Graph limits Graph convergence Approximate asymptotic properties of large graphs Extremal combinatorics/computer science : flag algebra method, proper

Size: px
Start display at page:

Download "Graph limits Graph convergence Approximate asymptotic properties of large graphs Extremal combinatorics/computer science : flag algebra method, proper"

Transcription

1 Jacob Cooper Dan Král Taísa Martins University of Warwick Monash University - Discrete Maths Research Group

2 Graph limits Graph convergence Approximate asymptotic properties of large graphs Extremal combinatorics/computer science : flag algebra method, property testing large networks, e.g. the internet, social networks... The limit of a convergent sequence of graphs is represented by an analytic object called a graphon

3 Dense graph convergence Convergence for dense graphs ( E = ( V 2 )) d(h, G) = probability H -vertex subgraph of G is H Asequence(G n ) n2n of graphs is convergent if d(h, G n ) converges for every H

4 Dense graph convergence Convergence for dense graphs ( E = ( V 2 )) d(h, G) = probability H -vertex subgraph of G is H Asequence(G n ) n2n of graphs is convergent if d(h, G n ) converges for every H complete graphs K n

5 Dense graph convergence Convergence for dense graphs ( E = ( V 2 )) d(h, G) = probability H -vertex subgraph of G is H Asequence(G n ) n2n of graphs is convergent if d(h, G n ) converges for every H complete graphs K n Erdős-Rényi random graphs G n,p

6 Dense graph convergence Convergence for dense graphs ( E = ( V 2 )) d(h, G) = probability H -vertex subgraph of G is H Asequence(G n ) n2n of graphs is convergent if d(h, G n ) converges for every H complete graphs K n Erdős-Rényi random graphs G n,p any sequence of sparse graphs

7 Dense graph convergence Convergence for dense graphs ( E = ( V 2 )) d(h, G) = probability H -vertex subgraph of G is H Asequence(G n ) n2n of graphs is convergent if d(h, G n ) converges for every H complete graphs K n Erdős-Rényi random graphs G n,p any sequence of sparse graphs

8 Dense graph convergence Convergence for dense graphs ( E = ( V 2 )) d(h, G) = probability H -vertex subgraph of G is H Asequence(G n ) n2n of graphs is convergent if d(h, G n ) converges for every H complete graphs K n Erdős-Rényi random graphs G n,p any sequence of sparse graphs

9 Limit object: graphon Graphon: measurable function W :[, ] 2! [, ], s.t. W (x, y) =W (y, x) 8x, y 2 [, ] W -random graph of order n: n random points x i 2 [, ], edge probability W (x i, x j )

10 Limit object: graphon Graphon: measurable function W :[, ] 2! [, ], s.t. W (x, y) =W (y, x) 8x, y 2 [, ] W -random graph of order n: n random points x i 2 [, ], edge probability W (x i, x j ) d(h, W ) = probability W -random graph of order H is H

11 Limit object: graphon Graphon: measurable function W :[, ] 2! [, ], s.t. W (x, y) =W (y, x) 8x, y 2 [, ] W -random graph of order n: n random points x i 2 [, ], edge probability W (x i, x j ) d(h, W ) = probability W -random graph of order H is H W is a limit of (G n ) n2n if d(h, W )= lim n! d(h, G n) 8 H Every convergent sequence of graphs has a limit W -random graphs converge to W with probability one

12 Examples of graph limits The sequence of complete bipartite graphs, (K n,n ) n2n The sequence of random graphs, (G n,/2 ) n2n

13 Finitely forcible graphons A graphon W is finitely forcible if 9 H...H k s.t d(h i, W )=d(h i, W ) =) d(h, W )=d(h, W ) 8 H. Thomason (87), Chung, Graham and Wilson (89) 2. Lovász and Sós (28) 3. Diaconis, Holmes and Janson (29) 4. Lovász and Szegedy (2)

14 Motivation Graph convergence Conjecture (Lovász and Szegedy, 2) The space of typical vertices of a finitely forcible graphon is compact. Conjecture (Lovász and Szegedy, 2) The space of typical vertices of a finitely forcible graphon is finite dimensional.

15 Motivation Graph convergence Conjecture (Lovász and Szegedy, 2) The space of typical vertices of a finitely forcible graphon is compact. Theorem (Glebov, Král, Volec, 23) T (W ) can fail to be locally compact Conjecture (Lovász and Szegedy, 2) The space of typical vertices of a finitely forcible graphon is finite dimensional. Theorem (Glebov, Klimošová, Král, 24) T (W ) can have a part homeomorphic to [, ] Theorem (Cooper, Kaiser, Král, Noel, 25) 9 finitely forcible W such that every "-regular partition has at least 2 " 2 / log log " parts (for inf. many "! ).

16 Previous Constructions A A B B B C C D A B C D E F G P Q R A A B A C B B D E F B G P C Q C D R

17 Theorem Theorem (Cooper, Král, M.) Every graphon is a subgraphon of a finitely forcible graphon. Existence of a finitely forcible graphon that is non-compact, infinite dimensional, etc For every non-decreasing function f : R! R tending to, 9 finitely forcible W and positive reals " i tending to such that every weak " i -regular partition of W has at least 2 " 2 i f (" i ) parts.

