Phase transitions in the edge-triangle exponential random graph model

Size: px
Start display at page:

Download "Phase transitions in the edge-triangle exponential random graph model"

Transcription

1 Phase transitions in the edge-triangle exponential random graph model Mei Yin Department of Mathematics, Brown University April 28, 2014

2 Probability space: The set G n of all simple graphs G n on n vertices. Probability mass function: ( P β n(g n = exp n 2 (β 1 e(g n + β 2 t(g n ψn β. e(g n = 2 E(Gn and t(g n 2 n = densities of G n. Normalization constant ψn β : ψ β n = 1 n 2 log G n G n exp 6 T (Gn n 3 are the edge and triangle ( n 2 (β 1 e(g n + β 2 t(g n. Survey: Fienberg, Introduction to papers on the modeling and analysis of network data I & II. arxiv: &

3 (Razborov and others

4 β 2 = 0: ( P β n(g n = exp n 2 (β 1 e(g n ψn β ( = exp 2β 1 E(G n n 2 ψn β. Erdős-Rényi graph G(n, ρ, P ρ n(g n = ρ E(Gn (1 ρ( n 2 E(G n. Include edges independently with parameter ρ = e 2β 1 /(1 + e 2β 1. exp(n 2 ψn β = ( ( n 1 2 exp (2β 1 E(G n =. 1 ρ G n G n

5 What happens when β 2 0? Problem: Graphs with different numbers of vertices belong to different probability spaces! Solution: Theory of graph limits (graphons! (Lovász and coauthors; earlier work of Aldous and Hoover Graphon space W is the space of all symmetric measurable functions h(x, y from [0, 1] 2 into [0, 1]. The interval [0, 1] represents a continuum of vertices, and h(x, y denotes the probability of putting an edge between x and y.

6 What happens when β 2 0? Problem: Graphs with different numbers of vertices belong to different probability spaces! Solution: Theory of graph limits (graphons! (Lovász and coauthors; earlier work of Aldous and Hoover Graphon space W is the space of all symmetric measurable functions h(x, y from [0, 1] 2 into [0, 1]. The interval [0, 1] represents a continuum of vertices, and h(x, y denotes the probability of putting an edge between x and y.

7 Example: Erdős-Rényi graph G(n, ρ, h(x, y = ρ. Example: Any G n G n, { 1, if ( nx, ny is an edge in Gn ; h(x, y = 0, otherwise.

8 Large deviation: ( lim n ψβ n = max β 1 e(h + β 2 t(h I (hdxdy, h W [0,1] 2 where: e(h = [0,1] h(x, ydxdy, t(h = h(x, yh(y, zh(z, xdxdydz, [0,1] 3 and I : [0, 1] R is the function I (u = 1 2 u log u + 1 (1 u log(1 u. 2 Let F be the set of maximizers. G n lies close to F with high probability for large n. (Chatterjee and Varadhan; Chatterjee and Diaconis

9 β 2 0: Let n. G n behaves like the Erdős-Rényi graph G(n, u, where u [0, 1] maximizes l(u = β 1 u + β 2 u u log u 1 (1 u log(1 u. 2 (Chatterjee and Diaconis; Häggström and Jonasson; Bhamidi, Bresler, and Sly Critical point is ( 1 2 log 2 3 4, (Radin and Y

10 Fix β 1. Let n and then let β 2. G n looks like a 1 complete bipartite graph with fraction of edges randomly 1+e 2β 1 deleted. (Chatterjee and Diaconis Take β 1 = aβ 2 + b. Fix a and b. Let n and then let β 2. G n exhibits quantized behavior, jumping from one complete multipartite graph to another, and the jumps happen precisely at the normal lines of an infinite polytope. Idea: Minimize ae + t. (Y, Rinaldo, and Fadnavis; related work in Handcock; Rinaldo, Fienberg, and Zhou

11 What happens if we interchange the limits in n and β 2? Discontinuous transition along critical directions. Idea: Study the induced probability distribution on S n = {(e(g n, t(g n, G n G n } [0, 1] β = 60, β = 110, n = β 1 = 50, β 2 = 36, n = β 1 = 80, β 2 = 40, n = 30

12 Fix e. What happens if we only consider graphs whose edge density is close to e, say e(g n e < α? (conditional Probability mass function: ( P e,β n,α(g n = exp n 2 (βt(g n ψn,α e,β. 6 T (Gn t(g n = is the triangle density of G n 3 n. (conditional Normalization constant ψ e,β ψ e,β n,α = 1 n 2 log G n G n: e(g n e <α n,α: exp ( n 2 βt(g n.

