Groups of vertices and Core-periphery structure. By: Ralucca Gera, Applied math department, Naval Postgraduate School Monterey, CA, USA

Size: px
Start display at page:

Download "Groups of vertices and Core-periphery structure. By: Ralucca Gera, Applied math department, Naval Postgraduate School Monterey, CA, USA"

Transcription

1 Groups of vertices and Core-periphery structure By: Ralucca Gera, Applied math department, Naval Postgraduate School Monterey, CA, USA

2 Mostly observed real networks have: Why? Heavy tail (powerlaw most probably, exponential) High clustering (high number of triangles especially in social networks, lower count otherwise) Small average path (usually small diameter) Communities/periphery/hierarchy Homophily and assortative mixing (similar nodes tend to be adjacent) Where does the structure come from? How do we model it? 2

3 Macro and Meso Scale properties Macro Scale properties (using all the interactions): Small world (small average path, high clustering) Powerlaw degree distr. (generally pref. attachment) Meso Scale properties applying to groups (using k- clique, k-core, k-dense): Community structure Core-periphery structure Micro Scale properties applying to small units: Edge properties (such as who it connects, being a bridge) Node properties (such as degree, cut-vertex) 3

4 Some local and global metrics pertaining to structure of networks Structure they capture Local Statistics Global statistics Direct influence General feel for the distribution of the edges Vertex degree, in and out degree Degree distribution Closeness, distance between nodes Geodesic (path) Distance (numerical value) Diameter, radius, average path length Connectedness of the network How critical are vertices to the connectedness of the graph? How much damage can a network take before disconnecting? Existence of a bridge Existence of a cut vertex Cut sets Degree distribution Tight node/edge neighborhoods, important nodes as a group Clique, plex, core, community, k-dense (for edges) Community detection 4

5 Clusters and matrices In a very clustered graph, the adjacency matrix can be put in a block form (identifying communities) Source: Guido Caldarelli, Communities and Clustering in Some social Networks, NetSci 2007 New York, May 20 th 2007

6 Definitions Newman s book uses k-component, k-cliques, k-plexes and k-cores to refer to a set of vertices with some properties. In graph theory (and research papers) we use a clique to be the set of vertices and edges, so a clique is actually a graph (or subgraph) Either way it works, the graph captures more information, and I will refer them as graphs (induced by the nodes in the sets).

7 Groups and subgroups identifications Some common approaches to subgroup identification and analysis: K-cliques K-cores (k-shell) K-denseness Components (and k-components) Community detection They are used to explore how large networks can be built up out of small and tight groups.

8 Section COMPONENTS AND K-COMPONENTS 8

9 Components Recall that a graph is k-connected/k-component if it can be disconnected by removal of k vertices, and no k-1 vertices can disconnect it. Component is a maximal size connected subgraph A k-component (k-connected component) is a connected maximal subgraph that can be disconnected (or we re left with a ) by removal of k vertices, and no k-1 vertices can disconnect it. Alternatively: A k-component is a connected maximal subgraph such that there are k-vertexindependent paths between any two vertices 9

10 In class exercise The k-component tells how robust a graph or subgraph is. Identify a subgraph that is either a: 1-connected 2-connected 3-connected 4-connected 10

11 Section K-CLIQUE AND K-CORE 11

12 k-cliques A clique of size : a subset of nodes, with every node adjacent to every other member of the subset (all one of them) We usually search for the maximum clique Hard to find (decision problem for the clique number is NP-Complete) Why is it hard to use this concept on real networks? Because one might not infer/know all the edges of the true network, so clique may exist but it may not be captured in the data to be analyzed A relaxed version of a clique might be just as useful in large networks. 12

13 In class exercise A clique of size : a subset of nodes, with every node connected to every other member of the subset. Identify a: 1-clique 2-clique 3-clique 4-clique Relaxed versions of a k-clique are k-dense and 13 k-core

14 -core: maximal subset of nodes,, with, where is the subgraph induced by S. Idea: enough edges are present to make a group strong. References: k-core [1] Bollobas, B. Graph Theory and Combinatorics: Proceedings of the Cambridge Combinatorial Conference in honor of P. Erdos, 35 (Academic, New York, 1984). [2] Seidman, S. B. Network structure and minimum degree. Social Networks 5, (1983). [3] Carmi, S., Havlin, S, Kirkpatrick, S., Shavitt, Y. & Shir, E. A model of Internet topology using k-shell decomposition. Proc. Natl. Acad. Sci. USA 104, (2007). [4] Angeles-Serrano, M. & Bogu n a, M. Clustering in complex networks. II. Percolation properties. Phys. Rev. E 74, (2006). 14

15 k-core A -core of size n: maximal subset of nodes with, where is the subgraph induced by. Finding the core: eliminate lower-order k-cores until to find The highest k before the network vanishes. 15

16 In class exercise The -core of size n: maximal subset of nodes with, where is the subgraph induced by. Identify the: 1-core 2-core 3-core 4-core 16

17 k-dense A k- dense sub-graph is a group of vertices, in which each pair of vertices {i, j} has at least -2 common neighbors. Idea: pairwise friends ( dense looks at edges rather than vertices in making them part of the group) 17

18 k-dense A k- dense sub-graph is a group of vertices, in which each pair of vertices has at least -2 common neighbors. k - clique k - dense k core 18

19 In class exercise A k- dense sub-graph is a group of vertices, in which each pair of vertices {i, j} has at least k-2 common neighbors. Identify a: 1-dense 2-dense 3-dense 4-dense 19

20 Other extensions 20

21 Using them globally

22 k-cliques, k-cores and k-dense clique of size : maximal subset of nodes, with every node adjacent to every other member of the subset -core: maximal subset of nodes, with every node adjacent to at least others in the subset A -dense sub-graph is a group of vertices, in which each pair of vertices {i, j} has at least common neighbors.