18 Ingredients of the proof Partitioned graphons vertices with only finitely many degrees parts with vertices of the same degree Decorated constraints method for constraining partitioned graphons density constraints rooted in the parts based on notions related to flag algebras Encoding a graphon as a real number in [, ] forcing W by fixing its density in dyadic subsquares

19 Agraphonasarealnumber Unique representation by densities on dyadic squares 4-tuple map :(d, s, t, k)!{, } dyadic square: s, s+ 2 d 2 t, t+ d 2 d 2 d k-th bit in the standard binary representation of the density of W in the dyadic square, otherwise ' : N 4! N (bijection), : W![, ] (W ) j-th bit = (' (j))

20 Sketch of the construction A A B C D E F G P Q R B C D reference to 4-tuples (W F ) bijection ' E F G reference to dyadic squares WF P Q auxiliary structures R

21 Universal construction A B C D E F G P Q R A B C D E F G WF P Q R

22 Universality Meager set Theorem (Cooper, Král, M.) Every graphon is a subgraphon of a finitely forcible graphon. Theorem (Lovász and Szegedy, 2) Finitely forcible graphons form a meager set in the space of all graphons. Analogy: : W![, ] N (injection) S [, ] measurable (W [S S]): projection of (W )inasubspace of [, ] N e.g. H = {(C(x, y), z) (x, y, z) 2 R 3, C is a space-filling curve}

23 Thank you for your attention!

Elusive problems in extremal graph theory

Elusive problems in extremal graph theory Elusive problems in extremal graph theory Andrzej Grzesik (Krakow) Dan Král (Warwick) László Miklós Lovász (MIT/Stanford) 2/5/27 Overview of talk uniqueness of extremal configurations motivation and formulation

More information

Undecidability of Linear Inequalities Between Graph Homomorphism Densities

Undecidability of Linear Inequalities Between Graph Homomorphism Densities Undecidability of Linear Inequalities Between Graph Homomorphism Densities Hamed Hatami joint work with Sergey Norin School of Computer Science McGill University December 4, 2013 Hamed Hatami (McGill University)

More information

Graph Limits: Some Open Problems

Graph Limits: Some Open Problems Graph Limits: Some Open Problems 1 Introduction Here are some questions from the open problems session that was held during the AIM Workshop Graph and Hypergraph Limits, Palo Alto, August 15-19, 2011.

More information

Szemerédi s regularity lemma revisited. Lewis Memorial Lecture March 14, Terence Tao (UCLA)

Szemerédi s regularity lemma revisited. Lewis Memorial Lecture March 14, Terence Tao (UCLA) Szemerédi s regularity lemma revisited Lewis Memorial Lecture March 14, 2008 Terence Tao (UCLA) 1 Finding models of large dense graphs Suppose we are given a large dense graph G = (V, E), where V is a

More information

Characterizing extremal limits

Characterizing extremal limits Characterizing extremal limits Oleg Pikhurko University of Warwick ICERM, 11 February 2015 Rademacher Problem g(n, m) := min{#k 3 (G) : v(g) = n, e(g) = m} Mantel 1906, Turán 41: max{m : g(n, m) = 0} =

More information

The large deviation principle for the Erdős-Rényi random graph

The large deviation principle for the Erdős-Rényi random graph The large deviation principle for the Erdős-Rényi random graph (Courant Institute, NYU) joint work with S. R. S. Varadhan Main objective: how to count graphs with a given property Only consider finite

More information

Flag Algebras in Extremal Graph Theory

Flag Algebras in Extremal Graph Theory Jagiellonian University Faculty of Mathematics and Computer Science Theoretical Computer Science Department Andrzej Grzesik Flag Algebras in Extremal Graph Theory PhD Thesis Supervisor: Jaros law Grytczuk

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. Cut distance identifying graphon parameters over weak* limits

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. Cut distance identifying graphon parameters over weak* limits INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES Cut distance identifying graphon parameters over weak* limits Martin Doležal Jan Grebík Jan Hladký Israel Rocha Václav Rozhoň Preprint No. 49-2018

More information

Weak regularity and finitely forcible graph limits

Weak regularity and finitely forcible graph limits arxiv:507.00067v4 [math.o] 26 ug 206 Weak regularity and finitely forcible graph limits Jacob W. ooper Tomáš Kaiser aniel Král Jonathan. Noel bstract raphons are analytic objects representing limits of

More information

CHROMATIC ROOTS AND LIMITS OF DENSE GRAPHS

CHROMATIC ROOTS AND LIMITS OF DENSE GRAPHS CHROMATIC ROOTS AND LIMITS OF DENSE GRAPHS PÉTER CSIKVÁRI, PÉTER E. FRENKEL, JAN HLADKÝ, AND TAMÁS HUBAI Abstract. In this short note we observe that recent results of Abért and Hubai and of Csikvári and

More information

EMERGENT STRUCTURES IN LARGE NETWORKS

EMERGENT STRUCTURES IN LARGE NETWORKS Applied Probability Trust (29 November 2012) EMERGENT STRUCTURES IN LARGE NETWORKS DAVID ARISTOFF, University of Minnesota CHARLES RADIN, The University of Texas at Austin Abstract We consider a large

More information

First Order Convergence and Roots

First Order Convergence and Roots Article First Order Convergence and Roots Christofides, Demetres and Kral, Daniel Available at http://clok.uclan.ac.uk/17855/ Christofides, Demetres and Kral, Daniel (2016) First Order Convergence and