13 Large deviation: where: lim lim α 0 n ψe,β n,α = max h W:e(h=e e(h = [0,1] ( βt(h I (hdxdy, [0,1] 2 h(x, ydxdy, t(h = h(x, yh(y, zh(z, xdxdydz, [0,1] 3 and I : [0, 1] R is the function I (u = 1 2 u log u + 1 (1 u log(1 u. 2 Let F be the set of maximizers. G n lies close to F with high (conditional probability for large n. (Kenyon and Y

14 Fix e and t. Consider graphons with e(h = e and t(h = t that minimize [0,1] I (hdxdy. Why are we interested? 2 They are useful for studying exponential models without constraints: ( = max e,t max h W β 1 e(h + β 2 t(h I (hdxdy [0,1] 2 ( max β 1 e + β 2 t I (hdxdy [0,1] 2, h W:e(h=e,t(h=t and with constraints: = max t max h W:e(h=e max h W:e(h=e,t(h=t ( βt(h I (hdxdy [0,1] 2 ( βt I (hdxdy. [0,1] 2

15 Special strip: Fix e = 1 2 and t e3. Graphon h(x, y that minimizes [0,1] 2 I (hdxdy is given by { 1 h(x, y = 2 + ɛ, if x < 1 2 < y or x > 1 2 > y; 1 2 ɛ, if x, y < 1 2 or x, y > 1 2, where 0 ɛ = (e 3 t (Radin and Sadun Then ( max βt(h I (hdxdy h W:e(h=e [0,1] 2 = max (β(e 3 ɛ 3 I ( 12 + ɛ. ɛ [0, 1 2 ] As β decreases from 0 to, G n jumps from being Erdős-Rényi to almost complete bipartite (with ɛ > 0.47 at β 2.7, skipping a large portion of the e = 1 2 line. (Kenyon and Y

16 Fix β 1 and β 2. (macro Euler-Lagrange equation for the maximizer: β 1 + 3β 2 h(x, zh(y, zdz = 1 2 log h(x, y 1 h(x, y. [0,1] (Chatterjee and Diaconis Fix e and t. (micro Euler-Lagrange equation for the maximizer: [0,1] h(x, zh(y, zdz = λ + µ log h(x, y 1 h(x, y. Plus: Stronger! Holds for the entire (e, t-space. Minus: The relationship between e, t and λ, µ is not as explicit. (Kenyon and Y Thank You!

17 Fix β 1 and β 2. (macro Euler-Lagrange equation for the maximizer: β 1 + 3β 2 h(x, zh(y, zdz = 1 2 log h(x, y 1 h(x, y. [0,1] (Chatterjee and Diaconis Fix e and t. (micro Euler-Lagrange equation for the maximizer: [0,1] h(x, zh(y, zdz = λ + µ log h(x, y 1 h(x, y. Plus: Stronger! Holds for the entire (e, t-space. Minus: The relationship between e, t and λ, µ is not as explicit. (Kenyon and Y Thank You!

Ground states for exponential random graphs

Ground states for exponential random graphs Ground states for exponential random graphs Mei Yin Department of Mathematics, University of Denver March 5, 2018 We propose a perturbative method to estimate the normalization constant in exponential

More information

Asymptotics and Extremal Properties of the Edge-Triangle Exponential Random Graph Model

Asymptotics and Extremal Properties of the Edge-Triangle Exponential Random Graph Model Asymptotics and Extremal Properties of the Edge-Triangle Exponential Random Graph Model Alessandro Rinaldo Carnegie Mellon University joint work with Mei Yin, Sukhada Fadnavis, Stephen E. Fienberg and

More information

ESTIMATING AND UNDERSTANDING EXPONENTIAL RANDOM GRAPH MODELS

ESTIMATING AND UNDERSTANDING EXPONENTIAL RANDOM GRAPH MODELS ESTIMATING AND UNDERSTANDING EXPONENTIAL RANDOM GRAPH MODELS SOURAV CHATTERJEE AND PERSI DIACONIS Abstract. We introduce a new method for estimating the parameters of exponential random graph models. The

More information

arxiv: v3 [math.pr] 6 Apr 2011

arxiv: v3 [math.pr] 6 Apr 2011 ESTIMATING AND UNDERSTANDING EXPONENTIAL RANDOM GRAPH MODELS SOURAV CHATTERJEE AND PERSI DIACONIS arxiv:1102.2650v3 [math.pr] 6 Apr 2011 Abstract. We introduce a new method for estimating the parameters

More information

arxiv: v2 [math.pr] 4 Jan 2018

arxiv: v2 [math.pr] 4 Jan 2018 Ground states for exponential random graphs Rajinder Mavi 1, a 2, b and Mei Yin 1 Department of Mathematics Michigan State University 619 Red Cedar Road arxiv:1706.09084v2 [math.pr] 4 Jan 2018 C212 Wells

More information

The large deviation principle for the Erdős-Rényi random graph

The large deviation principle for the Erdős-Rényi random graph The large deviation principle for the Erdős-Rényi random graph (Courant Institute, NYU) joint work with S. R. S. Varadhan Main objective: how to count graphs with a given property Only consider finite

More information

EMERGENT STRUCTURES IN LARGE NETWORKS

EMERGENT STRUCTURES IN LARGE NETWORKS Applied Probability Trust (29 November 2012) EMERGENT STRUCTURES IN LARGE NETWORKS DAVID ARISTOFF, University of Minnesota CHARLES RADIN, The University of Texas at Austin Abstract We consider a large

More information

Multipodal Structure and Phase Transitions in Large Constrained Graphs

Multipodal Structure and Phase Transitions in Large Constrained Graphs Multipodal Structure and Phase Transitions in Large Constrained Graphs Richard Kenyon Charles Radin Kui Ren Lorenzo Sadun May 3, 24 Abstract We study the asymptotics of large, simple, labeled graphs constrained

More information

Graph Limits: Some Open Problems

Graph Limits: Some Open Problems Graph Limits: Some Open Problems 1 Introduction Here are some questions from the open problems session that was held during the AIM Workshop Graph and Hypergraph Limits, Palo Alto, August 15-19, 2011.