23 Communities vs. core/dense/clique K-core/dense/clique: look inside the group of nodes Communities look both at internal and external ties (high internal and low external ties) Core-periphery decomposition also looking at internal and ext. to the core (doesn t have to be a clique) 23

24 K-core (k-shell) decomposition The decomposition identifies the shells for different k-values. Generally (but not well defined): the core of the network (the -core for the largest ) and the outer periphery (last layer: 1-core taking away the 2-core). There are modifications where several top values of make the core.

25 K-core and degree (1) Reference: Alvarez-Hamelin, J. I., Dall asta, L., Barrat, A. & Vespignani, A. Large scale networks fingerprinting and visualization using the k-core decomposition. Advances in Neural Information Processing Systems 18, (2006) 25

26 k-core and degree (2) The degree is highly (and nonlinearly) correlated with the position of the node in the k-shell 26

27 Core-periphery structure 27

28 Core-periphery decomposition The core-periphery decomposition captures the notion that many networks decompose into: a densely connected core, and a sparsely connected periphery [6], [12]. The core-periphery structure is a pervasive and crucial characteristic of large networks [13], [14], [15]. If overlapping communities are considered:» the network core forms as a result of many overlapping communities 28

29 Core-periphery adjacency matrix dark blue = 1 (adjacent) white = 0 (nonadjacent) 29

30 Deciding on core-periphery How to decide if a network has coreperiphery structure? Not well defined either, but generally the density of the -core must be high: Checked by the high correlation,, where is the (i,j) adjacency matrix entry, and 30

31 Extensions of core-periphery?! Limitation: There are just two classes of nodes: core and periphery. Is a three-class partition consisting of core, semiperiphery, and periphery more realistic? Or even partitioning with more classes? The problem becomes more difficult as the number of classes is increased, and good justification is needed. 31

32 Possible structures dark shade = 0 (nonadjacent) light shade = 1 (adjacent) 32 From Aaron Clauset and Mason Porter

33 Core and communities The network core was traditionally viewed as a single giant community (lacking internal communities references [7], [8], [9], [10]). Yang and Leskovec (2014, reference [11]) showed that dense cores form as a result of many overlapping communities. Moreover, foodweb, social, and web networks exhibit a single dominant core, while protein-protein interaction and product copurchasing networks contain many local cores formed around the central core 33

34 References 1. M. E. Newman, Analysis of weighted networks Physical Review E, vol. 70, no. 5, Borgatti, Stephen P., and Martin G. Everett. "Models of core/periphery structures Social networks 21.4 (2000): Csermely, Peter, et al. "Structure and dynamics of core/periphery networks. Journal of Complex Networks 1.2 (2013): Kitsak, Maksim, et al. "Identification of influential spreaders in complex networks." Nature Physics 6.11 (2010): S. B. Seidman, Network structure and minimum degree, Social networks, vol. 5, no. 3, pp , Borgatti, Stephen P., and Martin G. Everett. "Models of core/periphery structures." Social networks 21.4 (2000): J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters, Internet Mathematics, vol. 6, no. 1, pp , A. Clauset, M. Newman, and C. Moore, Finding community structure in very large networks, Physical Review E, vol. 70, p , M. Coscia, G. Rossetti, F. Giannotti, and D. Pedreschi, Demon: a local-first discovery method for overlapping communities, in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), 2012, pp J. Leskovec, K. Lang, and M. Mahoney, Empirical comparison of algorithms for network community detection, in Proceedings of the International Conference on World Wide Web (WWW), Jaewon Yang and Jure Leskovec. Overlapping Communities Explain Core-Periphery Organization of Networks Proceedings of the IEEE (2014) 12. P. Holme, Core-periphery organization of complex networks, Physical Review E, vol. 72, p , F. D. Rossa, F. Dercole, and C. Piccardi, Profiling coreperiphery network structure by random walkers, Scientific Reports, vol. 3, J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters, Internet Mathematics, vol. 6, no. 1, pp , M. P. Rombach, M. A. Porter, J. H. Fowler, and P. J. Mucha, Core-periphery structure in networks, SIAM Journal of Applied Mathematics, vol. 74, no. 1, pp ,

Jure Leskovec Joint work with Jaewon Yang, Julian McAuley

Jure Leskovec Joint work with Jaewon Yang, Julian McAuley Jure Leskovec (@jure) Joint work with Jaewon Yang, Julian McAuley Given a network, find communities! Sets of nodes with common function, role or property 2 3 Q: How and why do communities form? A: Strength