More information

Lecture 4: Graph Limits and Graphons

Lecture 4: Graph Limits and Graphons Lecture 4: Graph Limits and Graphons 36-781, Fall 2016 3 November 2016 Abstract Contents 1 Reprise: Convergence of Dense Graph Sequences 1 2 Calculating Homomorphism Densities 3 3 Graphons 4 4 The Cut

More information

Ground states for exponential random graphs

Ground states for exponential random graphs Ground states for exponential random graphs Mei Yin Department of Mathematics, University of Denver March 5, 2018 We propose a perturbative method to estimate the normalization constant in exponential

More information

Paul Erdős and Graph Ramsey Theory

Paul Erdős and Graph Ramsey Theory Paul Erdős and Graph Ramsey Theory Benny Sudakov ETH and UCLA Ramsey theorem Ramsey theorem Definition: The Ramsey number r(s, n) is the minimum N such that every red-blue coloring of the edges of a complete

More information

CUT DISTANCE IDENTIFYING GRAPHON PARAMETERS OVER WEAK* LIMITS MARTIN DOLEŽAL, JAN GREBÍK, JAN HLADKÝ, ISRAEL ROCHA, VÁCLAV ROZHOŇ

CUT DISTANCE IDENTIFYING GRAPHON PARAMETERS OVER WEAK* LIMITS MARTIN DOLEŽAL, JAN GREBÍK, JAN HLADKÝ, ISRAEL ROCHA, VÁCLAV ROZHOŇ CUT DISTACE IDETIFYIG GRAPHO PARAMETERS OVER WEAK* LIMITS MARTI DOLEŽAL, JA GREBÍK, JA HLADKÝ, ISRAEL ROCHA, VÁCLAV ROZHOŇ ABSTRACT. The theory of graphons comes with the so-called cut distance. The cut

More information

Statistical Inference on Large Contingency Tables: Convergence, Testability, Stability. COMPSTAT 2010 Paris, August 23, 2010

Statistical Inference on Large Contingency Tables: Convergence, Testability, Stability. COMPSTAT 2010 Paris, August 23, 2010 Statistical Inference on Large Contingency Tables: Convergence, Testability, Stability Marianna Bolla Institute of Mathematics Budapest University of Technology and Economics marib@math.bme.hu COMPSTAT

More information

Quasi-randomness is determined by the distribution of copies of a fixed graph in equicardinal large sets

Quasi-randomness is determined by the distribution of copies of a fixed graph in equicardinal large sets Quasi-randomness is determined by the distribution of copies of a fixed graph in equicardinal large sets Raphael Yuster 1 Department of Mathematics, University of Haifa, Haifa, Israel raphy@math.haifa.ac.il

More information

Independent Transversals in r-partite Graphs

Independent Transversals in r-partite Graphs Independent Transversals in r-partite Graphs Raphael Yuster Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv, Israel Abstract Let G(r, n) denote

More information

QUASIRANDOM PERMUTATIONS ARE CHARACTERIZED BY 4-POINT DENSITIES. 1 Introduction

QUASIRANDOM PERMUTATIONS ARE CHARACTERIZED BY 4-POINT DENSITIES. 1 Introduction Geom. Funct. Anal. Vol. 23 (2013) 570 579 DOI: 10.1007/s00039-013-0216-9 Published online March 19, 2013 c 2013 The Author(s). This article is published with open access at Springerlink.com GAFA Geometric

More information

The typical structure of sparse K r+1 -free graphs

The typical structure of sparse K r+1 -free graphs The typical structure of sparse K r+1 -free graphs Lutz Warnke University of Cambridge (joint work with József Balogh, Robert Morris, and Wojciech Samotij) H-free graphs / Turán s theorem Definition Let

More information

Induced Turán numbers

Induced Turán numbers Induced Turán numbers Michael Tait Carnegie Mellon University mtait@cmu.edu Atlanta Lecture Series XVIII Emory University October 22, 2016 Michael Tait (CMU) October 22, 2016 1 / 25 Michael Tait (CMU)

More information

arxiv: v3 [math.pr] 18 Aug 2017

arxiv: v3 [math.pr] 18 Aug 2017 Sparse Exchangeable Graphs and Their Limits via Graphon Processes arxiv:1601.07134v3 [math.pr] 18 Aug 2017 Christian Borgs Microsoft Research One Memorial Drive Cambridge, MA 02142, USA Jennifer T. Chayes

More information

Extremal Combinatorics, Graph Limits and Computational Complexity

Extremal Combinatorics, Graph Limits and Computational Complexity Extremal Combinatorics, Graph Limits and Computational Complexity Jonathan A. Noel Christ Church University of Oxford A thesis submitted for the degree of Doctor of Philosophy Trinity 2016 Acknowledgements

More information

Cycle lengths in sparse graphs

Cycle lengths in sparse graphs Cycle lengths in sparse graphs Benny Sudakov Jacques Verstraëte Abstract Let C(G) denote the set of lengths of cycles in a graph G. In the first part of this paper, we study the minimum possible value

More information

Adding random edges to create the square of a Hamilton cycle

Adding random edges to create the square of a Hamilton cycle Adding random edges to create the square of a Hamilton cycle Patrick Bennett Andrzej Dudek Alan Frieze October 7, 2017 Abstract We consider how many random edges need to be added to a graph of order n

More information

A Potpourri of Nonlinear Algebra

A Potpourri of Nonlinear Algebra a a 2 a 3 + c c 2 c 3 =2, a a 3 b 2 + c c 3 d 2 =0, a 2 a 3 b + c 2 c 3 d =0, a 3 b b 2 + c 3 d d 2 = 4, a a 2 b 3 + c c 2 d 3 =0, a b 2 b 3 + c d 2 d 3 = 4, a 2 b b 3 + c 2 d 3 d =4, b b 2 b 3 + d d 2

More information

Finitely forcible graphons and permutons

Finitely forcible graphons and permutons Finitely forcible graphons and permutons arxiv:1307.2444v4 [math.co] 4 Jul 2014 Roman Glebov Andrzej Grzesik Tereza Klimošová Daniel Král Abstract We investigate when limits of graphs(graphons) and permutations(permutons)

More information

Sharp threshold functions for random intersection graphs via a coupling method.