More information

arxiv: v1 [math.pr] 14 Jul 2016

arxiv: v1 [math.pr] 14 Jul 2016 PHASE TRANSITIONS IN EDGE-WEIGHTED EXPONENTIAL RANDOM GRAPHS MEI YIN Jly 15, 2016 arxiv:1607.04084v1 [math.pr] 14 Jl 2016 Abstract. The exponential family of random graphs represents an important and challenging

More information

A LARGE DEVIATION PRINCIPLE FOR THE ERDŐS RÉNYI UNIFORM RANDOM GRAPH

A LARGE DEVIATION PRINCIPLE FOR THE ERDŐS RÉNYI UNIFORM RANDOM GRAPH A LARGE DEVIATION PRINCIPLE FOR THE ERDŐS RÉNYI UNIFORM RANDOM GRAPH AMIR DEMBO AND EYAL LUBETZKY Abstract. Starting with the large deviation principle (ldp) for the Erdős Rényi binomial random graph G(n,

More information

Vertex order in some large constrained random graphs

Vertex order in some large constrained random graphs Vertex order in some large constrained random graphs Hans Koch Abstract. In large random graphs with fixed edge density and triangle density, it has been observed numerically [9] that a typical graph is

More information

Stein s Method for concentration inequalities

Stein s Method for concentration inequalities Number of Triangles in Erdős-Rényi random graph, UC Berkeley joint work with Sourav Chatterjee, UC Berkeley Cornell Probability Summer School July 7, 2009 Number of triangles in Erdős-Rényi random graph

More information

Szemerédi s regularity lemma revisited. Lewis Memorial Lecture March 14, Terence Tao (UCLA)

Szemerédi s regularity lemma revisited. Lewis Memorial Lecture March 14, Terence Tao (UCLA) Szemerédi s regularity lemma revisited Lewis Memorial Lecture March 14, 2008 Terence Tao (UCLA) 1 Finding models of large dense graphs Suppose we are given a large dense graph G = (V, E), where V is a

More information

arxiv: v3 [math.pr] 19 Apr 2018

arxiv: v3 [math.pr] 19 Apr 2018 Exponential random graphs behave like mixtures of stochastic block models Ronen Eldan and Renan Gross arxiv:70707v3 [mathpr] 9 Apr 08 Abstract We study the behavior of exponential random graphs in both

More information

A Variational Principle for Permutations

A Variational Principle for Permutations A Variational Principle for Permutations Richard Kenyon Daniel Král Charles Radin Peter Winkler Abstract We define an entropy function for scaling limits of permutations, called permutons, and prove that

More information

Graph limits Graph convergence Approximate asymptotic properties of large graphs Extremal combinatorics/computer science : flag algebra method, proper

Graph limits Graph convergence Approximate asymptotic properties of large graphs Extremal combinatorics/computer science : flag algebra method, proper Jacob Cooper Dan Král Taísa Martins University of Warwick Monash University - Discrete Maths Research Group Graph limits Graph convergence Approximate asymptotic properties of large graphs Extremal combinatorics/computer

More information

BIRTHDAY PROBLEM, MONOCHROMATIC SUBGRAPHS & THE SECOND MOMENT PHENOMENON / 23

BIRTHDAY PROBLEM, MONOCHROMATIC SUBGRAPHS & THE SECOND MOMENT PHENOMENON / 23 BIRTHDAY PROBLEM, MONOCHROMATIC SUBGRAPHS & THE SECOND MOMENT PHENOMENON Somabha Mukherjee 1 University of Pennsylvania March 30, 2018 Joint work with Bhaswar B. Bhattacharya 2 and Sumit Mukherjee 3 1

More information

Clustering means geometry in sparse graphs. Dmitri Krioukov Northeastern University Workshop on Big Graphs UCSD, San Diego, CA, January 2016

Clustering means geometry in sparse graphs. Dmitri Krioukov Northeastern University Workshop on Big Graphs UCSD, San Diego, CA, January 2016 in sparse graphs Dmitri Krioukov Northeastern University Workshop on Big Graphs UCSD, San Diego, CA, January 206 Motivation Latent space models Successfully used in sociology since the 70ies Recently shown

More information

Multipodal Structure and Phase Transitions in Large Constrained Graphs

Multipodal Structure and Phase Transitions in Large Constrained Graphs Multipodal Structure and Phase Transitions in Large Constrained Graphs Richard Kenyon Charles Radin Kui Ren Lorenzo Sadun July 2, 26 Abstract We study the asymptotics of large, simple, labeled graphs constrained

More information

Permutations with fixed pattern densities

Permutations with fixed pattern densities arxiv:156.234v2 [math.co] 31 Aug 215 Permutations with fixed pattern densities Richard Kenyon Daniel Král Charles Radin Peter Winkler Abstract We study scaling limits of random permutations ( permutons

More information

1. Principle of large deviations

1. Principle of large deviations 1. Principle of large deviations This section will provide a short introduction to the Law of large deviations. The basic principle behind this theory centers on the observation that certain functions

