Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes

Size: px
Start display at page:

Download "Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes"

Transcription

1 Limits at Infinity If a function f has a domain that is unbounded, that is, one of the endpoints of its domain is ±, we can determine the long term behavior of the function using a it at infinity. Definition (Limits at Infinity) We say that f(x) = x L if f(x) can be made arbitrarily close to L by making x sufficiently, and we say that x f(x) = M if f(x) can be made arbitrarily close to M by making x sufficiently Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 2/29 Horizontal Asymptotes Horizontal Asymptotes If then the graph of f has a, and if f(x) = x L f(x) = M x then the graph of f has a horizontal asymptote If f has an unbounded domain, but f(x) does not approach a finite value as x goes to ±, there are two possibilities: the it at infinity the it at infinity In either case, the graph of f does not have a horizontal asymptote. Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 3/29

2 Limit of a Reciprocal Power Limit of a Reciprocal Power If r > 0, then and x x if r is a positive integer or is a fraction that results is an even root. 1 x r 1 x r Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 4/29 The End Behavior of a Polynomial Limits at Infinity for Polynomials For the n th degree polynomial function p(x) = a n x n + a n 1 x n a 2 x 2 + a 1 x + a 0 the the end behavior is given by the it at infinity p(x) which is always infinite and whose sign depends only on the sign of a n and on whether n even or odd. Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 5/29

3 Evaluating the Limit at Infinity of a Polynomial The at infinity of a polynomial is ( p(x) = an x n + a n 1 x n a 2 x 2 ) + a 1 x + a 0 Using the the it at infinity of a reciprocal power, gives p(x) = All terms except the first Thus, p(x) Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 6/29 Evaluating the Limit at Infinity of a Polynomial Now, if n > 0, then n even and n odd Thus, x a nx n + a n 1 x n a 2 x 2 + a 1 x + a 0 = { + if an > 0 if a n < 0 and a nx n + a n 1 x n a 2 x 2 + a 1 x + a 0 = x { + if n even & an > 0 or n odd & a n < 0 if n even & a n < 0 or n odd & a n > 0 Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 7/29

4 Example 17 Limit of Rational Function Evaluate the it x 4x 3 3x 2 + 2x 4 5x 3 + 2x 2 4x + 3 Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 8/29 Solution: Example 17 To make use of the its just discussed, the expression must involve terms with reciprocal powers. Thus divide the numerator and denominator by the highest power of x in the denominator, here. This gives x 4x 3 3x 2 + 2x 4 5x 3 + 2x 2 4x + 3 = Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 9/29

5 Solution: Example 17 continue An identical argument for x shows that x 4x 3 3x 2 + 2x 4 Hence the graph of the rational function 5x 3 + 2x 2 4x + 3 = 4 5 r(x) = 4x3 3x 2 + 2x 4 5x 3 + 2x 2 4x + 3 has a horizontal asymptote along the Horizontal Asymptotes of a Rational Function In general, for a rational function in which the degrees of polynomials in the numerator and denominator are equal, the it at ± equals, and the function has a horizontal asymptote along a line Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 10/29 Example 18 More Rational Functions Evaluate the its (a) 4x 3 3x 2 + 2x 4 5x 4 + 2x 2 4x + 3 (b) 4x 4 3x 2 + 2x 4 5x 3 + 2x 2 4x + 3 Solution: (a) 4x 3 3x 2 + 2x 4 5x 4 + 2x 2 4x + 3 (b) 4x 4 3x 2 + 2x 4 5x 3 + 2x 2 4x + 3 Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 11/29

6 Limits at Infinity for the Exponential Function The graph of the natural exponential function f(x) = e x looks like this. The graph of the function g(x) = e x is obtained by reflecting across the. It looks like this. Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 12/29 Limits at Infinity for the Exponential Function Limits at Infinity for the Exponential Function From the graphs just shown and x ex and x ex x e x and x e x Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 13/29

7 Example 19 Limits of Exponential Functions Evaluate the its (a) x 2e x + 1 e x + 2 Solution: (a) Since x ex = 0 we have x 2e x + 1 e x + 2 (b) x 2e x + 1 e x + 2 (b) Now we use x e x = 0. To do the we first multiply numerator and denominator by to give x 2e x + 1 e x + 2 Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 14/29 Solution: Example 19 continued The graph of the function f(x) = 2ex + 1 e x has a horizontal asymptotes + 2 along and. Its graph looks like this. Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 15/29