Sharp threshold functions for random intersection graphs via a coupling method. Sharp threshold functions for random intersection graphs via a coupling method. Katarzyna Rybarczyk Faculty of Mathematics and Computer Science, Adam Mickiewicz University, 60 769 Poznań, Poland kryba@amu.edu.pl

More information

Decomposition of random graphs into complete bipartite graphs

Decomposition of random graphs into complete bipartite graphs Decomposition of random graphs into complete bipartite graphs Fan Chung Xing Peng Abstract We consider the problem of partitioning the edge set of a graph G into the minimum number τg of edge-disjoint

More information

On decomposing graphs of large minimum degree into locally irregular subgraphs

On decomposing graphs of large minimum degree into locally irregular subgraphs On decomposing graphs of large minimum degree into locally irregular subgraphs Jakub Przyby lo AGH University of Science and Technology al. A. Mickiewicza 0 0-059 Krakow, Poland jakubprz@agh.edu.pl Submitted:

More information

Decomposition of random graphs into complete bipartite graphs

Decomposition of random graphs into complete bipartite graphs Decomposition of random graphs into complete bipartite graphs Fan Chung Xing Peng Abstract We consider the problem of partitioning the edge set of a graph G into the minimum number τg) of edge-disjoint

More information

Rainbow triangles in 3-edge-colored graphs

Rainbow triangles in 3-edge-colored graphs Rainbow triangles in 3-edge-colored graphs József Balogh, Ping Hu, Bernard Lidický, Florian Pfender, Jan Volec, Michael Young SIAM Conference on Discrete Mathematics Jun 17, 2014 2 Problem Find a 3-edge-coloring

More information

The Zarankiewicz problem in 3-partite graphs

The Zarankiewicz problem in 3-partite graphs The Zarankiewicz problem in 3-partite graphs Michael Tait Carnegie Mellon University mtait@cmu.edu AMS Eastern Fall Sectional University of Delaware September 29, 2018 Michael Tait (CMU) September 29,

More information

The step Sidorenko property and non-norming edge-transitive graphs

The step Sidorenko property and non-norming edge-transitive graphs arxiv:1802.05007v3 [math.co] 5 Oct 2018 The step Sidorenko property and non-norming edge-transitive graphs Daniel Král Taísa L. Martins Péter Pál Pach Marcin Wrochna Abstract Sidorenko s Conjecture asserts

More information

The Saturation Number of Induced Subposets of the Boolean Lattice

The Saturation Number of Induced Subposets of the Boolean Lattice The Saturation Number of Induced Subposets of the Boolean Lattice Michael Ferrara a, Bill Kay b, Lucas Kramer c,1, Ryan R. Martin d, Benjamin Reiniger e, Heather C. Smith f,, Eric Sullivan a a Department

More information

Intro Structural Limits Representations Stone Interpretations Near the Limit Modelings Perspectives. Structural Limits. Patrice Ossona de Mendez

Intro Structural Limits Representations Stone Interpretations Near the Limit Modelings Perspectives. Structural Limits. Patrice Ossona de Mendez Structural Limits Jaroslav Nešetřil Patrice Ossona de Mendez Charles University Praha, Czech Republic LIA STRUCO CAMS, CNRS/EHESS Paris, France ( 2 2) ( 2 2 ) Warwick 2 Contents Introduction Structural

More information

A NOTE ON THE TURÁN FUNCTION OF EVEN CYCLES

A NOTE ON THE TURÁN FUNCTION OF EVEN CYCLES PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 A NOTE ON THE TURÁN FUNCTION OF EVEN CYCLES OLEG PIKHURKO Abstract. The Turán function ex(n, F

More information

On the Logarithmic Calculus and Sidorenko s Conjecture

On the Logarithmic Calculus and Sidorenko s Conjecture On the Logarithmic Calculus and Sidorenko s Conjecture by Xiang Li A thesis submitted in conformity with the requirements for the degree of Msc. Mathematics Graduate Department of Mathematics University

More information

THRESHOLD GRAPH LIMITS AND RANDOM THRESHOLD GRAPHS

THRESHOLD GRAPH LIMITS AND RANDOM THRESHOLD GRAPHS THRESHOLD GRAPH LIMITS AND RANDOM THRESHOLD GRAPHS PERSI DIACONIS, SUSAN HOLMES, AND SVANTE JANSON Abstract. We study the limit theory of large threshold graphs and apply this to a variety of models for

More information

Induced subgraphs with many repeated degrees

Induced subgraphs with many repeated degrees Induced subgraphs with many repeated degrees Yair Caro Raphael Yuster arxiv:1811.071v1 [math.co] 17 Nov 018 Abstract Erdős, Fajtlowicz and Staton asked for the least integer f(k such that every graph with