More information

arxiv: v2 [math.pr] 22 Oct 2018

arxiv: v2 [math.pr] 22 Oct 2018 Breaking of ensemble equivalence for perturbed Erdős-Rényi random graphs arxiv:807.07750v [math.pr] Oct 08 F. den Hollander M. Mandjes A. Roccaverde 3 N.J. Starreveld 4 October 3, 08 Abstract In a previous

More information

3.2 Configuration model

3.2 Configuration model 3.2 Configuration model 3.2.1 Definition. Basic properties Assume that the vector d = (d 1,..., d n ) is graphical, i.e., there exits a graph on n vertices such that vertex 1 has degree d 1, vertex 2 has

More information

Random Geometric Graphs

Random Geometric Graphs Random Geometric Graphs Mathew D. Penrose University of Bath, UK Networks: stochastic models for populations and epidemics ICMS, Edinburgh September 2011 1 MODELS of RANDOM GRAPHS Erdos-Renyi G(n, p):

More information

McGill University Math 354: Honors Analysis 3

McGill University Math 354: Honors Analysis 3 Practice problems McGill University Math 354: Honors Analysis 3 not for credit Problem 1. Determine whether the family of F = {f n } functions f n (x) = x n is uniformly equicontinuous. 1st Solution: The

More information

Matrix estimation by Universal Singular Value Thresholding

Matrix estimation by Universal Singular Value Thresholding Matrix estimation by Universal Singular Value Thresholding Courant Institute, NYU Let us begin with an example: Suppose that we have an undirected random graph G on n vertices. Model: There is a real symmetric

More information

Hypergraph Turán Problems (IPAM Tutorial)

Hypergraph Turán Problems (IPAM Tutorial) (IPAM Tutorial) Peter Keevash School of Mathematical Sciences, Queen Mary, University of London. p.keevash@qmul.ac.uk Introduction: From graphs to hypergraphs Mantel s Theorem (1907) The largest graph

More information

arxiv: v1 [math.pr] 11 Dec 2008

arxiv: v1 [math.pr] 11 Dec 2008 Mixing time of exponential random graphs Shankar Bhamidi Guy Bresler Allan Sly arxiv:081.65v1 [math.pr] 11 Dec 008 Abstract A variety of random graph models have been developed in recent years to study

More information

Large Deviations and Random Graphs

Large Deviations and Random Graphs Large Deviations and Random Graphs S.R.S. Varadhan Courant Institute, NYU UC Irvine March 25, 2011 Large DeviationsandRandom Graphs p.1/39 Joint work with Sourav Chatterjee. Large DeviationsandRandom Graphs

More information

Statistical Physics on Sparse Random Graphs: Mathematical Perspective

Statistical Physics on Sparse Random Graphs: Mathematical Perspective Statistical Physics on Sparse Random Graphs: Mathematical Perspective Amir Dembo Stanford University Northwestern, July 19, 2016 x 5 x 6 Factor model [DM10, Eqn. (1.4)] x 1 x 2 x 3 x 4 x 9 x8 x 7 x 10

More information

Chapter 2. Limits and Continuity. 2.1 Rates of change and Tangents to Curves. The average Rate of change of y = f(x) with respect to x over the

Chapter 2. Limits and Continuity. 2.1 Rates of change and Tangents to Curves. The average Rate of change of y = f(x) with respect to x over the Chapter 2 Limits and Continuity 2.1 Rates of change and Tangents to Curves Definition 2.1.1 : interval [x 1, x 2 ] is The average Rate of change of y = f(x) with respect to x over the y x = f(x 2) f(x

More information

The function graphed below is continuous everywhere. The function graphed below is NOT continuous everywhere, it is discontinuous at x 2 and

The function graphed below is continuous everywhere. The function graphed below is NOT continuous everywhere, it is discontinuous at x 2 and Section 1.4 Continuity A function is a continuous at a point if its graph has no gaps, holes, breaks or jumps at that point. If a function is not continuous at a point, then we say it is discontinuous

More information

Bayesian nonparametric models of sparse and exchangeable random graphs

Bayesian nonparametric models of sparse and exchangeable random graphs Bayesian nonparametric models of sparse and exchangeable random graphs F. Caron & E. Fox Technical Report Discussion led by Esther Salazar Duke University May 16, 2014 (Reading group) May 16, 2014 1 /

More information

The β-model for random hypergraphs

The β-model for random hypergraphs The β-model for random hypergraphs espina Stasi (IIT) ased on joint work with Kayvan Sadeghi (MU) Sonja Petrović (IIT) lessandro Rinaldo (MU) Stephen E. Fienberg (MU) lgebraic Statistics 2014 Illinois

More information

arxiv: v3 [math.pr] 18 Aug 2017

arxiv: v3 [math.pr] 18 Aug 2017 Sparse Exchangeable Graphs and Their Limits via Graphon Processes arxiv:1601.07134v3 [math.pr] 18 Aug 2017 Christian Borgs Microsoft Research One Memorial Drive Cambridge, MA 02142, USA Jennifer T. Chayes

More information

Random Geometric Graphs

Random Geometric Graphs Random Geometric Graphs Mathew D. Penrose University of Bath, UK SAMBa Symposium (Talk 2) University of Bath November 2014 1 MODELS of RANDOM GRAPHS Erdos-Renyi G(n, p): start with the complete n-graph,

More information

September Math Course: First Order Derivative

September Math Course: First Order Derivative September Math Course: First Order Derivative Arina Nikandrova Functions Function y = f (x), where x is either be a scalar or a vector of several variables (x,..., x n ), can be thought of as a rule which

