The chromatic number of random regular graphs

Size: px
Start display at page:

Download "The chromatic number of random regular graphs"

Transcription

1 The chromatic number of random regular graphs Xavier Pérez Giménez Stochastics Numerics Seminar

2 Models of random graphs Erdős & Rényi classic models (G n,p, G n,m ) Fixed degree sequence Regular graphs (G n,d ) Drawn u.a.r. from the set of d-regular graphs on n vertices. Asymptotic statements as n. (Assume dn is even.)

3 The problem Chromatic number: χ(g) = 3 What is χ(g n,d )?

4 Some results Thm (Molloy & Reed 1992) Let d be constant. If q(1 1/q) d/2 < 1, then a.a.s. χ(g n,d ) > q. Thm (Frieze & Łuczak 1992) Let d < n 1/3 ɛ. Then a.a.s. χ(g n,d ) = Thm (Cooper, Frieze, Reed & Riordan 2002) Same for d n 1 ɛ. ( ) d 2 log d + O d log log d. log 2 d Thm (Krivelevich, Sudakov, Vu & Wormald 2001) Let n 6/7+ɛ d 0.9n. Then a.a.s. χ(g n,d ) n 2 log n/(n d) d.

5 Some results Thm (Ben-Shimon & Krivelevich 2009) For d = o(n 1/5 ), χ(g n,d ) is a.a.s. two-point concentrated. Thm (Achlioptas & Moore 2004) (For fixed d 3.) Let k be the smallest integer s.t. d < 2(k 1) log(k 1). Then a.a.s. χ(g n,d ) {k 1, k, k + 1}. If moreover d > (2k 3) log(k 1), then a.a.s. χ(g n,d ) {k, k + 1}. Thm (Shi & Wormald 2007) A.a.s. d , 8, 9 10 χ(g n,d ) 3 {3, 4} 4 {4, 5} {5, 6}

6 Some results Thm (Díaz, Kaporis, Kemkes, Kirousis, P.G. & Wormald 2009) A.a.s. χ(g n,5 ) = 3... unless there are kangaroos on the moon. Thm (Kemkes, P.G. & Wormald 2010) (For fixed d 3.) Let k be the smallest integer s.t. d < 2(k 1) log(k 1). Then a.a.s. χ(g n,d ) {k 1, k}. If moreover d > 2(k 3) log(k 1), then a.a.s. χ(g n,d ) = k. So e.g. χ(g n,10 ) = 5 and χ(g n,10 6) =

7 The configuration model P n,d G n,d

8 The second moment method Lemma Let X 0 be a discrete random variable (e.g. # of proper colourings). Then P(X > 0) (EX)2 EX 2 Thus, if EX 2 (EX) 2 then a.a.s. X > 0. Problem! EX 2 = Θ ( (EX) 2). Variance is too large! This only shows that X > 0 with probability bounded away from 0.

9 The small subgraph conditioning method Why?? Let Z = (Z 1, Z 2, Z 3,...) be the cycle counts. Law of total variance: VarX = E(Var(X Z )) + Var(E(X Z )) Unexplained / explained variance Thm (Janson 1995; Robinson & Wormald 1992) (i) Let λ 1, λ 2,... 0 and δ 1, δ 2,... 1 with i λ iδ 2 i < ; (ii) Z 1,..., Z k asymptotically indep. Poisson with EZ i λ i ; (iii) E(X[Z 1 ] j1 [Z k ] jk k i=1 (λ i(1 + δ i )) j i ( ; and ) (iv) EX 2 /(EX) 2 exp i λ 2 iδ i. ( Then P(X > 0) exp ) δ i = 1 λ i and [... ] (contiguity)

10 The moments First moment: EX = { (G, C) G P n,d, C = G } P n,d Second moment: { EX 2 (G, C 1, C 2 ) G P n,d, C 1, C 2 = G } = P n,d Joint moments: E(X[Z 1 ] j1 [Z k ] jk ) = { (c 1,..., c k, G, C) } P n,d

11 Asymptotics moment M Polytope D dim(d) = r ( ) r I = D 1 n Z Exact expression: M = T i i I Asymptotic expression: M poly i (n)( F i ) n i I Exponential behaviour: If F i0 F i ( i I) then M ( F i0 ) n. (Global non-linear optimisation) Polynomial factors: M = Θ (n r/2) poly i0 (n)( F i0 ) n (Laplace integration technique/ Saddlepoint method)

12 Asymptotics moment M Polytope D dim(d) = r ( ) r I = D 1 n Z Exact expression: M = T i i I Asymptotic expression: M poly i (n)( F i ) n i I Exponential behaviour: If F i0 F i ( i I) then M ( F i0 ) n. (Global non-linear optimisation) Polynomial factors: M = Θ (n r/2) poly i0 (n)( F i0 ) n (Laplace integration technique/ Saddlepoint method)