More information

Peripheries of Cohesive Subsets

Peripheries of Cohesive Subsets Peripheries of Cohesive Subsets Martin G. Everett University of Greenwich School of Computing and Mathematical Sciences 30 Park Row London SE10 9LS Tel: (0181) 331-8716 Fax: (181) 331-8665 E-mail: m.g.everett@gre.ac.uk

More information

Networks as vectors of their motif frequencies and 2-norm distance as a measure of similarity

Networks as vectors of their motif frequencies and 2-norm distance as a measure of similarity Networks as vectors of their motif frequencies and 2-norm distance as a measure of similarity CS322 Project Writeup Semih Salihoglu Stanford University 353 Serra Street Stanford, CA semih@stanford.edu

More information

Complex Networks CSYS/MATH 303, Spring, Prof. Peter Dodds

Complex Networks CSYS/MATH 303, Spring, Prof. Peter Dodds Complex Networks CSYS/MATH 303, Spring, 2011 Prof. Peter Dodds Department of Mathematics & Statistics Center for Complex Systems Vermont Advanced Computing Center University of Vermont Licensed under the

More information

Efficient Network Structures with Separable Heterogeneous Connection Costs

Efficient Network Structures with Separable Heterogeneous Connection Costs Efficient Network Structures with Separable Heterogeneous Connection Costs Babak Heydari a, Mohsen Mosleh a, Kia Dalili b arxiv:1504.06634v3 [q-fin.ec] 11 Dec 2015 a School of Systems and Enterprises,

More information

Peripheries of cohesive subsets

Peripheries of cohesive subsets Ž. Social Networks 21 1999 397 407 www.elsevier.comrlocatersocnet Peripheries of cohesive subsets Martin G. Everett a,), Stephen P. Borgatti b,1 a UniÕersity of Greenwich School of Computing and Mathematical

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu Non-overlapping vs. overlapping communities 11/10/2010 Jure Leskovec, Stanford CS224W: Social

More information

1 Mechanistic and generative models of network structure

1 Mechanistic and generative models of network structure 1 Mechanistic and generative models of network structure There are many models of network structure, and these largely can be divided into two classes: mechanistic models and generative or probabilistic

More information

Mini course on Complex Networks

Mini course on Complex Networks Mini course on Complex Networks Massimo Ostilli 1 1 UFSC, Florianopolis, Brazil September 2017 Dep. de Fisica Organization of The Mini Course Day 1: Basic Topology of Equilibrium Networks Day 2: Percolation

More information

Efficient Network Structures with Separable Heterogeneous Connection Costs

Efficient Network Structures with Separable Heterogeneous Connection Costs MPRA Munich Personal RePEc Archive Efficient Network Structures with Separable Heterogeneous Connection Costs Babak Heydari and Mohsen Mosleh and Kia Dalili School of Systems and Enterprises, Stevens Institute

More information

Applications of Eigenvalues in Extremal Graph Theory

Applications of Eigenvalues in Extremal Graph Theory Applications of Eigenvalues in Extremal Graph Theory Olivia Simpson March 14, 201 Abstract In a 2007 paper, Vladimir Nikiforov extends the results of an earlier spectral condition on triangles in graphs.

More information

The Critical Point of k-clique Percolation in the Erd ós Rényi Graph

The Critical Point of k-clique Percolation in the Erd ós Rényi Graph Journal of Statistical Physics, Vol. 128, Nos. 1/2, July 2007 ( C 2007 ) DOI: 10.1007/s10955-006-9184-x The Critical Point of k-clique Percolation in the Erd ós Rényi Graph Gergely Palla, 1,2 Imre Derényi

More information

arxiv: v1 [math.st] 1 Nov 2017

arxiv: v1 [math.st] 1 Nov 2017 ASSESSING THE RELIABILITY POLYNOMIAL BASED ON PERCOLATION THEORY arxiv:1711.00303v1 [math.st] 1 Nov 2017 SAJADI, FARKHONDEH A. Department of Statistics, University of Isfahan, Isfahan 81744,Iran; f.sajadi@sci.ui.ac.ir

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec Stanford University Jure Leskovec, Stanford University http://cs224w.stanford.edu Task: Find coalitions in signed networks Incentives: European

More information

Hyperbolic metric spaces and their applications to large complex real world networks II

Hyperbolic metric spaces and their applications to large complex real world networks II Hyperbolic metric spaces Hyperbolic metric spaces and their applications to large complex real world networks II Gabriel H. Tucci Bell Laboratories Alcatel-Lucent May 17, 2010 Tucci Hyperbolic metric spaces

More information

arxiv: v2 [cond-mat.dis-nn] 16 Feb 2017

arxiv: v2 [cond-mat.dis-nn] 16 Feb 2017 Mapping the Structure of Directed Networks: Beyond the Bow-Tie Diagram G. Timár, 1, A. V. Goltsev, 1,2, S. N. Dorogovtsev, 1,2 and J. F. F. Mendes 1 1 Departamento de Física, Universidade de Aveiro and

More information

Cohesive Subgroups. October 4, Based on slides by Steve Borgatti. Modifications (many sensible) by Rich DeJordy