More information

Consistency Under Sampling of Exponential Random Graph Models

Consistency Under Sampling of Exponential Random Graph Models Consistency Under Sampling of Exponential Random Graph Models Cosma Shalizi and Alessandro Rinaldo Summary by: Elly Kaizar Remember ERGMs (Exponential Random Graph Models) Exponential family models Sufficient

More information

Applications of the Lopsided Lovász Local Lemma Regarding Hypergraphs

Applications of the Lopsided Lovász Local Lemma Regarding Hypergraphs Regarding Hypergraphs Ph.D. Dissertation Defense April 15, 2013 Overview The Local Lemmata 2-Coloring Hypergraphs with the Original Local Lemma Counting Derangements with the Lopsided Local Lemma Lopsided

More information

Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 3 April 5, 2013 Due: April 19, 2013

Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 3 April 5, 2013 Due: April 19, 2013 Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 3 April 5, 2013 Due: April 19, 2013 A. Kernels 1. Let X be a finite set. Show that the kernel

More information

SPIN SYSTEMS: HARDNESS OF APPROXIMATE COUNTING VIA PHASE TRANSITIONS

SPIN SYSTEMS: HARDNESS OF APPROXIMATE COUNTING VIA PHASE TRANSITIONS SPIN SYSTEMS: HARDNESS OF APPROXIMATE COUNTING VIA PHASE TRANSITIONS Andreas Galanis Joint work with: Jin-Yi Cai Leslie Ann Goldberg Heng Guo Mark Jerrum Daniel Štefankovič Eric Vigoda The Power of Randomness

More information

arxiv: v2 [math.st] 21 Nov 2017

arxiv: v2 [math.st] 21 Nov 2017 arxiv:1701.08420v2 [math.st] 21 Nov 2017 Random Networks, Graphical Models, and Exchangeability Steffen Lauritzen University of Copenhagen Kayvan Sadeghi University of Cambridge November 22, 2017 Abstract

More information

Differentiation and Integration of Fourier Series

Differentiation and Integration of Fourier Series Differentiation and Integration of Fourier Series Philippe B. Laval KSU Today Philippe B. Laval (KSU) Fourier Series Today 1 / 12 Introduction When doing manipulations with infinite sums, we must remember

More information

EXCHANGEABLE MARKOV PROCESSES ON GRAPHS: FELLER CASE

EXCHANGEABLE MARKOV PROCESSES ON GRAPHS: FELLER CASE EXCHANGEABLE MARKOV PROCESSES ON GRAPHS: FELLER CASE HARRY CRANE Abstract. The transition law of every exchangeable Feller process on the space of countable graphs is determined by a σ-finite measure on

More information

Graph Detection and Estimation Theory

Graph Detection and Estimation Theory Introduction Detection Estimation Graph Detection and Estimation Theory (and algorithms, and applications) Patrick J. Wolfe Statistics and Information Sciences Laboratory (SISL) School of Engineering and

More information

Almost giant clusters for percolation on large trees

Almost giant clusters for percolation on large trees for percolation on large trees Institut für Mathematik Universität Zürich Erdős-Rényi random graph model in supercritical regime G n = complete graph with n vertices Bond percolation with parameter p(n)

More information

A Note On Large Deviation Theory and Beyond

A Note On Large Deviation Theory and Beyond A Note On Large Deviation Theory and Beyond Jin Feng In this set of notes, we will develop and explain a whole mathematical theory which can be highly summarized through one simple observation ( ) lim

More information

A note on perfect simulation for exponential random graph models

A note on perfect simulation for exponential random graph models A note on perfect simulation for exponential random graph models A. Cerqueira, A. Garivier and F. Leonardi October 4, 017 arxiv:1710.00873v1 [stat.co] Oct 017 Abstract In this paper we propose a perfect

More information

Special classical solutions: Solitons

Special classical solutions: Solitons Special classical solutions: Solitons by Suresh Govindarajan, Department of Physics, IIT Madras September 25, 2014 The Lagrangian density for a single scalar field is given by L = 1 2 µφ µ φ Uφ), 1) where

More information

ter. on Can we get a still better result? Yes, by making the rectangles still smaller. As we make the rectangles smaller and smaller, the

ter. on Can we get a still better result? Yes, by making the rectangles still smaller. As we make the rectangles smaller and smaller, the Area and Tangent Problem Calculus is motivated by two main problems. The first is the area problem. It is a well known result that the area of a rectangle with length l and width w is given by A = wl.