13 Asymptotics moment M Polytope D dim(d) = r ( ) r I = D 1 n Z Exact expression: M = T i i I Asymptotic expression: M poly i (n)( F i ) n i I Exponential behaviour: If F i0 F i ( i I) then M ( F i0 ) n. (Global non-linear optimisation) Polynomial factors: M = Θ (n r/2) poly i0 (n)( F i0 ) n (Laplace integration technique/ Saddlepoint method)

14 Asymptotics moment M Polytope D dim(d) = r ( ) r I = D 1 n Z Exact expression: M = T i i I Asymptotic expression: M poly i (n)( F i ) n i I Exponential behaviour: If F i0 F i ( i I) then M ( F i0 ) n. (Global non-linear optimisation) Polynomial factors: M = Θ (n r/2) poly i0 (n)( F i0 ) n (Laplace integration technique/ Saddlepoint method)

15 What about d = 5? We know χ(g n,5 ) {3, 4}. Is it 3? Problem! If X = # of proper 3-colourings, then EX 2 = ω((ex) 2 ). So the second moment method is useless. Idea: Balanced Rainbow 3-Colourings Balanced: n/3 vertices of each colour. Rainbow: No single vertex can legally change colour. (No vertex has mono-chromatic neighbors).

16 It works Thm EX (2πn) 2 ( ) 25 n 24 If no kangaroos... EX (2πn) 2 All other required conditions for the small subgraph conditioning method are satisfied. ( ) 25 n 24

17 Kangaroos on the moon? Maximisation of F in a domain D, dim(d) = 301. We have a local maximum candidate. Is it the global too? We transform the problem (Lagrange multipliers) max D ( F ) max N (F) Good: dim N = 4. Bad: F is implicit. We find max N (F) numerically Fine sweep of the domain (step = 10 4 ). IBM-Mare Nostrum (Barcelona Supercomputing Center): dual 64-bit processor blade nodes, GHz PPC970FX processors.

18 Maximisation of F Ê Òµ µ ¾ ѵ Òµ D R 324, dim D = 301 M R 36, dim M = 13 N R 9, dim N = 4 M(n) R 36, dim M(n) = 9 log F concave in M(n) Æ Å Å Òµ

19 Open Issues Case d = 5. Are there kangaroos on the moon? Close the gap for χ(g n,d ) for general constant d. Can we extend the idea of rainbow balanced colourings? Extend results to some d.

20 Thank you!

3-Coloring of Random Graphs

3-Coloring of Random Graphs 3-Coloring of Random Graphs Josep Díaz 1 UPC 1 Research partially supported by the Future and Emerging Technologies programme of the EU under contract 001907 (DELIS) Coloring problems. Given a graph G

More information

Random regular graphs. Nick Wormald University of Waterloo

Random regular graphs. Nick Wormald University of Waterloo Random regular graphs Nick Wormald University of Waterloo LECTURE 5 Random regular graphs What are they (models) Typical and powerful results Handles for analysis One or two general techniques Some open

More information

On the chromatic number of random d-regular graphs

On the chromatic number of random d-regular graphs On the chromatic number of random d-regular graphs Graeme Kemes Xavier Pérez-Giménez Department of Mathematics Department of Combinatorics and Optimization University of California, San Diego University

More information

The expansion of random regular graphs

The expansion of random regular graphs The expansion of random regular graphs David Ellis Introduction Our aim is now to show that for any d 3, almost all d-regular graphs on {1, 2,..., n} have edge-expansion ratio at least c d d (if nd is

More information

The Chromatic Number of Random Regular Graphs

The Chromatic Number of Random Regular Graphs The Chromatic Number of Random Regular Graphs Dimitris Achlioptas 1 and Cristopher Moore 2 1 Microsoft Research, Redmond, WA 98052, USA optas@microsoft.com 2 University of New Mexico, NM 87131, USA moore@cs.unm.edu

More information

Small subgraphs of random regular graphs

Small subgraphs of random regular graphs Discrete Mathematics 307 (2007 1961 1967 Note Small subgraphs of random regular graphs Jeong Han Kim a,b, Benny Sudakov c,1,vanvu d,2 a Theory Group, Microsoft Research, Redmond, WA 98052, USA b Department

More information

Notes 6 : First and second moment methods

Notes 6 : First and second moment methods Notes 6 : First and second moment methods Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Roc, Sections 2.1-2.3]. Recall: THM 6.1 (Markov s inequality) Let X be a non-negative

More information

A = A U. U [n] P(A U ). n 1. 2 k(n k). k. k=1

A = A U. U [n] P(A U ). n 1. 2 k(n k). k. k=1 Lecture I jacques@ucsd.edu Notation: Throughout, P denotes probability and E denotes expectation. Denote (X) (r) = X(X 1)... (X r + 1) and let G n,p denote the Erdős-Rényi model of random graphs. 10 Random

More information

Lecture 8: February 8

Lecture 8: February 8 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 8: February 8 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