Cohesive Subgroups. October 4, Based on slides by Steve Borgatti. Modifications (many sensible) by Rich DeJordy Cohesive Subgroups October 4, 26 Based on slides by Steve Borgatti. Modifications (many sensible) by Rich DeJordy Before We Start Any questions on cohesion? Why do we care about Cohesive Subgroups 1. They

More information

Adventures in random graphs: Models, structures and algorithms

Adventures in random graphs: Models, structures and algorithms BCAM January 2011 1 Adventures in random graphs: Models, structures and algorithms Armand M. Makowski ECE & ISR/HyNet University of Maryland at College Park armand@isr.umd.edu BCAM January 2011 2 Complex

More information

Subgraph Detection Using Eigenvector L1 Norms

Subgraph Detection Using Eigenvector L1 Norms Subgraph Detection Using Eigenvector L1 Norms Benjamin A. Miller Lincoln Laboratory Massachusetts Institute of Technology Lexington, MA 02420 bamiller@ll.mit.edu Nadya T. Bliss Lincoln Laboratory Massachusetts

More information

Nonparametric Bayesian Matrix Factorization for Assortative Networks

Nonparametric Bayesian Matrix Factorization for Assortative Networks Nonparametric Bayesian Matrix Factorization for Assortative Networks Mingyuan Zhou IROM Department, McCombs School of Business Department of Statistics and Data Sciences The University of Texas at Austin

More information

On Dominator Colorings in Graphs

On Dominator Colorings in Graphs On Dominator Colorings in Graphs Ralucca Michelle Gera Department of Applied Mathematics Naval Postgraduate School Monterey, CA 994, USA ABSTRACT Given a graph G, the dominator coloring problem seeks a

More information

Betweenness centrality of fractal and nonfractal scale-free model networks and tests on real networks

Betweenness centrality of fractal and nonfractal scale-free model networks and tests on real networks Betweenness centrality of fractal and nonfractal scale-free model networks and tests on real networks Maksim Kitsak, 1 Shlomo Havlin, 1,2 Gerald Paul, 1 Massimo Riccaboni, 3 Fabio Pammolli, 1,3,4 and H.

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/30/17 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu 2

More information

Modularity and Graph Algorithms

Modularity and Graph Algorithms Modularity and Graph Algorithms David Bader Georgia Institute of Technology Joe McCloskey National Security Agency 12 July 2010 1 Outline Modularity Optimization and the Clauset, Newman, and Moore Algorithm

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 4 May 2000

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 4 May 2000 Topology of evolving networks: local events and universality arxiv:cond-mat/0005085v1 [cond-mat.dis-nn] 4 May 2000 Réka Albert and Albert-László Barabási Department of Physics, University of Notre-Dame,

More information

Network models: random graphs

Network models: random graphs Network models: random graphs Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Structural Analysis

More information

Lecture 13: Spectral Graph Theory

Lecture 13: Spectral Graph Theory CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 13: Spectral Graph Theory Lecturer: Shayan Oveis Gharan 11/14/18 Disclaimer: These notes have not been subjected to the usual scrutiny reserved

More information

Deterministic Decentralized Search in Random Graphs

Deterministic Decentralized Search in Random Graphs Deterministic Decentralized Search in Random Graphs Esteban Arcaute 1,, Ning Chen 2,, Ravi Kumar 3, David Liben-Nowell 4,, Mohammad Mahdian 3, Hamid Nazerzadeh 1,, and Ying Xu 1, 1 Stanford University.

More information

Design and characterization of chemical space networks

Design and characterization of chemical space networks Design and characterization of chemical space networks Martin Vogt B-IT Life Science Informatics Rheinische Friedrich-Wilhelms-University Bonn 16 August 2015 Network representations of chemical spaces

More information

Extension of Strongly Regular Graphs

Extension of Strongly Regular Graphs Extension of Strongly Regular Graphs Ralucca Gera Department of Applied Mathematics Naval Postgraduate School, Monterey, CA 93943 email: rgera@nps.edu, phone (831) 656-2206, fax (831) 656-2355 and Jian

More information

Packing triangles in regular tournaments

Packing triangles in regular tournaments Packing triangles in regular tournaments Raphael Yuster Abstract We prove that a regular tournament with n vertices has more than n2 11.5 (1 o(1)) pairwise arc-disjoint directed triangles. On the other

More information

Link Prediction. Eman Badr Mohammed Saquib Akmal Khan

Link Prediction. Eman Badr Mohammed Saquib Akmal Khan Link Prediction Eman Badr Mohammed Saquib Akmal Khan 11-06-2013 Link Prediction Which pair of nodes should be connected? Applications Facebook friend suggestion Recommendation systems Monitoring and controlling

More information

Networks: Lectures 9 & 10 Random graphs

Networks: Lectures 9 & 10 Random graphs Networks: Lectures 9 & 10 Random graphs Heather A Harrington Mathematical Institute University of Oxford HT 2017 What you re in for Week 1: Introduction and basic concepts Week 2: Small worlds Week 3:

More information

6.207/14.15: Networks Lecture 12: Generalized Random Graphs

6.207/14.15: Networks Lecture 12: Generalized Random Graphs 6.207/14.15: Networks Lecture 12: Generalized Random Graphs 1 Outline Small-world model Growing random networks Power-law degree distributions: Rich-Get-Richer effects Models: Uniform attachment model