More information

Forcing unbalanced complete bipartite minors

Forcing unbalanced complete bipartite minors Forcing unbalanced complete bipartite minors Daniela Kühn Deryk Osthus Abstract Myers conjectured that for every integer s there exists a positive constant C such that for all integers t every graph of

More information

Vertex-Coloring Edge-Weighting of Bipartite Graphs with Two Edge Weights

Vertex-Coloring Edge-Weighting of Bipartite Graphs with Two Edge Weights Discrete Mathematics and Theoretical Computer Science DMTCS vol. 17:3, 2015, 1 12 Vertex-Coloring Edge-Weighting of Bipartite Graphs with Two Edge Weights Hongliang Lu School of Mathematics and Statistics,

More information

Compact orbit spaces in Hilbert spaces and limits of edge-colouring models

Compact orbit spaces in Hilbert spaces and limits of edge-colouring models Compact orbit spaces in Hilbert spaces and limits of edge-colouring models Guus Regts 1 and Alexander Schrijver 2 Abstract. Let G be a group of orthogonal transformations of a real Hilbert space H. Let

More information

NOTES ON MATCHINGS IN CONVERGENT GRAPH SEQUENCES

NOTES ON MATCHINGS IN CONVERGENT GRAPH SEQUENCES NOTES ON MATCHINGS IN CONVERGENT GRAPH SEQUENCES HARRY RICHMAN Abstract. These are notes on the paper Matching in Benjamini-Schramm convergent graph sequences by M. Abért, P. Csikvári, P. Frenkel, and

More information

A LARGE DEVIATION PRINCIPLE FOR THE ERDŐS RÉNYI UNIFORM RANDOM GRAPH

A LARGE DEVIATION PRINCIPLE FOR THE ERDŐS RÉNYI UNIFORM RANDOM GRAPH A LARGE DEVIATION PRINCIPLE FOR THE ERDŐS RÉNYI UNIFORM RANDOM GRAPH AMIR DEMBO AND EYAL LUBETZKY Abstract. Starting with the large deviation principle (ldp) for the Erdős Rényi binomial random graph G(n,

More information

Asymptotics and Extremal Properties of the Edge-Triangle Exponential Random Graph Model

Asymptotics and Extremal Properties of the Edge-Triangle Exponential Random Graph Model Asymptotics and Extremal Properties of the Edge-Triangle Exponential Random Graph Model Alessandro Rinaldo Carnegie Mellon University joint work with Mei Yin, Sukhada Fadnavis, Stephen E. Fienberg and

More information

arxiv: v3 [math.pr] 19 Apr 2018

arxiv: v3 [math.pr] 19 Apr 2018 Exponential random graphs behave like mixtures of stochastic block models Ronen Eldan and Renan Gross arxiv:70707v3 [mathpr] 9 Apr 08 Abstract We study the behavior of exponential random graphs in both

More information

The regularity method and blow-up lemmas for sparse graphs

The regularity method and blow-up lemmas for sparse graphs The regularity method and blow-up lemmas for sparse graphs Y. Kohayakawa (São Paulo) SPSAS Algorithms, Combinatorics and Optimization University of São Paulo July 2016 Partially supported CAPES/DAAD (430/15),

More information

BIRTHDAY PROBLEM, MONOCHROMATIC SUBGRAPHS & THE SECOND MOMENT PHENOMENON / 23

BIRTHDAY PROBLEM, MONOCHROMATIC SUBGRAPHS & THE SECOND MOMENT PHENOMENON / 23 BIRTHDAY PROBLEM, MONOCHROMATIC SUBGRAPHS & THE SECOND MOMENT PHENOMENON Somabha Mukherjee 1 University of Pennsylvania March 30, 2018 Joint work with Bhaswar B. Bhattacharya 2 and Sumit Mukherjee 3 1

More information

A note on network reliability

A note on network reliability A note on network reliability Noga Alon Institute for Advanced Study, Princeton, NJ 08540 and Department of Mathematics Tel Aviv University, Tel Aviv, Israel Let G = (V, E) be a loopless undirected multigraph,

More information

Matrix estimation by Universal Singular Value Thresholding

Matrix estimation by Universal Singular Value Thresholding Matrix estimation by Universal Singular Value Thresholding Courant Institute, NYU Let us begin with an example: Suppose that we have an undirected random graph G on n vertices. Model: There is a real symmetric

More information

Szemerédi s Lemma for the Analyst

Szemerédi s Lemma for the Analyst Szemerédi s Lemma for the Analyst László Lovász and Balázs Szegedy Microsoft Research April 25 Microsoft Research Technical Report # MSR-TR-25-9 Abstract Szemerédi s Regularity Lemma is a fundamental tool

More information

Infinitary Limits of Finite Structures. Alex Kruckman. A dissertation submitted in partial satisfaction of the. requirements for the degree of

Infinitary Limits of Finite Structures. Alex Kruckman. A dissertation submitted in partial satisfaction of the. requirements for the degree of Infinitary Limits of Finite Structures by Alex Kruckman A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division

More information

The typical structure of graphs without given excluded subgraphs + related results

The typical structure of graphs without given excluded subgraphs + related results The typical structure of graphs without given excluded subgraphs + related results Noga Alon József Balogh Béla Bollobás Jane Butterfield Robert Morris Dhruv Mubayi Wojciech Samotij Miklós Simonovits.