The concentration of the chromatic number of random graphs

The concentration of the chromatic number of random graphs The concentration of the chromatic number of random graphs Noga Alon Michael Krivelevich Abstract We prove that for every constant δ > 0 the chromatic number of the random graph G(n, p) with p = n 1/2

More information

Colouring powers of graphs with one cycle length forbidden

Colouring powers of graphs with one cycle length forbidden Colouring powers of graphs with one cycle length forbidden Ross J. Kang Radboud University Nijmegen CWI Networks & Optimization seminar 1/2017 Joint work with François Pirot. Example 1: ad hoc frequency

More information

On the chromatic number of random graphs with a fixed degree sequence

On the chromatic number of random graphs with a fixed degree sequence On the chromatic number of random graphs with a fixed degree sequence Alan Frieze Michael Krivelevich Cliff Smyth December 13, 006 Abstract Let d = 1 d 1 d d n be a non-decreasing sequence of n positive

More information

Subgraphs of random graphs with specified degrees

Subgraphs of random graphs with specified degrees Proceedings of the International Congress of Mathematicians Hyderabad, India, 2010 Subgraphs of random graphs with specified degrees Brendan D. McKay Abstract. If a graph is chosen uniformly at random

More information

Asymptotic Statistics-III. Changliang Zou

Asymptotic Statistics-III. Changliang Zou Asymptotic Statistics-III Changliang Zou The multivariate central limit theorem Theorem (Multivariate CLT for iid case) Let X i be iid random p-vectors with mean µ and and covariance matrix Σ. Then n (

More information

CS5314 Randomized Algorithms. Lecture 18: Probabilistic Method (De-randomization, Sample-and-Modify)

CS5314 Randomized Algorithms. Lecture 18: Probabilistic Method (De-randomization, Sample-and-Modify) CS5314 Randomized Algorithms Lecture 18: Probabilistic Method (De-randomization, Sample-and-Modify) 1 Introduce two topics: De-randomize by conditional expectation provides a deterministic way to construct

More information

Lecture 7: February 6

Lecture 7: February 6 CS271 Randomness & Computation Spring 2018 Instructor: Alistair Sinclair Lecture 7: February 6 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They

More information

< k 2n. 2 1 (n 2). + (1 p) s) N (n < 1

< k 2n. 2 1 (n 2). + (1 p) s) N (n < 1 List of Problems jacques@ucsd.edu Those question with a star next to them are considered slightly more challenging. Problems 9, 11, and 19 from the book The probabilistic method, by Alon and Spencer. Question

More information

The Probabilistic Method

The Probabilistic Method The Probabilistic Method In Graph Theory Ehssan Khanmohammadi Department of Mathematics The Pennsylvania State University February 25, 2010 What do we mean by the probabilistic method? Why use this method?

More information

Assignment 2 : Probabilistic Methods

Assignment 2 : Probabilistic Methods Assignment 2 : Probabilistic Methods jverstra@math Question 1. Let d N, c R +, and let G n be an n-vertex d-regular graph. Suppose that vertices of G n are selected independently with probability p, where

More information

Mixing time and diameter in random graphs

Mixing time and diameter in random graphs October 5, 2009 Based on joint works with: Asaf Nachmias, and Jian Ding, Eyal Lubetzky and Jeong-Han Kim. Background The mixing time of the lazy random walk on a graph G is T mix (G) = T mix (G, 1/4) =

More information

Equitable coloring of random graphs

Equitable coloring of random graphs Michael Krivelevich 1, Balázs Patkós 2 1 Tel Aviv University, Tel Aviv, Israel 2 Central European University, Budapest, Hungary Phenomena in High Dimensions, Samos 2007 A set of vertices U V (G) is said

More information

Susceptible-Infective-Removed Epidemics and Erdős-Rényi random

Susceptible-Infective-Removed Epidemics and Erdős-Rényi random Susceptible-Infective-Removed Epidemics and Erdős-Rényi random graphs MSR-Inria Joint Centre October 13, 2015 SIR epidemics: the Reed-Frost model Individuals i [n] when infected, attempt to infect all

More information

THE DIAMETER OF WEIGHTED RANDOM GRAPHS. By Hamed Amini and Marc Lelarge EPFL and INRIA

THE DIAMETER OF WEIGHTED RANDOM GRAPHS. By Hamed Amini and Marc Lelarge EPFL and INRIA Submitted to the Annals of Applied Probability arxiv: math.pr/1112.6330 THE DIAMETER OF WEIGHTED RANDOM GRAPHS By Hamed Amini and Marc Lelarge EPFL and INRIA In this paper we study the impact of random

More information

Loose Hamilton Cycles in Random k-uniform Hypergraphs

Loose Hamilton Cycles in Random k-uniform Hypergraphs Loose Hamilton Cycles in Random k-uniform Hypergraphs Andrzej Dudek and Alan Frieze Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA 1513 USA Abstract In the random k-uniform