More information

Modularity in several random graph models

Modularity in several random graph models Modularity in several random graph models Liudmila Ostroumova Prokhorenkova 1,3 Advanced Combinatorics and Network Applications Lab Moscow Institute of Physics and Technology Moscow, Russia Pawe l Pra

More information

The network growth model that considered community information

The network growth model that considered community information 1 1 1 1 CNN The network growth model that considered community information EIJI MIYOSHI, 1 IKUO SUZUKI, 1 MASAHITO YAMAMOTO 1 and MASASHI FURUKAWA 1 There is a study of much network model, but, as for

More information

Spectral densest subgraph and independence number of a graph 1

Spectral densest subgraph and independence number of a graph 1 Spectral densest subgraph and independence number of a graph 1 Reid Andersen (Microsoft Research, One Microsoft Way,Redmond, WA 98052 E-mail: reidan@microsoft.com) Sebastian M. Cioabă 2 (Department of

More information

Spectral Methods for Subgraph Detection

Spectral Methods for Subgraph Detection Spectral Methods for Subgraph Detection Nadya T. Bliss & Benjamin A. Miller Embedded and High Performance Computing Patrick J. Wolfe Statistics and Information Laboratory Harvard University 12 July 2010

More information

Project in Computational Game Theory: Communities in Social Networks

Project in Computational Game Theory: Communities in Social Networks Project in Computational Game Theory: Communities in Social Networks Eldad Rubinstein November 11, 2012 1 Presentation of the Original Paper 1.1 Introduction In this section I present the article [1].

More information

Lecture 5: January 30

Lecture 5: January 30 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 5: January 30 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

Complex networks: an introduction

Complex networks: an introduction Alain Barrat Complex networks: an introduction CPT, Marseille, France ISI, Turin, Italy http://www.cpt.univ-mrs.fr/~barrat http://cxnets.googlepages.com Plan of the lecture I. INTRODUCTION II. I. Networks:

More information

ECS 253 / MAE 253 April 26, Intro to Biological Networks, Motifs, and Model selection/validation

ECS 253 / MAE 253 April 26, Intro to Biological Networks, Motifs, and Model selection/validation ECS 253 / MAE 253 April 26, 2016 Intro to Biological Networks, Motifs, and Model selection/validation Announcement HW2, due May 3 (one week) HW2b, due May 5 HW2a, due May 5. Will be posted on Smartsite.

More information

6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search

6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search 6.207/14.15: Networks Lecture 7: Search on Networks: Navigation and Web Search Daron Acemoglu and Asu Ozdaglar MIT September 30, 2009 1 Networks: Lecture 7 Outline Navigation (or decentralized search)

More information

Dominator Colorings and Safe Clique Partitions

Dominator Colorings and Safe Clique Partitions Dominator Colorings and Safe Clique Partitions Ralucca Gera, Craig Rasmussen Naval Postgraduate School Monterey, CA 994, USA {rgera,ras}@npsedu and Steve Horton United States Military Academy West Point,

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

The Trouble with Community Detection

The Trouble with Community Detection The Trouble with Community Detection Aaron Clauset Santa Fe Institute 7 April 2010 Nonlinear Dynamics of Networks Workshop U. Maryland, College Park Thanks to National Science Foundation REU Program James

More information

Stability and topology of scale-free networks under attack and defense strategies

Stability and topology of scale-free networks under attack and defense strategies Stability and topology of scale-free networks under attack and defense strategies Lazaros K. Gallos, Reuven Cohen 2, Panos Argyrakis, Armin Bunde 3, and Shlomo Havlin 2 Department of Physics, University

More information

Consistency Under Sampling of Exponential Random Graph Models

Consistency Under Sampling of Exponential Random Graph Models Consistency Under Sampling of Exponential Random Graph Models Cosma Shalizi and Alessandro Rinaldo Summary by: Elly Kaizar Remember ERGMs (Exponential Random Graph Models) Exponential family models Sufficient

More information

Graph Detection and Estimation Theory

Graph Detection and Estimation Theory Introduction Detection Estimation Graph Detection and Estimation Theory (and algorithms, and applications) Patrick J. Wolfe Statistics and Information Sciences Laboratory (SISL) School of Engineering and

More information

Applications of the Lopsided Lovász Local Lemma Regarding Hypergraphs

Applications of the Lopsided Lovász Local Lemma Regarding Hypergraphs Regarding Hypergraphs Ph.D. Dissertation Defense April 15, 2013 Overview The Local Lemmata 2-Coloring Hypergraphs with the Original Local Lemma Counting Derangements with the Lopsided Local Lemma Lopsided

More information

The weighted random graph model

The weighted random graph model The weighted random graph model To cite this article: Diego Garlaschelli 2009 New J. Phys. 11 073005 View the article online for updates and enhancements. Related content - Analytical maximum-likelihood

More information

arxiv:physics/ v1 9 Jun 2006

arxiv:physics/ v1 9 Jun 2006 Weighted Networ of Chinese Nature Science Basic Research Jian-Guo Liu, Zhao-Guo Xuan, Yan-Zhong Dang, Qiang Guo 2, and Zhong-Tuo Wang Institute of System Engineering, Dalian University of Technology, Dalian

