) connected by links (edges or arcs) In a probabilistic graphical model, each node represents a random variable,

More information

Purnamrita Sarkar (Carnegie Mellon) Deepayan Chakrabarti (Yahoo! Research) Andrew W. Moore (Google, Inc.)

Purnamrita Sarkar (Carnegie Mellon) Deepayan Chakrabarti (Yahoo! Research) Andrew W. Moore (Google, Inc.) Purnamrita Sarkar (Carnegie Mellon) Deepayan Chakrabarti (Yahoo! Research) Andrew W. Moore (Google, Inc.) Which pair of nodes {i,j} should be connected? Variant: node i is given Alice Bob Charlie Friend

More information

Quilting Stochastic Kronecker Graphs to Generate Multiplicative Attribute Graphs

Quilting Stochastic Kronecker Graphs to Generate Multiplicative Attribute Graphs Quilting Stochastic Kronecker Graphs to Generate Multiplicative Attribute Graphs Hyokun Yun (work with S.V.N. Vishwanathan) Department of Statistics Purdue Machine Learning Seminar November 9, 2011 Overview

More information

Subject CS1 Actuarial Statistics 1 Core Principles

Subject CS1 Actuarial Statistics 1 Core Principles Institute of Actuaries of India Subject CS1 Actuarial Statistics 1 Core Principles For 2019 Examinations Aim The aim of the Actuarial Statistics 1 subject is to provide a grounding in mathematical and

More information

How do we analyze, evaluate, solve, and graph quadratic functions?

How do we analyze, evaluate, solve, and graph quadratic functions? Topic: 4. Quadratic Functions and Factoring Days: 18 Key Learning: Students will be able to analyze, evaluate, solve and graph quadratic functions. Unit Essential Question(s): How do we analyze, evaluate,

More information

Concentration of Measures by Bounded Couplings

Concentration of Measures by Bounded Couplings Concentration of Measures by Bounded Couplings Subhankar Ghosh, Larry Goldstein and Ümit Işlak University of Southern California [arxiv:0906.3886] [arxiv:1304.5001] May 2013 Concentration of Measure Distributional

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/30/17 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 2

More information

An Introduction to Exponential-Family Random Graph Models

An Introduction to Exponential-Family Random Graph Models An Introduction to Exponential-Family Random Graph Models Luo Lu Feb.8, 2011 1 / 11 Types of complications in social network Single relationship data A single relationship observed on a set of nodes at

More information

Graphical Model Inference with Perfect Graphs

Graphical Model Inference with Perfect Graphs Graphical Model Inference with Perfect Graphs Tony Jebara Columbia University July 25, 2013 joint work with Adrian Weller Graphical models and Markov random fields We depict a graphical model G as a bipartite

More information

Concentration of Measures by Bounded Size Bias Couplings

Concentration of Measures by Bounded Size Bias Couplings Concentration of Measures by Bounded Size Bias Couplings Subhankar Ghosh, Larry Goldstein University of Southern California [arxiv:0906.3886] January 10 th, 2013 Concentration of Measure Distributional

More information

Notes 6 : First and second moment methods

Notes 6 : First and second moment methods Notes 6 : First and second moment methods Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Roc, Sections 2.1-2.3]. Recall: THM 6.1 (Markov s inequality) Let X be a non-negative

More information

Groups of vertices and Core-periphery structure. By: Ralucca Gera, Applied math department, Naval Postgraduate School Monterey, CA, USA

Groups of vertices and Core-periphery structure. By: Ralucca Gera, Applied math department, Naval Postgraduate School Monterey, CA, USA Groups of vertices and Core-periphery structure By: Ralucca Gera, Applied math department, Naval Postgraduate School Monterey, CA, USA Mostly observed real networks have: Why? Heavy tail (powerlaw most

More information

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition Preface Preface to the First Edition xi xiii 1 Basic Probability Theory 1 1.1 Introduction 1 1.2 Sample Spaces and Events 3 1.3 The Axioms of Probability 7 1.4 Finite Sample Spaces and Combinatorics 15

More information

Networks: Lectures 9 & 10 Random graphs

Networks: Lectures 9 & 10 Random graphs Networks: Lectures 9 & 10 Random graphs Heather A Harrington Mathematical Institute University of Oxford HT 2017 What you re in for Week 1: Introduction and basic concepts Week 2: Small worlds Week 3:

More information

Complex (Biological) Networks

Complex (Biological) Networks Complex (Biological) Networks Today: Measuring Network Topology Thursday: Analyzing Metabolic Networks Elhanan Borenstein Some slides are based on slides from courses given by Roded Sharan and Tomer Shlomi

More information

Independence and chromatic number (and random k-sat): Sparse Case. Dimitris Achlioptas Microsoft

Independence and chromatic number (and random k-sat): Sparse Case. Dimitris Achlioptas Microsoft Independence and chromatic number (and random k-sat): Sparse Case Dimitris Achlioptas Microsoft Random graphs W.h.p.: with probability that tends to 1 as n. Hamiltonian cycle Let τ 2 be the moment all

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Information Aggregation in Complex Dynamic Networks

Information Aggregation in Complex Dynamic Networks The Combined 48 th IEEE Conference on Decision and Control and 28 th Chinese Control Conference Information Aggregation in Complex Dynamic Networks Ali Jadbabaie Skirkanich Associate Professor of Innovation

More information

Large cliques in sparse random intersection graphs

Large cliques in sparse random intersection graphs Large cliques in sparse random intersection graphs Mindaugas Bloznelis Faculty of Mathematics and Informatics Vilnius University Lithuania mindaugas.bloznelis@mif.vu.lt Valentas Kurauskas Institute of

More information

A New Space for Comparing Graphs

A New Space for Comparing Graphs A New Space for Comparing Graphs Anshumali Shrivastava and Ping Li Cornell University and Rutgers University August 18th 2014 Anshumali Shrivastava and Ping Li ASONAM 2014 August 18th 2014 1 / 38 Main

More information

A Vector Space Analog of Lovasz s Version of the Kruskal-Katona Theorem

A Vector Space Analog of Lovasz s Version of the Kruskal-Katona Theorem Claude Tardif Non-canonical Independent sets in Graph Powers Let s 4 be an integer. The truncated s-simplex T s is defined as follows: V (T s ) = {(i, j) {0, 1,..., s 1} 2 : i j}, E(T s ) = {[(i, j), (,

More information

Self Similar (Scale Free, Power Law) Networks (I)

Self Similar (Scale Free, Power Law) Networks (I) Self Similar (Scale Free, Power Law) Networks (I) E6083: lecture 4 Prof. Predrag R. Jelenković Dept. of Electrical Engineering Columbia University, NY 10027, USA {predrag}@ee.columbia.edu February 7, 2007

More information

Lecture 12: May 09, Decomposable Graphs (continues from last time)

Lecture 12: May 09, Decomposable Graphs (continues from last time) 596 Pat. Recog. II: Introduction to Graphical Models University of Washington Spring 00 Dept. of lectrical ngineering Lecture : May 09, 00 Lecturer: Jeff Bilmes Scribe: Hansang ho, Izhak Shafran(000).

More information

Communities Via Laplacian Matrices. Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices

Communities Via Laplacian Matrices. Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices Communities Via Laplacian Matrices Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices The Laplacian Approach As with betweenness approach, we want to divide a social graph into

More information

Theory and Methods for the Analysis of Social Networks

Theory and Methods for the Analysis of Social Networks Theory and Methods for the Analysis of Social Networks Alexander Volfovsky Department of Statistical Science, Duke University Lecture 1: January 16, 2018 1 / 35 Outline Jan 11 : Brief intro and Guest lecture

More information

Large cliques in sparse random intersection graphs

Large cliques in sparse random intersection graphs Large cliques in sparse random intersection graphs Valentas Kurauskas and Mindaugas Bloznelis Vilnius University 2013-09-29 Abstract Given positive integers n and m, and a probability measure P on {0,

More information

BIRTHDAY PROBLEM, MONOCHROMATIC SUBGRAPHS & THE SECOND MOMENT PHENOMENON / 23

BIRTHDAY PROBLEM, MONOCHROMATIC SUBGRAPHS & THE SECOND MOMENT PHENOMENON / 23 BIRTHDAY PROBLEM, MONOCHROMATIC SUBGRAPHS & THE SECOND MOMENT PHENOMENON Somabha Mukherjee 1 University of Pennsylvania March 30, 2018 Joint work with Bhaswar B. Bhattacharya 2 and Sumit Mukherjee 3 1

More information

p L yi z n m x N n xi

p L yi z n m x N n xi y i z n x n N x i Overview Directed and undirected graphs Conditional independence Exact inference Latent variables and EM Variational inference Books statistical perspective Graphical Models, S. Lauritzen