More information

A simple branching process approach to the phase transition in G n,p

A simple branching process approach to the phase transition in G n,p A simple branching process approach to the phase transition in G n,p Béla Bollobás Department of Pure Mathematics and Mathematical Statistics Wilberforce Road, Cambridge CB3 0WB, UK b.bollobas@dpmms.cam.ac.uk

More information

The number of Euler tours of random directed graphs

The number of Euler tours of random directed graphs The number of Euler tours of random directed graphs Páidí Creed School of Mathematical Sciences Queen Mary, University of London United Kingdom P.Creed@qmul.ac.uk Mary Cryan School of Informatics University

More information

Phase Transitions in Random Discrete Structures

Phase Transitions in Random Discrete Structures Institut für Optimierung und Diskrete Mathematik Phase Transition in Thermodynamics The phase transition deals with a sudden change in the properties of an asymptotically large structure by altering critical

More information

Induced subgraphs with many repeated degrees

Induced subgraphs with many repeated degrees Induced subgraphs with many repeated degrees Yair Caro Raphael Yuster arxiv:1811.071v1 [math.co] 17 Nov 018 Abstract Erdős, Fajtlowicz and Staton asked for the least integer f(k such that every graph with

More information

Phase Transitions in k-colorability of Random Graphs

Phase Transitions in k-colorability of Random Graphs Phase Transitions in -Colorability of Random Graphs Cris Moore Santa Fe Institute University of New Mexico Anna Olson Carnegie Mellon University August 15, 2008 Abstract We used the first- and second-moment

More information

The diameter and mixing time of critical random graphs.

The diameter and mixing time of critical random graphs. The diameter and mixing time of critical random graphs. March 14, 2007 Joint work with: Asaf Nachmias. Background The Erdos and Rényi random graph G(n, p) is obtained from the complete graph on n vertices

More information

Course Notes. Part IV. Probabilistic Combinatorics. Algorithms

Course Notes. Part IV. Probabilistic Combinatorics. Algorithms Course Notes Part IV Probabilistic Combinatorics and Algorithms J. A. Verstraete Department of Mathematics University of California San Diego 9500 Gilman Drive La Jolla California 92037-0112 jacques@ucsd.edu

More information

Independence and chromatic number (and random k-sat): Sparse Case. Dimitris Achlioptas Microsoft

Independence and chromatic number (and random k-sat): Sparse Case. Dimitris Achlioptas Microsoft Independence and chromatic number (and random k-sat): Sparse Case Dimitris Achlioptas Microsoft Random graphs W.h.p.: with probability that tends to 1 as n. Hamiltonian cycle Let τ 2 be the moment all

More information

Almost all graphs with 2.522n edges are not 3-colorable

Almost all graphs with 2.522n edges are not 3-colorable Almost all graphs with 2.522n edges are not 3-colorable Dimitris Achlioptas optas@cs.toronto.edu Michael Molloy molloy@cs.toronto.edu Department of Computer Science University of Toronto Toronto, Ontario

More information

Networks: Lectures 9 & 10 Random graphs

Networks: Lectures 9 & 10 Random graphs Networks: Lectures 9 & 10 Random graphs Heather A Harrington Mathematical Institute University of Oxford HT 2017 What you re in for Week 1: Introduction and basic concepts Week 2: Small worlds Week 3:

More information

Short cycles in random regular graphs

Short cycles in random regular graphs Short cycles in random regular graphs Brendan D. McKay Department of Computer Science Australian National University Canberra ACT 0200, Australia bdm@cs.anu.ed.au Nicholas C. Wormald and Beata Wysocka

More information

Lecture 4: Phase Transition in Random Graphs

Lecture 4: Phase Transition in Random Graphs Lecture 4: Phase Transition in Random Graphs Radu Balan February 21, 2017 Distributions Today we discuss about phase transition in random graphs. Recall on the Erdöd-Rényi class G n,p of random graphs,

More information

Random Graphs. EECS 126 (UC Berkeley) Spring 2019

Random Graphs. EECS 126 (UC Berkeley) Spring 2019 Random Graphs EECS 126 (UC Bereley) Spring 2019 1 Introduction In this note, we will briefly introduce the subject of random graphs, also nown as Erdös-Rényi random graphs. Given a positive integer n and

More information

The typical structure of sparse K r+1 -free graphs

The typical structure of sparse K r+1 -free graphs The typical structure of sparse K r+1 -free graphs Lutz Warnke University of Cambridge (joint work with József Balogh, Robert Morris, and Wojciech Samotij) H-free graphs / Turán s theorem Definition Let

More information

Generation and properties of random graphs and analysis of randomized algorithms

Generation and properties of random graphs and analysis of randomized algorithms Generation and properties of random graphs and analysis of randomized algorithms by Pu Gao A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor

More information

A Characterization of Graphs with Fractional Total Chromatic Number Equal to + 2

A Characterization of Graphs with Fractional Total Chromatic Number Equal to + 2 A Characterization of Graphs with Fractional Total Chromatic Number Equal to + Takehiro Ito a, William. S. Kennedy b, Bruce A. Reed c a Graduate School of Information Sciences, Tohoku University, Aoba-yama

More information

Colorings of uniform hypergraphs with large girth

Colorings of uniform hypergraphs with large girth Colorings of uniform hypergraphs with large girth Andrey Kupavskii, Dmitry Shabanov Lomonosov Moscow State University, Moscow Institute of Physics and Technology, Yandex SIAM conference on Discrete Mathematics

More information

Coloring Simple Hypergraphs

Coloring Simple Hypergraphs Department of Mathematics, Statistics and Computer Science University of Illinois Chicago May 13, 2011 A Puzzle Problem Let n 2 and suppose that S [n] [n] with S 2n 1. Then some three points in S determine

More information

RANDOM GRAPHS BY JOEL SPENCER. as n.

RANDOM GRAPHS BY JOEL SPENCER. as n. RANDOM GRAHS BY JOEL SENCER Notation 1. We say fn gn as n if fx gx as n. Notation 2. We say fn gn as n if fn gn 1 as n Notation 3. We say fn = ogn as n if fn gn 0 as n Notation 4. n k := nn 1n 2... n k

More information

An asymptotically tight bound on the adaptable chromatic number

An asymptotically tight bound on the adaptable chromatic number An asymptotically tight bound on the adaptable chromatic number Michael Molloy and Giovanna Thron University of Toronto Department of Computer Science 0 King s College Road Toronto, ON, Canada, M5S 3G

More information

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Theorems. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Theorems Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

A sequence of triangle-free pseudorandom graphs

A sequence of triangle-free pseudorandom graphs A sequence of triangle-free pseudorandom graphs David Conlon Abstract A construction of Alon yields a sequence of highly pseudorandom triangle-free graphs with edge density significantly higher than one

More information

Regular induced subgraphs of a random graph

Regular induced subgraphs of a random graph Regular induced subgraphs of a random graph Michael Krivelevich Benny Sudaov Nicholas Wormald Abstract An old problem of Erdős, Fajtlowicz and Staton ass for the order of a largest induced regular subgraph

More information

Combinatorial Rigidity and the Molecular Conjecture

Combinatorial Rigidity and the Molecular Conjecture Page 1 of 65 Combinatorial Rigidity and the Molecular Conjecture Brigitte Servatius Worcester Polytechnic Institute The Proof of the Product Rule To derivate a product as defined The diff rence quotient

More information

Random Geometric Graphs

Random Geometric Graphs Random Geometric Graphs Mathew D. Penrose University of Bath, UK Networks: stochastic models for populations and epidemics ICMS, Edinburgh September 2011 1 MODELS of RANDOM GRAPHS Erdos-Renyi G(n, p):

More information

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015

Part IA Probability. Definitions. Based on lectures by R. Weber Notes taken by Dexter Chua. Lent 2015 Part IA Probability Definitions Based on lectures by R. Weber Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Coloring Simple Hypergraphs

Coloring Simple Hypergraphs Department of Mathematics, Statistics and Computer Science University of Illinois Chicago August 28, 2010 Problem Let n 2 and suppose that S [n] [n] with S 2n 1. Then some three points in S determine a

More information

HAMILTON CYCLES IN RANDOM REGULAR DIGRAPHS

HAMILTON CYCLES IN RANDOM REGULAR DIGRAPHS HAMILTON CYCLES IN RANDOM REGULAR DIGRAPHS Colin Cooper School of Mathematical Sciences, Polytechnic of North London, London, U.K. and Alan Frieze and Michael Molloy Department of Mathematics, Carnegie-Mellon

More information

Generating and counting Hamilton cycles in random regular graphs

Generating and counting Hamilton cycles in random regular graphs Generating and counting Hamilton cycles in random regular graphs Alan Frieze Mark Jerrum Michael Molloy Robert Robinson Nicholas Wormald 1 Introduction This paper deals with computational problems involving

More information

Parameter estimators of sparse random intersection graphs with thinned communities

Parameter estimators of sparse random intersection graphs with thinned communities Parameter estimators of sparse random intersection graphs with thinned communities Lasse Leskelä Aalto University Johan van Leeuwaarden Eindhoven University of Technology Joona Karjalainen Aalto University

More information

Chromatic number, clique subdivisions, and the conjectures of

Chromatic number, clique subdivisions, and the conjectures of Chromatic number, clique subdivisions, and the conjectures of Hajós and Erdős-Fajtlowicz Jacob Fox Choongbum Lee Benny Sudakov MIT UCLA UCLA Hajós conjecture Hajós conjecture Conjecture: (Hajós 1961) If

More information

8.2 RANDOM GRAPHS AND ASYMPTOTICS

8.2 RANDOM GRAPHS AND ASYMPTOTICS 8.2 RANDOM GRAPHS AND ASYMPTOTICS 1201min 2 15 2004 Nicholas Wormald, University of Waterloo 8.2.1 Random Graph Models 8.2.2 Threshold Functions 8.2.3 Small Subgraphs and the Degree Sequence 8.2.4 The