More information

Mining of Massive Datasets Jure Leskovec, AnandRajaraman, Jeff Ullman Stanford University

Mining of Massive Datasets Jure Leskovec, AnandRajaraman, Jeff Ullman Stanford University Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit

More information

Supporting Statistical Hypothesis Testing Over Graphs

Supporting Statistical Hypothesis Testing Over Graphs Supporting Statistical Hypothesis Testing Over Graphs Jennifer Neville Departments of Computer Science and Statistics Purdue University (joint work with Tina Eliassi-Rad, Brian Gallagher, Sergey Kirshner,

More information

A LINE GRAPH as a model of a social network

A LINE GRAPH as a model of a social network A LINE GRAPH as a model of a social networ Małgorzata Krawczy, Lev Muchni, Anna Mańa-Krasoń, Krzysztof Kułaowsi AGH Kraów Stern School of Business of NY University outline - ideas, definitions, milestones

More information

CS224W: Social and Information Network Analysis

CS224W: Social and Information Network Analysis CS224W: Social and Information Network Analysis Reaction Paper Adithya Rao, Gautam Kumar Parai, Sandeep Sripada Keywords: Self-similar networks, fractality, scale invariance, modularity, Kronecker graphs.

More information

Kristina Lerman USC Information Sciences Institute

Kristina Lerman USC Information Sciences Institute Rethinking Network Structure Kristina Lerman USC Information Sciences Institute Università della Svizzera Italiana, December 16, 2011 Measuring network structure Central nodes Community structure Strength

More information

Detection of core-periphery structure in networks by 3-tuple motifs

Detection of core-periphery structure in networks by 3-tuple motifs 1 Detection of core-periphery structure in networks by 3-tuple motifs Chuang Ma, Bing-Bing Xiang, Hai-Feng Zhang, Han-Shuang Chen, and Michael Small arxiv:1705.04062v1 [physics.soc-ph] 11 May 2017 Abstract

More information

arxiv: v1 [physics.soc-ph] 6 Nov 2013

arxiv: v1 [physics.soc-ph] 6 Nov 2013 arxiv:1311.1484v1 [physics.soc-ph] 6 Nov 213 Regional properties of global communication as reflected in aggregated Twitter data Zsófia Kallus, Norbert Barankai, Dániel Kondor, László Dobos, Tamás Hanyecz,

More information

Causality and communities in neural networks

Causality and communities in neural networks Causality and communities in neural networks Leonardo Angelini, Daniele Marinazzo, Mario Pellicoro, Sebastiano Stramaglia TIRES-Center for Signal Detection and Processing - Università di Bari, Bari, Italy

More information

Random Lifts of Graphs

Random Lifts of Graphs 27th Brazilian Math Colloquium, July 09 Plan of this talk A brief introduction to the probabilistic method. A quick review of expander graphs and their spectrum. Lifts, random lifts and their properties.

More information

Undirected Graphical Models

Undirected Graphical Models Undirected Graphical Models 1 Conditional Independence Graphs Let G = (V, E) be an undirected graph with vertex set V and edge set E, and let A, B, and C be subsets of vertices. We say that C separates

More information

Source Locating of Spreading Dynamics in Temporal Networks

Source Locating of Spreading Dynamics in Temporal Networks Source Locating of Spreading Dynamics in Temporal Networks Qiangjuan Huang School of Science National University of Defense Technology Changsha, Hunan, China qiangjuanhuang@foxmail.com «Supervised by Professor

More information

Networks as a tool for Complex systems

Networks as a tool for Complex systems Complex Networs Networ is a structure of N nodes and 2M lins (or M edges) Called also graph in Mathematics Many examples of networs Internet: nodes represent computers lins the connecting cables Social

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

The number of edge colorings with no monochromatic cliques

The number of edge colorings with no monochromatic cliques The number of edge colorings with no monochromatic cliques Noga Alon József Balogh Peter Keevash Benny Sudaov Abstract Let F n, r, ) denote the maximum possible number of distinct edge-colorings of a simple

More information

Data science with multilayer networks: Mathematical foundations and applications

Data science with multilayer networks: Mathematical foundations and applications Data science with multilayer networks: Mathematical foundations and applications CDSE Days University at Buffalo, State University of New York Monday April 9, 2018 Dane Taylor Assistant Professor of Mathematics

More information

Machine Learning and Modeling for Social Networks

Machine Learning and Modeling for Social Networks Machine Learning and Modeling for Social Networks Olivia Woolley Meza, Izabela Moise, Nino Antulov-Fatulin, Lloyd Sanders 1 Spreading and Influence on social networks Computational Social Science D-GESS

More information

Social Networks- Stanley Milgram (1967)

Social Networks- Stanley Milgram (1967) Complex Networs Networ is a structure of N nodes and 2M lins (or M edges) Called also graph in Mathematics Many examples of networs Internet: nodes represent computers lins the connecting cables Social

More information

Extremal Graphs Having No Stable Cutsets

Extremal Graphs Having No Stable Cutsets Extremal Graphs Having No Stable Cutsets Van Bang Le Institut für Informatik Universität Rostock Rostock, Germany le@informatik.uni-rostock.de Florian Pfender Department of Mathematics and Statistics University