More information

Lecture 7: The Subgraph Isomorphism Problem

Lecture 7: The Subgraph Isomorphism Problem CSC2429, MAT1304: Circuit Complexity October 25, 2016 Lecture 7: The Subgraph Isomorphism Problem Instructor: Benjamin Rossman 1 The Problem SUB(G) Convention 1 (Graphs). Graphs are finite simple graphs

More information

Discrete methods for statistical network analysis: Exact tests for goodness of fit for network data Key player: sampling algorithms

Discrete methods for statistical network analysis: Exact tests for goodness of fit for network data Key player: sampling algorithms Discrete methods for statistical network analysis: Exact tests for goodness of fit for network data Key player: sampling algorithms Sonja Petrović Illinois Institute of Technology Chicago, USA Joint work

More information

MACROSCOPIC VARIABLES, THERMAL EQUILIBRIUM. Contents AND BOLTZMANN ENTROPY. 1 Macroscopic Variables 3. 2 Local quantities and Hydrodynamics fields 4

MACROSCOPIC VARIABLES, THERMAL EQUILIBRIUM. Contents AND BOLTZMANN ENTROPY. 1 Macroscopic Variables 3. 2 Local quantities and Hydrodynamics fields 4 MACROSCOPIC VARIABLES, THERMAL EQUILIBRIUM AND BOLTZMANN ENTROPY Contents 1 Macroscopic Variables 3 2 Local quantities and Hydrodynamics fields 4 3 Coarse-graining 6 4 Thermal equilibrium 9 5 Two systems

More information

Multipodal Structure and Phase Transitions in Large Constrained Graphs

Multipodal Structure and Phase Transitions in Large Constrained Graphs J Stat Phys (27) 68:233 258 DOI.7/s955-7-84- Multipodal Structure and Phase Transitions in Large Constrained Graphs Richard Kenyon Charles Radin 2 Kui Ren 2 Lorenzo Sadun 2 Received: 9 January 27 / Accepted:

More information

On subgraphs of large girth

On subgraphs of large girth 1/34 On subgraphs of large girth In Honor of the 50th Birthday of Thomas Vojtěch Rödl rodl@mathcs.emory.edu joint work with Domingos Dellamonica May, 2012 2/34 3/34 4/34 5/34 6/34 7/34 ARRANGEABILITY AND

More information

Latent voter model on random regular graphs

Latent voter model on random regular graphs Latent voter model on random regular graphs Shirshendu Chatterjee Cornell University (visiting Duke U.) Work in progress with Rick Durrett April 25, 2011 Outline Definition of voter model and duality with

More information

Tree Decomposition of Graphs

Tree Decomposition of Graphs Tree Decomposition of Graphs Raphael Yuster Department of Mathematics University of Haifa-ORANIM Tivon 36006, Israel. e-mail: raphy@math.tau.ac.il Abstract Let H be a tree on h 2 vertices. It is shown

More information

A Graphon-based Framework for Modeling Large Networks

A Graphon-based Framework for Modeling Large Networks A Graphon-based Framework for Modeling Large Networks Ran He Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA

More information

The Lopsided Lovász Local Lemma

The Lopsided Lovász Local Lemma Joint work with Linyuan Lu and László Székely Georgia Southern University April 27, 2013 The lopsided Lovász local lemma can establish the existence of objects satisfying several weakly correlated conditions

More information

Root test. Root test Consider the limit L = lim n a n, suppose it exists. L < 1. L > 1 (including L = ) L = 1 the test is inconclusive.

Root test. Root test Consider the limit L = lim n a n, suppose it exists. L < 1. L > 1 (including L = ) L = 1 the test is inconclusive. Root test Root test n Consider the limit L = lim n a n, suppose it exists. L < 1 a n is absolutely convergent (thus convergent); L > 1 (including L = ) a n is divergent L = 1 the test is inconclusive.

More information

THE ENTROPY FUNCTION OF AN INVARIANT MEASURE

THE ENTROPY FUNCTION OF AN INVARIANT MEASURE THE ENTROPY FUNCTION OF AN INVARIANT MEASURE NATHANAEL ACKERMAN, CAMERON FREER, AND REHANA PATEL Abstract. Given a countable relational language L, we consider probability measures on the space of L-structures

More information

The typical structure of sparse K r+1 -free graphs

The typical structure of sparse K r+1 -free graphs The typical structure of sparse K r+1 -free graphs Lutz Warnke University of Cambridge (joint work with József Balogh, Robert Morris, and Wojciech Samotij) H-free graphs / Turán s theorem Definition Let

More information

Statistical Inference on Large Contingency Tables: Convergence, Testability, Stability. COMPSTAT 2010 Paris, August 23, 2010

Statistical Inference on Large Contingency Tables: Convergence, Testability, Stability. COMPSTAT 2010 Paris, August 23, 2010 Statistical Inference on Large Contingency Tables: Convergence, Testability, Stability Marianna Bolla Institute of Mathematics Budapest University of Technology and Economics marib@math.bme.hu COMPSTAT

More information

INVARIANT MEASURES CONCENTRATED ON COUNTABLE STRUCTURES

INVARIANT MEASURES CONCENTRATED ON COUNTABLE STRUCTURES INVARIANT MEASURES CONCENTRATED ON COUNTABLE STRUCTURES NATHANAEL ACKERMAN, CAMERON FREER, AND REHANA PATEL Abstract. Let L be a countable language. We say that a countable infinite L-structure M admits

More information

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 Chapter 11 Taylor Series Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 First-Order Approximation We want to approximate function f by some simple function. Best possible approximation

More information

Induced subgraphs with many repeated degrees

Induced subgraphs with many repeated degrees Induced subgraphs with many repeated degrees Yair Caro Raphael Yuster arxiv:1811.071v1 [math.co] 17 Nov 018 Abstract Erdős, Fajtlowicz and Staton asked for the least integer f(k such that every graph with

More information

Edge-and vertex-reinforced random walks with super-linear reinforcement on infinite graphs