More information

Random Graphs. 7.1 Introduction

Random Graphs. 7.1 Introduction 7 Random Graphs 7.1 Introduction The theory of random graphs began in the late 1950s with the seminal paper by Erdös and Rényi [?]. In contrast to percolation theory, which emerged from efforts to model

More information

Bipartite decomposition of random graphs

Bipartite decomposition of random graphs Bipartite decomposition of random graphs Noga Alon Abstract For a graph G = (V, E, let τ(g denote the minimum number of pairwise edge disjoint complete bipartite subgraphs of G so that each edge of G belongs

More information

Complex networks: an introduction

Complex networks: an introduction Alain Barrat Complex networks: an introduction CPT, Marseille, France ISI, Turin, Italy http://www.cpt.univ-mrs.fr/~barrat http://cxnets.googlepages.com Plan of the lecture I. INTRODUCTION II. I. Networks:

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER. 21 June :45 11:45

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER. 21 June :45 11:45 Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS 21 June 2010 9:45 11:45 Answer any FOUR of the questions. University-approved

More information

Extreme eigenvalues of Erdős-Rényi random graphs

Extreme eigenvalues of Erdős-Rényi random graphs Extreme eigenvalues of Erdős-Rényi random graphs Florent Benaych-Georges j.w.w. Charles Bordenave and Antti Knowles MAP5, Université Paris Descartes May 18, 2018 IPAM UCLA Inhomogeneous Erdős-Rényi random

More information

Fundamentals of Applied Probability and Random Processes

Fundamentals of Applied Probability and Random Processes Fundamentals of Applied Probability and Random Processes,nd 2 na Edition Oliver C. Ibe University of Massachusetts, LoweLL, Massachusetts ip^ W >!^ AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS

More information

Delay and Accessibility in Random Temporal Networks

Delay and Accessibility in Random Temporal Networks Delay and Accessibility in Random Temporal Networks 2nd Symposium on Spatial Networks Shahriar Etemadi Tajbakhsh September 13, 2017 Outline Z Accessibility in Deterministic Static and Temporal Networks

More information

The large deviation principle for the Erdős-Rényi random graph

The large deviation principle for the Erdős-Rényi random graph The large deviation principle for the Erdős-Rényi random graph (Courant Institute, NYU) joint work with S. R. S. Varadhan Main objective: how to count graphs with a given property Only consider finite

More information

Sampling and Estimation in Network Graphs

Sampling and Estimation in Network Graphs Sampling and Estimation in Network Graphs Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ March

More information

Algorithms Reading Group Notes: Provable Bounds for Learning Deep Representations

Algorithms Reading Group Notes: Provable Bounds for Learning Deep Representations Algorithms Reading Group Notes: Provable Bounds for Learning Deep Representations Joshua R. Wang November 1, 2016 1 Model and Results Continuing from last week, we again examine provable algorithms for

More information

CSC 412 (Lecture 4): Undirected Graphical Models

CSC 412 (Lecture 4): Undirected Graphical Models CSC 412 (Lecture 4): Undirected Graphical Models Raquel Urtasun University of Toronto Feb 2, 2016 R Urtasun (UofT) CSC 412 Feb 2, 2016 1 / 37 Today Undirected Graphical Models: Semantics of the graph:

More information

Decomposition of random graphs into complete bipartite graphs

Decomposition of random graphs into complete bipartite graphs Decomposition of random graphs into complete bipartite graphs Fan Chung Xing Peng Abstract We consider the problem of partitioning the edge set of a graph G into the minimum number τg) of edge-disjoint

More information

Random Walk Based Algorithms for Complex Network Analysis

Random Walk Based Algorithms for Complex Network Analysis Random Walk Based Algorithms for Complex Network Analysis Konstantin Avrachenkov Inria Sophia Antipolis Winter School on Complex Networks 2015, Inria SAM, 12-16 Jan. Complex networks Main features of complex

More information

Cluster Graph Modification Problems

Cluster Graph Modification Problems Cluster Graph Modification Problems Ron Shamir Roded Sharan Dekel Tsur December 2002 Abstract In a clustering problem one has to partition a set of elements into homogeneous and well-separated subsets.