More information

CSI 445/660 Part 6 (Centrality Measures for Networks) 6 1 / 68

CSI 445/660 Part 6 (Centrality Measures for Networks) 6 1 / 68 CSI 445/660 Part 6 (Centrality Measures for Networks) 6 1 / 68 References 1 L. Freeman, Centrality in Social Networks: Conceptual Clarification, Social Networks, Vol. 1, 1978/1979, pp. 215 239. 2 S. Wasserman

More information

Modeling Dynamic Evolution of Online Friendship Network

Modeling Dynamic Evolution of Online Friendship Network Commun. Theor. Phys. 58 (2012) 599 603 Vol. 58, No. 4, October 15, 2012 Modeling Dynamic Evolution of Online Friendship Network WU Lian-Ren ( ) 1,2, and YAN Qiang ( Ö) 1 1 School of Economics and Management,

More information

On the Complexity of the Minimum Independent Set Partition Problem

On the Complexity of the Minimum Independent Set Partition Problem On the Complexity of the Minimum Independent Set Partition Problem T-H. Hubert Chan 1, Charalampos Papamanthou 2, and Zhichao Zhao 1 1 Department of Computer Science the University of Hong Kong {hubert,zczhao}@cs.hku.hk

More information

On Node-differentially Private Algorithms for Graph Statistics

On Node-differentially Private Algorithms for Graph Statistics On Node-differentially Private Algorithms for Graph Statistics Om Dipakbhai Thakkar August 26, 2015 Abstract In this report, we start by surveying three papers on node differential privacy. First, we look

More information

Degree Distribution: The case of Citation Networks

Degree Distribution: The case of Citation Networks Network Analysis Degree Distribution: The case of Citation Networks Papers (in almost all fields) refer to works done earlier on same/related topics Citations A network can be defined as Each node is

More information

Overlapping Communities

Overlapping Communities Overlapping Communities Davide Mottin HassoPlattner Institute Graph Mining course Winter Semester 2017 Acknowledgements Most of this lecture is taken from: http://web.stanford.edu/class/cs224w/slides GRAPH

More information

Chapter 9: Relations Relations

Chapter 9: Relations Relations Chapter 9: Relations 9.1 - Relations Definition 1 (Relation). Let A and B be sets. A binary relation from A to B is a subset R A B, i.e., R is a set of ordered pairs where the first element from each pair

More information

Spectral Analysis of k-balanced Signed Graphs

Spectral Analysis of k-balanced Signed Graphs Spectral Analysis of k-balanced Signed Graphs Leting Wu 1, Xiaowei Ying 1, Xintao Wu 1, Aidong Lu 1 and Zhi-Hua Zhou 2 1 University of North Carolina at Charlotte, USA, {lwu8,xying, xwu,alu1}@uncc.edu

More information

This section is an introduction to the basic themes of the course.

This section is an introduction to the basic themes of the course. Chapter 1 Matrices and Graphs 1.1 The Adjacency Matrix This section is an introduction to the basic themes of the course. Definition 1.1.1. A simple undirected graph G = (V, E) consists of a non-empty

More information

Peter J. Dukes. 22 August, 2012

Peter J. Dukes. 22 August, 2012 22 August, 22 Graph decomposition Let G and H be graphs on m n vertices. A decompostion of G into copies of H is a collection {H i } of subgraphs of G such that each H i = H, and every edge of G belongs

More information

Co-k-plex vertex partitions

Co-k-plex vertex partitions Co-k-plex vertex partitions Benjamin McClosky John D. Arellano Illya V. Hicks November 7, 2012 Abstract This paper studies co-k-plex vertex partitions and more specifically co-2-plex vertex partitions.

More information

Testing Equality in Communication Graphs

Testing Equality in Communication Graphs Electronic Colloquium on Computational Complexity, Report No. 86 (2016) Testing Equality in Communication Graphs Noga Alon Klim Efremenko Benny Sudakov Abstract Let G = (V, E) be a connected undirected

More information

Shlomo Havlin } Anomalous Transport in Scale-free Networks, López, et al,prl (2005) Bar-Ilan University. Reuven Cohen Tomer Kalisky Shay Carmi

Shlomo Havlin } Anomalous Transport in Scale-free Networks, López, et al,prl (2005) Bar-Ilan University. Reuven Cohen Tomer Kalisky Shay Carmi Anomalous Transport in Complex Networs Reuven Cohen Tomer Kalisy Shay Carmi Edoardo Lopez Gene Stanley Shlomo Havlin } } Bar-Ilan University Boston University Anomalous Transport in Scale-free Networs,

More information

1 Random graph models

1 Random graph models 1 Random graph models A large part of understanding what structural patterns in a network are interesting depends on having an appropriate reference point by which to distinguish interesting from non-interesting.