More information

Hypergraph Turán Problems (IPAM Tutorial)

Hypergraph Turán Problems (IPAM Tutorial) (IPAM Tutorial) Peter Keevash School of Mathematical Sciences, Queen Mary, University of London. p.keevash@qmul.ac.uk Introduction: From graphs to hypergraphs Mantel s Theorem (1907) The largest graph

More information

Zero-one laws for multigraphs

Zero-one laws for multigraphs Zero-one laws for multigraphs Caroline Terry University of Illinois at Chicago AMS Central Fall Sectional Meeting 2015 Caroline Terry (University of Illinois at Chicago) Zero-one laws for multigraphs October

More information

Norm-graphs: variations and applications

Norm-graphs: variations and applications Norm-graphs: variations and applications Noga Alon 1 School of Mathematics, Institute for Advanced Study Olden Lane, Princeton, NJ 08540 and Department of Mathematics, Tel Aviv University Tel Aviv, Israel

More information

Randomness and regularity

Randomness and regularity Randomness and regularity Tomasz Łuczak Abstract. For the last ten years the theory of random structures has been one of the most rapidly evolving fields of discrete mathematics. The existence of sparse

More information

Clique is hard on average for regular resolution

Clique is hard on average for regular resolution Clique is hard on average for regular resolution Ilario Bonacina, UPC Barcelona Tech July 27, 2018 Oxford Complexity Day Talk based on a joint work with: A. Atserias S. de Rezende J. Nordstro m M. Lauria

More information

Multipodal Structure and Phase Transitions in Large Constrained Graphs

Multipodal Structure and Phase Transitions in Large Constrained Graphs Multipodal Structure and Phase Transitions in Large Constrained Graphs Richard Kenyon Charles Radin Kui Ren Lorenzo Sadun May 3, 24 Abstract We study the asymptotics of large, simple, labeled graphs constrained

More information

Parameter estimators of sparse random intersection graphs with thinned communities

Parameter estimators of sparse random intersection graphs with thinned communities Parameter estimators of sparse random intersection graphs with thinned communities Lasse Leskelä Aalto University Johan van Leeuwaarden Eindhoven University of Technology Joona Karjalainen Aalto University

More information

Statistical Physics on Sparse Random Graphs: Mathematical Perspective

Statistical Physics on Sparse Random Graphs: Mathematical Perspective Statistical Physics on Sparse Random Graphs: Mathematical Perspective Amir Dembo Stanford University Northwestern, July 19, 2016 x 5 x 6 Factor model [DM10, Eqn. (1.4)] x 1 x 2 x 3 x 4 x 9 x8 x 7 x 10

More information

Consistency Under Sampling of Exponential Random Graph Models

Consistency Under Sampling of Exponential Random Graph Models Consistency Under Sampling of Exponential Random Graph Models Cosma Shalizi and Alessandro Rinaldo Summary by: Elly Kaizar Remember ERGMs (Exponential Random Graph Models) Exponential family models Sufficient

More information

Random Graphs. Research Statement Daniel Poole Autumn 2015

Random Graphs. Research Statement Daniel Poole Autumn 2015 I am interested in the interactions of probability and analysis with combinatorics and discrete structures. These interactions arise naturally when trying to find structure and information in large growing

More information

Matchings in hypergraphs of large minimum degree

Matchings in hypergraphs of large minimum degree Matchings in hypergraphs of large minimum degree Daniela Kühn Deryk Osthus Abstract It is well known that every bipartite graph with vertex classes of size n whose minimum degree is at least n/2 contains

More information

Minimum rank of a random graph over the binary field

Minimum rank of a random graph over the binary field Minimum rank of a random graph over the binary field Jisu Jeong 1 Choongbum Lee 2 Po-Shen Loh 3 Sang-il Oum 1 1 KAIST 2 Massachusetts Institute of Technology 3 Carnegie Mellon University 2013 KMS Annual

More information

Packing nearly optimal Ramsey R(3, t) graphs

Packing nearly optimal Ramsey R(3, t) graphs Packing nearly optimal Ramsey R(3, t) graphs He Guo Georgia Institute of Technology Joint work with Lutz Warnke Context of this talk Ramsey number R(s, t) R(s, t) := minimum n N such that every red/blue

More information

Subhypergraph counts in extremal and random hypergraphs and the fractional q-independence

Subhypergraph counts in extremal and random hypergraphs and the fractional q-independence Subhypergraph counts in extremal and random hypergraphs and the fractional q-independence Andrzej Dudek adudek@emory.edu Andrzej Ruciński rucinski@amu.edu.pl June 21, 2008 Joanna Polcyn joaska@amu.edu.pl

More information

The Effect of Induced Subgraphs on Quasi-Randomness

The Effect of Induced Subgraphs on Quasi-Randomness The Effect of Induced Subgraphs on Quasi-Randomness Asaf Shapira Raphael Yuster Abstract One of the main questions that arise when studying random and quasi-random structures is which properties P are

More information

Small subgraphs of random regular graphs

Small subgraphs of random regular graphs Discrete Mathematics 307 (2007 1961 1967 Note Small subgraphs of random regular graphs Jeong Han Kim a,b, Benny Sudakov c,1,vanvu d,2 a Theory Group, Microsoft Research, Redmond, WA 98052, USA b Department