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Instructor: Farid Alizadeh Scribe: Anton Riabov 10/08/2001 1 Overview We continue studying the maximum eigenvalue SDP, and generalize

More information

Computing the Independence Polynomial: from the Tree Threshold Down to the Roots

Computing the Independence Polynomial: from the Tree Threshold Down to the Roots 1 / 16 Computing the Independence Polynomial: from the Tree Threshold Down to the Roots Nick Harvey 1 Piyush Srivastava 2 Jan Vondrák 3 1 UBC 2 Tata Institute 3 Stanford SODA 2018 The Lovász Local Lemma

More information

Proving the central limit theorem

Proving the central limit theorem SOR3012: Stochastic Processes Proving the central limit theorem Gareth Tribello March 3, 2019 1 Purpose In the lectures and exercises we have learnt about the law of large numbers and the central limit

More information

Bounds on the generalised acyclic chromatic numbers of bounded degree graphs

Bounds on the generalised acyclic chromatic numbers of bounded degree graphs Bounds on the generalised acyclic chromatic numbers of bounded degree graphs Catherine Greenhill 1, Oleg Pikhurko 2 1 School of Mathematics, The University of New South Wales, Sydney NSW Australia 2052,

More information

ECE534, Spring 2018: Solutions for Problem Set #3

ECE534, Spring 2018: Solutions for Problem Set #3 ECE534, Spring 08: Solutions for Problem Set #3 Jointly Gaussian Random Variables and MMSE Estimation Suppose that X, Y are jointly Gaussian random variables with µ X = µ Y = 0 and σ X = σ Y = Let their

More information

Note on the chromatic number of the space

Note on the chromatic number of the space Note on the chromatic number of the space Radoš Radoičić Géza Tóth Abstract The chromatic number of the space is the minimum number of colors needed to color the points of the space so that every two points

More information

arxiv: v1 [math.co] 17 Dec 2007

arxiv: v1 [math.co] 17 Dec 2007 arxiv:07.79v [math.co] 7 Dec 007 The copies of any permutation pattern are asymptotically normal Milós Bóna Department of Mathematics University of Florida Gainesville FL 36-805 bona@math.ufl.edu Abstract

More information

How many randomly colored edges make a randomly colored dense graph rainbow hamiltonian or rainbow connected?

How many randomly colored edges make a randomly colored dense graph rainbow hamiltonian or rainbow connected? How many randomly colored edges make a randomly colored dense graph rainbow hamiltonian or rainbow connected? Michael Anastos and Alan Frieze February 1, 2018 Abstract In this paper we study the randomly

More information

ECE534, Spring 2018: Solutions for Problem Set #4 Due Friday April 6, 2018

ECE534, Spring 2018: Solutions for Problem Set #4 Due Friday April 6, 2018 ECE534, Spring 2018: s for Problem Set #4 Due Friday April 6, 2018 1. MMSE Estimation, Data Processing and Innovations The random variables X, Y, Z on a common probability space (Ω, F, P ) are said to

More information

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (NEW)(CSE/IT)/SEM-4/M-401/ MATHEMATICS - III

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (NEW)(CSE/IT)/SEM-4/M-401/ MATHEMATICS - III Name :. Roll No. :..... Invigilator s Signature :.. 202 MATHEMATICS - III Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give their answers

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 13, 2014.

EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 13, 2014. EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 13, 2014 Midterm Exam 2 Last name First name SID Rules. DO NOT open the exam until instructed

More information

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2

n! (k 1)!(n k)! = F (X) U(0, 1). (x, y) = n(n 1) ( F (y) F (x) ) n 2 Order statistics Ex. 4.1 (*. Let independent variables X 1,..., X n have U(0, 1 distribution. Show that for every x (0, 1, we have P ( X (1 < x 1 and P ( X (n > x 1 as n. Ex. 4.2 (**. By using induction

More information

Growth functions of braid monoids and generation of random braids

Growth functions of braid monoids and generation of random braids Growth functions of braid monoids and generation of random braids Universidad de Sevilla Joint with Volker Gebhardt Introduction Random braids Most authors working in braid-cryptography or computational

More information

CSE 312 Final Review: Section AA

CSE 312 Final Review: Section AA CSE 312 TAs December 8, 2011 General Information General Information Comprehensive Midterm General Information Comprehensive Midterm Heavily weighted toward material after the midterm Pre-Midterm Material

More information

Tight Bounds For Random MAX 2-SAT

Tight Bounds For Random MAX 2-SAT Tight Bounds For Random MAX 2-SAT MohammadTaghi Hajiaghayi Jeong Han Kim Abstract For a conjunctive normal form formula F with n variables and m = cn 2-variable clauses (c is called the density), denote