More information

Page Max. Possible Points Total 100

Page Max. Possible Points Total 100 Math 3215 Exam 2 Summer 2014 Instructor: Sal Barone Name: GT username: 1. No books or notes are allowed. 2. You may use ONLY NON-GRAPHING and NON-PROGRAMABLE scientific calculators. All other electronic

More information

Contents. Preface to Second Edition Preface to First Edition Abbreviations PART I PRINCIPLES OF STATISTICAL THINKING AND ANALYSIS 1

Contents. Preface to Second Edition Preface to First Edition Abbreviations PART I PRINCIPLES OF STATISTICAL THINKING AND ANALYSIS 1 Contents Preface to Second Edition Preface to First Edition Abbreviations xv xvii xix PART I PRINCIPLES OF STATISTICAL THINKING AND ANALYSIS 1 1 The Role of Statistical Methods in Modern Industry and Services

More information

Histogram Arithmetic under Uncertainty of. Probability Density Function

Histogram Arithmetic under Uncertainty of. Probability Density Function Applied Mathematical Sciences, Vol. 9, 015, no. 141, 7043-705 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ams.015.510644 Histogram Arithmetic under Uncertainty of Probability Density Function

More information

Combinatorics in Hungary and Extremal Set Theory

Combinatorics in Hungary and Extremal Set Theory Combinatorics in Hungary and Extremal Set Theory Gyula O.H. Katona Rényi Institute, Budapest Jiao Tong University Colloquium Talk October 22, 2014 Combinatorics in Hungary A little history. 1 Combinatorics

More information

Critical percolation on networks with given degrees. Souvik Dhara

Critical percolation on networks with given degrees. Souvik Dhara Critical percolation on networks with given degrees Souvik Dhara Microsoft Research and MIT Mathematics Montréal Summer Workshop: Challenges in Probability and Mathematical Physics June 9, 2018 1 Remco

More information

Induced Turán numbers

Induced Turán numbers Induced Turán numbers Michael Tait Carnegie Mellon University mtait@cmu.edu Atlanta Lecture Series XVIII Emory University October 22, 2016 Michael Tait (CMU) October 22, 2016 1 / 25 Michael Tait (CMU)

More information

CSE 3500 Algorithms and Complexity Fall 2016 Lecture 25: November 29, 2016

CSE 3500 Algorithms and Complexity Fall 2016 Lecture 25: November 29, 2016 CSE 3500 Algorithms and Complexity Fall 2016 Lecture 25: November 29, 2016 Intractable Problems There are many problems for which the best known algorithms take a very long time (e.g., exponential in some

More information

Statistical Inference for Networks. Peter Bickel

Statistical Inference for Networks. Peter Bickel Statistical Inference for Networks 4th Lehmann Symposium, Rice University, May 2011 Peter Bickel Statistics Dept. UC Berkeley (Joint work with Aiyou Chen, Google, E. Levina, U. Mich, S. Bhattacharyya,

More information

Decision Making and Social Networks

Decision Making and Social Networks Decision Making and Social Networks Lecture 4: Models of Network Growth Umberto Grandi Summer 2013 Overview In the previous lecture: We got acquainted with graphs and networks We saw lots of definitions:

More information

The Geometry of Random Right-angled Coxeter Groups

The Geometry of Random Right-angled Coxeter Groups The Geometry of Random Right-angled Coxeter Groups Tim Susse University of Nebraska - Lincoln May 14, 2015 Joint work with Jason Behrstock, Victor Falgas-Ravry and Mark Hagen Tim Susse (UNL) Random RACGs

More information

Networks. Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource

Networks. Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource Networks Can (John) Bruce Keck Founda7on Biotechnology Lab Bioinforma7cs Resource Networks in biology Protein-Protein Interaction Network of Yeast Transcriptional regulatory network of E.coli Experimental

More information

CS242: Probabilistic Graphical Models Lecture 4A: MAP Estimation & Graph Structure Learning

CS242: Probabilistic Graphical Models Lecture 4A: MAP Estimation & Graph Structure Learning CS242: Probabilistic Graphical Models Lecture 4A: MAP Estimation & Graph Structure Learning Professor Erik Sudderth Brown University Computer Science October 4, 2016 Some figures and materials courtesy

More information

Bayesian Models in Machine Learning

Bayesian Models in Machine Learning Bayesian Models in Machine Learning Lukáš Burget Escuela de Ciencias Informáticas 2017 Buenos Aires, July 24-29 2017 Frequentist vs. Bayesian Frequentist point of view: Probability is the frequency of

More information