More information

Explicit Construction of Small Folkman Graphs

Explicit Construction of Small Folkman Graphs Michael Spectral Graph Theory Final Presentation April 17, 2017 Notation Rado s Arrow Consider two graphs G and H. Then G (H) p is the statement that if the edges of G are p-colored, then there exists

More information

Graph Detection and Estimation Theory

Graph Detection and Estimation Theory Introduction Detection Estimation Graph Detection and Estimation Theory (and algorithms, and applications) Patrick J. Wolfe Statistics and Information Sciences Laboratory (SISL) School of Engineering and

More information

On the threshold for k-regular subgraphs of random graphs

On the threshold for k-regular subgraphs of random graphs On the threshold for k-regular subgraphs of random graphs Pawe l Pra lat Department of Mathematics and Statistics Dalhousie University Halifax NS, Canada Nicholas Wormald Department of Combinatorics and

More information

HYPERGRAPHS, QUASI-RANDOMNESS, AND CONDITIONS FOR REGULARITY

HYPERGRAPHS, QUASI-RANDOMNESS, AND CONDITIONS FOR REGULARITY HYPERGRAPHS, QUASI-RANDOMNESS, AND CONDITIONS FOR REGULARITY YOSHIHARU KOHAYAKAWA, VOJTĚCH RÖDL, AND JOZEF SKOKAN Dedicated to Professors Vera T. Sós and András Hajnal on the occasion of their 70th birthdays

More information

RANDOM GRAPHS AND QUASI-RANDOM GRAPHS: AN INTRODUCTION

RANDOM GRAPHS AND QUASI-RANDOM GRAPHS: AN INTRODUCTION Trends in Mathematics Information Center for Mathematical Sciences Volume, Number 1, June 001, Pages 101 107 RANDOM GRAPHS AND QUASI-RANDOM GRAPHS: AN INTRODUCTION CHANGWOO LEE Abstract. This article is

More information

The Green-Tao theorem and a relative Szemerédi theorem

The Green-Tao theorem and a relative Szemerédi theorem The Green-Tao theorem and a relative Szemerédi theorem Yufei Zhao Massachusetts Institute of Technology Based on joint work with David Conlon (Oxford) and Jacob Fox (MIT) Green Tao Theorem (arxiv 2004;

More information

Disjoint Subgraphs in Sparse Graphs 1

Disjoint Subgraphs in Sparse Graphs 1 Disjoint Subgraphs in Sparse Graphs 1 Jacques Verstraëte Department of Pure Mathematics and Mathematical Statistics Centre for Mathematical Sciences Wilberforce Road Cambridge CB3 OWB, UK jbav2@dpmms.cam.ac.uk

More information

Phase transitions in the edge-triangle exponential random graph model

Phase transitions in the edge-triangle exponential random graph model Phase transitions in the edge-triangle exponential random graph model Mei Yin Department of Mathematics, Brown University April 28, 2014 Probability space: The set G n of all simple graphs G n on n vertices.

More information

Homogeneous structures

Homogeneous structures Homogeneous structures Robert Gray Centro de Álgebra da Universidade de Lisboa Lisboa, April 2010 Group theory A group is... a set G with a binary operation G G G, (x, y) xy, written multiplicatively,

More information

Transversal designs and induced decompositions of graphs

Transversal designs and induced decompositions of graphs arxiv:1501.03518v1 [math.co] 14 Jan 2015 Transversal designs and induced decompositions of graphs Csilla Bujtás 1 Zsolt Tuza 1,2 1 Department of Computer Science and Systems Technology University of Pannonia

More information

arxiv: v2 [math.co] 20 Jun 2018

arxiv: v2 [math.co] 20 Jun 2018 ON ORDERED RAMSEY NUMBERS OF BOUNDED-DEGREE GRAPHS MARTIN BALKO, VÍT JELÍNEK, AND PAVEL VALTR arxiv:1606.0568v [math.co] 0 Jun 018 Abstract. An ordered graph is a pair G = G, ) where G is a graph and is

More information

arxiv: v2 [math.co] 11 Mar 2008

arxiv: v2 [math.co] 11 Mar 2008 Testing properties of graphs and functions arxiv:0803.1248v2 [math.co] 11 Mar 2008 Contents László Lovász Institute of Mathematics, Eötvös Loránd University, Budapest and Balázs Szegedy Department of Mathematics,

More information

G(t) := i. G(t) = 1 + e λut (1) u=2

G(t) := i. G(t) = 1 + e λut (1) u=2 Note: a conjectured compactification of some finite reversible MCs There are two established theories which concern different aspects of the behavior of finite state Markov chains as the size of the state

More information

Chromatic number, clique subdivisions, and the conjectures of

Chromatic number, clique subdivisions, and the conjectures of Chromatic number, clique subdivisions, and the conjectures of Hajós and Erdős-Fajtlowicz Jacob Fox Choongbum Lee Benny Sudakov MIT UCLA UCLA Hajós conjecture Hajós conjecture Conjecture: (Hajós 1961) If

More information

Combinatorics in Hungary and Extremal Set Theory

Combinatorics in Hungary and Extremal Set Theory Combinatorics in Hungary and Extremal Set Theory Gyula O.H. Katona Rényi Institute, Budapest Jiao Tong University Colloquium Talk October 22, 2014 Combinatorics in Hungary A little history. 1 Combinatorics

More information

Structural Limits III

Structural Limits III Structural limits Near the limit Modelings Perspectives Structural Limits III Jaroslav Nešetřil Patrice Ossona de Mendez Charles University Praha, Czech Republic LIA STRUCO CAMS, CNRS/EHESS Paris, France

More information

Definition (The carefully thought-out calculus version based on limits).