More information

Multislice community detection

Multislice community detection Multislice community detection P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, J.-P. Onnela Jukka-Pekka JP Onnela Harvard University NetSci2010, MIT; May 13, 2010 Outline (1) Background (2) Multislice

More information

CS281A/Stat241A Lecture 19

CS281A/Stat241A Lecture 19 CS281A/Stat241A Lecture 19 p. 1/4 CS281A/Stat241A Lecture 19 Junction Tree Algorithm Peter Bartlett CS281A/Stat241A Lecture 19 p. 2/4 Announcements My office hours: Tuesday Nov 3 (today), 1-2pm, in 723

More information

Network Science (overview, part 1)

Network Science (overview, part 1) Network Science (overview, part 1) Ralucca Gera, Applied Mathematics Dept. Naval Postgraduate School Monterey, California rgera@nps.edu Excellence Through Knowledge Overview Current research Section 1:

More information

Chromatic number, clique subdivisions, and the conjectures of

Chromatic number, clique subdivisions, and the conjectures of Chromatic number, clique subdivisions, and the conjectures of Hajós and Erdős-Fajtlowicz Jacob Fox Choongbum Lee Benny Sudakov MIT UCLA UCLA Hajós conjecture Hajós conjecture Conjecture: (Hajós 1961) If

More information

Near-domination in graphs

Near-domination in graphs Near-domination in graphs Bruce Reed Researcher, Projet COATI, INRIA and Laboratoire I3S, CNRS France, and Visiting Researcher, IMPA, Brazil Alex Scott Mathematical Institute, University of Oxford, Oxford

More information

Communities Via Laplacian Matrices. Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices

Communities Via Laplacian Matrices. Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices Communities Via Laplacian Matrices Degree, Adjacency, and Laplacian Matrices Eigenvectors of Laplacian Matrices The Laplacian Approach As with betweenness approach, we want to divide a social graph into

More information

THE NUMBER OF INDEPENDENT DOMINATING SETS OF LABELED TREES. Changwoo Lee. 1. Introduction

THE NUMBER OF INDEPENDENT DOMINATING SETS OF LABELED TREES. Changwoo Lee. 1. Introduction Commun. Korean Math. Soc. 18 (2003), No. 1, pp. 181 192 THE NUMBER OF INDEPENDENT DOMINATING SETS OF LABELED TREES Changwoo Lee Abstract. We count the numbers of independent dominating sets of rooted labeled

More information

I N S T I T U T F Ü R I N F O R M A T I K. Local Density. Sven Kosub T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

I N S T I T U T F Ü R I N F O R M A T I K. Local Density. Sven Kosub T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N T U M I N S T I T U T F Ü R I N F O R M A T I K Local Density Sven Kosub TUM-I0421 Dezember 2004 T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N TUM-INFO-12-I0421-0/1.-FI Alle Rechte vorbehalten

More information

ECS 253 / MAE 253, Lecture 15 May 17, I. Probability generating function recap

ECS 253 / MAE 253, Lecture 15 May 17, I. Probability generating function recap ECS 253 / MAE 253, Lecture 15 May 17, 2016 I. Probability generating function recap Part I. Ensemble approaches A. Master equations (Random graph evolution, cluster aggregation) B. Network configuration

More information

Learning latent structure in complex networks

Learning latent structure in complex networks Learning latent structure in complex networks Lars Kai Hansen www.imm.dtu.dk/~lkh Current network research issues: Social Media Neuroinformatics Machine learning Joint work with Morten Mørup, Sune Lehmann

More information

Chaos, Complexity, and Inference (36-462)

Chaos, Complexity, and Inference (36-462) Chaos, Complexity, and Inference (36-462) Lecture 21 Cosma Shalizi 3 April 2008 Models of Networks, with Origin Myths Erdős-Rényi Encore Erdős-Rényi with Node Types Watts-Strogatz Small World Graphs Exponential-Family

More information

Understanding spatial connectivity of individuals with non-uniform population density

Understanding spatial connectivity of individuals with non-uniform population density 367, 3321 3329 doi:10.1098/rsta.2009.0089 Understanding spatial connectivity of individuals with non-uniform population density BY PU WANG 1,2 AND MARTA C. GONZÁLEZ 1, * 1 Center for Complex Network Research,

More information

The super line graph L 2

The super line graph L 2 Discrete Mathematics 206 (1999) 51 61 www.elsevier.com/locate/disc The super line graph L 2 Jay S. Bagga a;, Lowell W. Beineke b, Badri N. Varma c a Department of Computer Science, College of Science and

More information

RaRE: Social Rank Regulated Large-scale Network Embedding

RaRE: Social Rank Regulated Large-scale Network Embedding RaRE: Social Rank Regulated Large-scale Network Embedding Authors: Yupeng Gu 1, Yizhou Sun 1, Yanen Li 2, Yang Yang 3 04/26/2018 The Web Conference, 2018 1 University of California, Los Angeles 2 Snapchat

More information

More on NP and Reductions

More on NP and Reductions Indian Institute of Information Technology Design and Manufacturing, Kancheepuram Chennai 600 127, India An Autonomous Institute under MHRD, Govt of India http://www.iiitdm.ac.in COM 501 Advanced Data

More information

Móstoles, Spain. Keywords: complex networks, dual graph, line graph, line digraph.

Móstoles, Spain. Keywords: complex networks, dual graph, line graph, line digraph. Int. J. Complex Systems in Science vol. 1(2) (2011), pp. 100 106 Line graphs for directed and undirected networks: An structural and analytical comparison Regino Criado 1, Julio Flores 1, Alejandro García

More information