Edge-and vertex-reinforced random walks with super-linear reinforcement on infinite graphs Edge-and vertex-reinforced random walks with super-linear reinforcement on infinite graphs Codina Cotar University College London December 2016, Cambridge Edge-reinforced random walks (ERRW): random walks

More information

The number of edge colorings with no monochromatic cliques

The number of edge colorings with no monochromatic cliques The number of edge colorings with no monochromatic cliques Noga Alon József Balogh Peter Keevash Benny Sudaov Abstract Let F n, r, ) denote the maximum possible number of distinct edge-colorings of a simple

More information

Elusive problems in extremal graph theory

Elusive problems in extremal graph theory Elusive problems in extremal graph theory Andrzej Grzesik (Krakow) Dan Král (Warwick) László Miklós Lovász (MIT/Stanford) 2/5/27 Overview of talk uniqueness of extremal configurations motivation and formulation

More information

Probabilistic Foundations of Statistical Network Analysis Chapter 3: Network sampling

Probabilistic Foundations of Statistical Network Analysis Chapter 3: Network sampling Probabilistic Foundations of Statistical Network Analysis Chapter 3: Network sampling Harry Crane Based on Chapter 3 of Probabilistic Foundations of Statistical Network Analysis Book website: http://wwwharrycranecom/networkshtml

More information

On the number of circuits in random graphs. Guilhem Semerjian. [ joint work with Enzo Marinari and Rémi Monasson ]

On the number of circuits in random graphs. Guilhem Semerjian. [ joint work with Enzo Marinari and Rémi Monasson ] On the number of circuits in random graphs Guilhem Semerjian [ joint work with Enzo Marinari and Rémi Monasson ] [ Europhys. Lett. 73, 8 (2006) ] and [ cond-mat/0603657 ] Orsay 13-04-2006 Outline of the

More information

Copyright PreCalculusCoach.com

Copyright PreCalculusCoach.com Continuit, End Behavior, and Limits Assignment Determine whether each function is continuous at the given -values. Justif using the continuit test. If discontinuous, identif the tpe of discontinuit as

More information

CH 2: Limits and Derivatives

CH 2: Limits and Derivatives 2 The tangent and velocity problems CH 2: Limits and Derivatives the tangent line to a curve at a point P, is the line that has the same slope as the curve at that point P, ie the slope of the tangent

More information

Characterizing extremal limits

Characterizing extremal limits Characterizing extremal limits Oleg Pikhurko University of Warwick ICERM, 11 February 2015 Rademacher Problem g(n, m) := min{#k 3 (G) : v(g) = n, e(g) = m} Mantel 1906, Turán 41: max{m : g(n, m) = 0} =

More information

M361 Theory of functions of a complex variable

M361 Theory of functions of a complex variable M361 Theory of functions of a complex variable T. Perutz U.T. Austin, Fall 2012 Lecture 4: Exponentials and logarithms We have already been making free use of the sine and cosine functions, cos: R R, sin:

More information

Critical percolation on networks with given degrees. Souvik Dhara

Critical percolation on networks with given degrees. Souvik Dhara Critical percolation on networks with given degrees Souvik Dhara Microsoft Research and MIT Mathematics Montréal Summer Workshop: Challenges in Probability and Mathematical Physics June 9, 2018 1 Remco

More information

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series Definition 1 Fourier Series A function f is said to be piecewise continuous on [a, b] if there exists finitely many points a = x 1 < x 2

More information

A note on network reliability

A note on network reliability A note on network reliability Noga Alon Institute for Advanced Study, Princeton, NJ 08540 and Department of Mathematics Tel Aviv University, Tel Aviv, Israel Let G = (V, E) be a loopless undirected multigraph,

More information

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes Limits at Infinity If a function f has a domain that is unbounded, that is, one of the endpoints of its domain is ±, we can determine the long term behavior of the function using a it at infinity. Definition

More information

The diameter and mixing time of critical random graphs.

The diameter and mixing time of critical random graphs. The diameter and mixing time of critical random graphs. March 14, 2007 Joint work with: Asaf Nachmias. Background The Erdos and Rényi random graph G(n, p) is obtained from the complete graph on n vertices

More information

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2)

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2) 14:17 11/16/2 TOPIC. Convergence in distribution and related notions. This section studies the notion of the so-called convergence in distribution of real random variables. This is the kind of convergence

More information

Parameter estimators of sparse random intersection graphs with thinned communities

Parameter estimators of sparse random intersection graphs with thinned communities Parameter estimators of sparse random intersection graphs with thinned communities Lasse Leskelä Aalto University Johan van Leeuwaarden Eindhoven University of Technology Joona Karjalainen Aalto University

More information

arxiv: v2 [math.co] 11 Mar 2008

arxiv: v2 [math.co] 11 Mar 2008 Testing properties of graphs and functions arxiv:0803.1248v2 [math.co] 11 Mar 2008 Contents László Lovász Institute of Mathematics, Eötvös Loránd University, Budapest and Balázs Szegedy Department of Mathematics,

More information

Calculus. Central role in much of modern science Physics, especially kinematics and electrodynamics Economics, engineering, medicine, chemistry, etc.