More information

CSE 421 NP-Completeness

CSE 421 NP-Completeness CSE 421 NP-Completeness Yin at Lee 1 Cook-Levin heorem heorem (Cook 71, Levin 73): 3-SA is NP-complete, i.e., for all problems A NP, A p 3-SA. (See CSE 431 for the proof) So, 3-SA is the hardest problem

More information

Duality of LPs and Applications

Duality of LPs and Applications Lecture 6 Duality of LPs and Applications Last lecture we introduced duality of linear programs. We saw how to form duals, and proved both the weak and strong duality theorems. In this lecture we will

More information

3 Conditional Expectation

3 Conditional Expectation 3 Conditional Expectation 3.1 The Discrete case Recall that for any two events E and F, the conditional probability of E given F is defined, whenever P (F ) > 0, by P (E F ) P (E)P (F ). P (F ) Example.

More information

The Lopsided Lovász Local Lemma

The Lopsided Lovász Local Lemma Department of Mathematics Nebraska Wesleyan University With Linyuan Lu and László Székely, University of South Carolina Note on Probability Spaces For this talk, every a probability space Ω is assumed

More information

Topics on Computing and Mathematical Sciences I Graph Theory (7) Coloring II

Topics on Computing and Mathematical Sciences I Graph Theory (7) Coloring II Topics on Computing and Mathematical Sciences I Graph Theory (7) Coloring II Yoshio Okamoto Tokyo Institute of Technology June 4, 2008 Plan changed 4/09 Definition of Graphs; Paths and Cycles 4/16 Cycles;

More information

Random Geometric Graphs.

Random Geometric Graphs. Random Geometric Graphs. Josep Díaz Random Geometric Graphs Random Euclidean Graphs, Random Proximity Graphs, Random Geometric Graphs. Random Euclidean Graphs Choose a sequence V = {x i } n i=1 of independent

More information

Stein s Method for concentration inequalities

Stein s Method for concentration inequalities Number of Triangles in Erdős-Rényi random graph, UC Berkeley joint work with Sourav Chatterjee, UC Berkeley Cornell Probability Summer School July 7, 2009 Number of triangles in Erdős-Rényi random graph

More information

Explosive Percolation in Erdős-Rényi-Like Random Graph Processes

Explosive Percolation in Erdős-Rényi-Like Random Graph Processes Explosive Percolation in Erdős-Rényi-Like Random Graph Processes Konstantinos Panagiotou a,1 Reto Spöhel a,1,4 Angelika Steger b,2 Henning Thomas b,2,3 a Max Planck Institute for Informatics, 66123 Saarbrücken,

More information

The Lopsided Lovász Local Lemma

The Lopsided Lovász Local Lemma Joint work with Linyuan Lu and László Székely Georgia Southern University April 27, 2013 The lopsided Lovász local lemma can establish the existence of objects satisfying several weakly correlated conditions

More information

Permutation pseudographs and contiguity

Permutation pseudographs and contiguity Permutation pseudographs and contiguity Catherine Greenhill Svante Janson Department of Mathematics and Statistics, Department of Mathematics, University of Melbourne Uppsala University, Parkville, VIC

More information

Vertex colorings of graphs without short odd cycles

Vertex colorings of graphs without short odd cycles Vertex colorings of graphs without short odd cycles Andrzej Dudek and Reshma Ramadurai Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA 1513, USA {adudek,rramadur}@andrew.cmu.edu

More information

On the number of circuits in random graphs. Guilhem Semerjian. [ joint work with Enzo Marinari and Rémi Monasson ]

On the number of circuits in random graphs. Guilhem Semerjian. [ joint work with Enzo Marinari and Rémi Monasson ] On the number of circuits in random graphs Guilhem Semerjian [ joint work with Enzo Marinari and Rémi Monasson ] [ Europhys. Lett. 73, 8 (2006) ] and [ cond-mat/0603657 ] Orsay 13-04-2006 Outline of the

More information

R(p, k) = the near regular complete k-partite graph of order p. Let p = sk+r, where s and r are positive integers such that 0 r < k.

R(p, k) = the near regular complete k-partite graph of order p. Let p = sk+r, where s and r are positive integers such that 0 r < k. MATH3301 EXTREMAL GRAPH THEORY Definition: A near regular complete multipartite graph is a complete multipartite graph with orders of its partite sets differing by at most 1. R(p, k) = the near regular

More information

Balanced online Ramsey games in random graphs

Balanced online Ramsey games in random graphs Balanced online Ramsey games in random graphs Anupam Prakash Department of Computer Science and Engineering IIT Kharagpur, India anupam@berkeley.edu Reto Spöhel Institute of Theoretical Computer Science

More information

Two hours. Statistical Tables to be provided THE UNIVERSITY OF MANCHESTER. 14 January :45 11:45

Two hours. Statistical Tables to be provided THE UNIVERSITY OF MANCHESTER. 14 January :45 11:45 Two hours Statistical Tables to be provided THE UNIVERSITY OF MANCHESTER PROBABILITY 2 14 January 2015 09:45 11:45 Answer ALL four questions in Section A (40 marks in total) and TWO of the THREE questions

More information

FINAL EXAM: Monday 8-10am

FINAL EXAM: Monday 8-10am ECE 30: Probabilistic Methods in Electrical and Computer Engineering Fall 016 Instructor: Prof. A. R. Reibman FINAL EXAM: Monday 8-10am Fall 016, TTh 3-4:15pm (December 1, 016) This is a closed book exam.