Definition (The carefully thought-out calculus version based on limits). 4.1. Continuity and Graphs Definition 4.1.1 (Intuitive idea used in algebra based on graphing). A function, f, is continuous on the interval (a, b) if the graph of y = f(x) can be drawn over the interval

More information

Maximum density of induced 5-cycle is achieved by an iterated blow-up of 5-cycle

Maximum density of induced 5-cycle is achieved by an iterated blow-up of 5-cycle Maximum density of induced 5-cycle is achieved by an iterated blow-up of 5-cycle József Balogh Ping Hu Bernard Lidický Florian Pfender September 1, 2015 Abstract Let C(n) denote the maximum number of induced

More information

A = A U. U [n] P(A U ). n 1. 2 k(n k). k. k=1

A = A U. U [n] P(A U ). n 1. 2 k(n k). k. k=1 Lecture I jacques@ucsd.edu Notation: Throughout, P denotes probability and E denotes expectation. Denote (X) (r) = X(X 1)... (X r + 1) and let G n,p denote the Erdős-Rényi model of random graphs. 10 Random

More information

Almost Cross-Intersecting and Almost Cross-Sperner Pairs offamilies of Sets

Almost Cross-Intersecting and Almost Cross-Sperner Pairs offamilies of Sets Almost Cross-Intersecting and Almost Cross-Sperner Pairs offamilies of Sets Dániel Gerbner a Nathan Lemons b Cory Palmer a Balázs Patkós a, Vajk Szécsi b a Hungarian Academy of Sciences, Alfréd Rényi Institute

More information

Rainbow factors in hypergraphs

Rainbow factors in hypergraphs Rainbow factors in hypergraphs Matthew Coulson Peter Keevash Guillem Perarnau Liana Yepremyan March 27, 2018 Abstract For any r-graph H, we consider the problem of finding a rainbow H-factor in an r-graph

More information

Maximum density of an induced 5-cycle is achieved by an iterated blow-up of a 5-cycle

Maximum density of an induced 5-cycle is achieved by an iterated blow-up of a 5-cycle Maximum density of an induced 5-cycle is achieved by an iterated blow-up of a 5-cycle József Balogh Ping Hu Bernard Lidický Florian Pfender arxiv:1411.4645v1 [math.co] 17 Nov 2014 October 19, 2018 Abstract

More information

Graph Limits and Exchangeability

Graph Limits and Exchangeability BSc THESIS Graph Limits and Exchangeability István Kolossváry Supervisors: Domokos Szász Professor Mathematical Institute BME, Department of Stochastics Balázs Ráth Research Fellow Stochastics Research

More information

Topic 3 Outline. What is a Limit? Calculating Limits Infinite Limits Limits at Infinity Continuity. 1 Limits and Continuity

Topic 3 Outline. What is a Limit? Calculating Limits Infinite Limits Limits at Infinity Continuity. 1 Limits and Continuity Topic 3 Outline 1 Limits and Continuity What is a Limit? Calculating Limits Infinite Limits Limits at Infinity Continuity D. Kalajdzievska (University of Manitoba) Math 1520 Fall 2015 1 / 27 Topic 3 Learning

More information

GRAPHS WITHOUT THETA SUBGRAPHS. 1. Introduction

GRAPHS WITHOUT THETA SUBGRAPHS. 1. Introduction GRAPHS WITHOUT THETA SUBGRAPHS J. VERSTRAETE AND J. WILLIFORD Abstract. In this paper we give a lower bound on the greatest number of edges of any n vertex graph that contains no three distinct paths of

More information

Packing nearly optimal Ramsey R(3, t) graphs

Packing nearly optimal Ramsey R(3, t) graphs Packing nearly optimal Ramsey R(3, t) graphs He Guo Joint work with Lutz Warnke Context of this talk Ramsey number R(s, t) R(s, t) := minimum n N such that every red/blue edge-coloring of complete n-vertex

More information

Applications of the Lopsided Lovász Local Lemma Regarding Hypergraphs

Applications of the Lopsided Lovász Local Lemma Regarding Hypergraphs Regarding Hypergraphs Ph.D. Dissertation Defense April 15, 2013 Overview The Local Lemmata 2-Coloring Hypergraphs with the Original Local Lemma Counting Derangements with the Lopsided Local Lemma Lopsided

More information

My favorite application using eigenvalues: Eigenvalues and the Graham-Pollak Theorem

My favorite application using eigenvalues: Eigenvalues and the Graham-Pollak Theorem My favorite application using eigenvalues: Eigenvalues and the Graham-Pollak Theorem Michael Tait Winter 2013 Abstract The famous Graham-Pollak Theorem states that one needs at least n 1 complete bipartite

More information

A Vector Space Analog of Lovasz s Version of the Kruskal-Katona Theorem

A Vector Space Analog of Lovasz s Version of the Kruskal-Katona Theorem Claude Tardif Non-canonical Independent sets in Graph Powers Let s 4 be an integer. The truncated s-simplex T s is defined as follows: V (T s ) = {(i, j) {0, 1,..., s 1} 2 : i j}, E(T s ) = {[(i, j), (,

More information