Calculus. Central role in much of modern science Physics, especially kinematics and electrodynamics Economics, engineering, medicine, chemistry, etc. Calculus Calculus - the study of change, as related to functions Formally co-developed around the 1660 s by Newton and Leibniz Two main branches - differential and integral Central role in much of modern

More information

Mixing times via super-fast coupling

Mixing times via super-fast coupling s via super-fast coupling Yevgeniy Kovchegov Department of Mathematics Oregon State University Outline 1 About 2 Definition Coupling Result. About Outline 1 About 2 Definition Coupling Result. About Coauthor

More information

Correlation Detection and an Operational Interpretation of the Rényi Mutual Information

Correlation Detection and an Operational Interpretation of the Rényi Mutual Information Correlation Detection and an Operational Interpretation of the Rényi Mutual Information Masahito Hayashi 1, Marco Tomamichel 2 1 Graduate School of Mathematics, Nagoya University, and Centre for Quantum

More information

A Potpourri of Nonlinear Algebra

A Potpourri of Nonlinear Algebra a a 2 a 3 + c c 2 c 3 =2, a a 3 b 2 + c c 3 d 2 =0, a 2 a 3 b + c 2 c 3 d =0, a 3 b b 2 + c 3 d d 2 = 4, a a 2 b 3 + c c 2 d 3 =0, a b 2 b 3 + c d 2 d 3 = 4, a 2 b b 3 + c 2 d 3 d =4, b b 2 b 3 + d d 2

More information

Random graphs: Random geometric graphs

Random graphs: Random geometric graphs Random graphs: Random geometric graphs Mathew Penrose (University of Bath) Oberwolfach workshop Stochastic analysis for Poisson point processes February 2013 athew Penrose (Bath), Oberwolfach February

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. Cut distance identifying graphon parameters over weak* limits

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. Cut distance identifying graphon parameters over weak* limits INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES Cut distance identifying graphon parameters over weak* limits Martin Doležal Jan Grebík Jan Hladký Israel Rocha Václav Rozhoň Preprint No. 49-2018

More information

On set systems with a threshold property

On set systems with a threshold property On set systems with a threshold property Zoltán Füredi 1 Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, and Rényi Institute of Mathematics of the Hungarian

More information

Chapter 2: Functions, Limits and Continuity

Chapter 2: Functions, Limits and Continuity Chapter 2: Functions, Limits and Continuity Functions Limits Continuity Chapter 2: Functions, Limits and Continuity 1 Functions Functions are the major tools for describing the real world in mathematical

More information

Computability of 0-1 Laws

Computability of 0-1 Laws Computability of 0-1 Laws Nate Ackerman University of California, Berkeley Stanford Logic Seminar December 7, 2010 0-1 Law For First Order Logic Lets begin by reviewing what the 0-1 law for first order

More information

Weakly interacting particle systems on graphs: from dense to sparse

Weakly interacting particle systems on graphs: from dense to sparse Weakly interacting particle systems on graphs: from dense to sparse Ruoyu Wu University of Michigan (Based on joint works with Daniel Lacker and Kavita Ramanan) USC Math Finance Colloquium October 29,

More information

PERCOLATION IN SELFISH SOCIAL NETWORKS

PERCOLATION IN SELFISH SOCIAL NETWORKS PERCOLATION IN SELFISH SOCIAL NETWORKS Charles Bordenave UC Berkeley joint work with David Aldous (UC Berkeley) PARADIGM OF SOCIAL NETWORKS OBJECTIVE - Understand better the dynamics of social behaviors

More information

APPROXIMATION AND GENERALIZED LOWER ORDER OF ENTIRE FUNCTIONS OF SEVERAL COMPLEX VARIABLES. Susheel Kumar and G. S. Srivastava (Received June, 2013)

APPROXIMATION AND GENERALIZED LOWER ORDER OF ENTIRE FUNCTIONS OF SEVERAL COMPLEX VARIABLES. Susheel Kumar and G. S. Srivastava (Received June, 2013) NEW ZEALAND JOURNAL OF MATHEMATICS Volume 45 (2015), 11 17 APPROXIMATION AND GENERALIZED LOWER ORDER OF ENTIRE FUNCTIONS OF SEVERAL COMPLEX VARIABLES Susheel Kumar and G. S. Srivastava (Received June,

More information

Brief review of Quantum Mechanics (QM)

Brief review of Quantum Mechanics (QM) Brief review of Quantum Mechanics (QM) Note: This is a collection of several formulae and facts that we will use throughout the course. It is by no means a complete discussion of QM, nor will I attempt

More information

Hyperbolic metric spaces and their applications to large complex real world networks II

Hyperbolic metric spaces and their applications to large complex real world networks II Hyperbolic metric spaces Hyperbolic metric spaces and their applications to large complex real world networks II Gabriel H. Tucci Bell Laboratories Alcatel-Lucent May 17, 2010 Tucci Hyperbolic metric spaces

More information

Typical quantum states at finite temperature

Typical quantum states at finite temperature Typical quantum states at finite temperature How should one think about typical quantum states at finite temperature? Density Matrices versus pure states Why eigenstates are not typical Measuring the heat

More information

Undecidability of Linear Inequalities Between Graph Homomorphism Densities

Undecidability of Linear Inequalities Between Graph Homomorphism Densities Undecidability of Linear Inequalities Between Graph Homomorphism Densities Hamed Hatami joint work with Sergey Norin School of Computer Science McGill University December 4, 2013 Hamed Hatami (McGill University)

More information