More information

Sharp threshold functions for random intersection graphs via a coupling method.

Sharp threshold functions for random intersection graphs via a coupling method. Sharp threshold functions for random intersection graphs via a coupling method. Katarzyna Rybarczyk Faculty of Mathematics and Computer Science, Adam Mickiewicz University, 60 769 Poznań, Poland kryba@amu.edu.pl

More information

On the chromatic number of a random hypergraph

On the chromatic number of a random hypergraph On the chromatic number of a random hypergraph Martin Dyer Alan Frieze Catherine Greenhill December 22, 2014 Abstract We consider the problem of k-colouring a random r-uniform hypergraph with n vertices

More information

STAT 200C: High-dimensional Statistics

STAT 200C: High-dimensional Statistics STAT 200C: High-dimensional Statistics Arash A. Amini May 30, 2018 1 / 59 Classical case: n d. Asymptotic assumption: d is fixed and n. Basic tools: LLN and CLT. High-dimensional setting: n d, e.g. n/d

More information

The generalised acyclic edge chromatic number of random regular graphs

The generalised acyclic edge chromatic number of random regular graphs The generalised acyclic edge chromatic number of random regular graphs Stefanie Gerke Institute of Theoretical Computer Science ETH Zentrum, IFW E48.3 Haldeneggsteig 4, Zurich CH - 8092 Switzerland sgerke@inf.ethz.ch

More information

An Introduction to Exponential-Family Random Graph Models

An Introduction to Exponential-Family Random Graph Models An Introduction to Exponential-Family Random Graph Models Luo Lu Feb.8, 2011 1 / 11 Types of complications in social network Single relationship data A single relationship observed on a set of nodes at

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

SIZE-RAMSEY NUMBERS OF CYCLES VERSUS A PATH

SIZE-RAMSEY NUMBERS OF CYCLES VERSUS A PATH SIZE-RAMSEY NUMBERS OF CYCLES VERSUS A PATH ANDRZEJ DUDEK, FARIDEH KHOEINI, AND PAWE L PRA LAT Abstract. The size-ramsey number ˆRF, H of a family of graphs F and a graph H is the smallest integer m such

More information

Concentration of Measures by Bounded Couplings

Concentration of Measures by Bounded Couplings Concentration of Measures by Bounded Couplings Subhankar Ghosh, Larry Goldstein and Ümit Işlak University of Southern California [arxiv:0906.3886] [arxiv:1304.5001] May 2013 Concentration of Measure Distributional

More information

Component structure of the vacant set induced by a random walk on a random graph. Colin Cooper (KCL) Alan Frieze (CMU)

Component structure of the vacant set induced by a random walk on a random graph. Colin Cooper (KCL) Alan Frieze (CMU) Component structure of the vacant set induced by a random walk on a random graph Colin Cooper (KCL) Alan Frieze (CMU) Vacant set definition and results Introduction: random walks and cover time G n,p vacant

More information

An Algorithmic Proof of the Lopsided Lovász Local Lemma (simplified and condensed into lecture notes)

An Algorithmic Proof of the Lopsided Lovász Local Lemma (simplified and condensed into lecture notes) An Algorithmic Proof of the Lopsided Lovász Local Lemma (simplified and condensed into lecture notes) Nicholas J. A. Harvey University of British Columbia Vancouver, Canada nickhar@cs.ubc.ca Jan Vondrák

More information

Approximation Algorithm for Random MAX-kSAT

Approximation Algorithm for Random MAX-kSAT Approximation Algorithm for Random MAX-kSAT Yannet Interian Center for Applied Mathematics. Cornell University. Ithaca, NY 14853, USA interian@cam.cornell.edu Abstract. An approximation algorithm for random

More information

GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs

GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs STATISTICS 4 Summary Notes. Geometric and Exponential Distributions GEOMETRIC -discrete A discrete random variable R counts number of times needed before an event occurs P(X = x) = ( p) x p x =,, 3,...

More information

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH2715 (January 2015) STATISTICAL METHODS. Time allowed: 2 hours

MATH c UNIVERSITY OF LEEDS Examination for the Module MATH2715 (January 2015) STATISTICAL METHODS. Time allowed: 2 hours MATH2750 This question paper consists of 8 printed pages, each of which is identified by the reference MATH275. All calculators must carry an approval sticker issued by the School of Mathematics. c UNIVERSITY

More information