8 Horizontal Asymptotes for Functions Involving the Exponential Function Horizontal Asymptotes for Exponential Functions For a function involving an exponential function the its at + and can be different. This means that such functions can have a different horizontal asymptote on the right (x ) and on the left (x ). Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 16/29 Function Dominance When comparing functions, an important question is: which function grows faster as x gets large? This question can be answered using its at infinity. Function Dominance For two function f and g, if x f(x) g(x) = 0 we say that g dominates f as x gets large and positive. Equivalently, we have g(x) x f(x) = Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 17/29

9 Example 20 Exponential and Power Functions Consider the family of functions f(x) = x n e x = x e x for x 0 where the parameter n is a positive integer. Based on these graphs what can you conclude about the dominance relationship between the exponential function e x and the power function x n? Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 18/29 Solution: Example 20 From the graphs it appears that for any integer n 1 we have since for each of the graphs the Thus, we conclude that x x n e x In other words, Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 19/29

10 Vertical Asymptotes and Infinite Limits Where Are Vertical Asymptotes? Where the function has an infinite it. There may be no vertical asymptotes, or many. A rational function has a vertical asymptote for any x value where the denominator is zero but the numerator is non-zero. Some functions have vertical asymptotes without having an obvious denominator to make equal to zero. For example, tan x has vertical asymptotes at any odd multiple of π 2. Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 20/29 Horizontal Asymptotes and Limits at Infinity What Are the Horizontal Asymptotes? To identify any horizontal asymptotes for a function determine the its at infinity. There can be at most two different horizontal asymptotes: on the right (x ) and on the left (x ). A rational function can have only one horizontal asymptote. If the degree of the denominator and numerator are equal, there is a non-zero horizontal asymptote. If the degree of the denominator is greater than the degree of the numerator, there is a horizontal asymptote at y = 0. If the degree of the denominator is less than the degree of the numerator, there is no horizontal asymptote. Functions involving exponential functions may have different horizontal asymptotes on the left and the right. Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 21/29

11 Example 21 Investigating Asymptotes For each function below, determine any vertical and horizontal asymptotes and sketch the graph of the function. For the vertical asymptote(s) determine the behavior of the function on either side of the asymptote by calculating the appropriate one-sided infinite its. (a) f(x) = 1 x + 1 (b) g(x) = x x (c) h(x) = (d) F(x) = (e) G(x) = (f) H(x) = x x 2 x 3 Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 22/29 Solution: Example 21(a) For f(x) = 1 x + 1 there is a vertical asymptote where The behavior on either side of the vertical asymptote at is given by Further, 1 x + 1 Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 23/29

12 Solution: Example 21(b) For g(x) = x x + 1 again there is a vertical asymptote at Now the behavior on either side of the vertical asymptote at is given by Further, x x + 1 Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 24/29 Solution: Example 21(c) For h(x) = 1 there is still a vertical asymptote at the behavior on either side of the vertical asymptote at is given by Now Further, 1 Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 25/29

13 Solution: Example 21(d) For F(x) = x there is still a vertical asymptote at the behavior on either side of the vertical asymptote at is given by Now Further, x Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 26/29 Solution: Example 21(e) For G(x) = x 2 there is still a vertical asymptote at the behavior on either side of the vertical asymptote at is given by Now Further, x 2 Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 27/29

14 Solution: Example 21(f) For H(x) = x 3 there is still a vertical asymptote at the behavior on either side of the vertical asymptote at is given by Now Further, x 3 Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 28/29 Solution: Example 21(f) continued Note that x 3 Now 3x + 2 so we say that as x ± the function H(x) behaves like Clint Lee Math 112 Lecture 5: Limits at Infinity and Asymptotes 29/29

Math 115 Spring 11 Written Homework 10 Solutions

Math 115 Spring 11 Written Homework 10 Solutions Math 5 Spring Written Homework 0 Solutions. For following its, state what indeterminate form the its are in and evaluate the its. (a) 3x 4x 4 x x 8 Solution: This is in indeterminate form 0. Algebraically,

More information

6.1 Polynomial Functions

6.1 Polynomial Functions 6.1 Polynomial Functions Definition. A polynomial function is any function p(x) of the form p(x) = p n x n + p n 1 x n 1 + + p 2 x 2 + p 1 x + p 0 where all of the exponents are non-negative integers and

More information

Chapter 2. Limits and Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs

Chapter 2. Limits and Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs 2.6 Limits Involving Infinity; Asymptotes of Graphs Chapter 2. Limits and Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs Definition. Formal Definition of Limits at Infinity.. We say that

More information

EQ: What are limits, and how do we find them? Finite limits as x ± Horizontal Asymptote. Example Horizontal Asymptote

EQ: What are limits, and how do we find them? Finite limits as x ± Horizontal Asymptote. Example Horizontal Asymptote Finite limits as x ± The symbol for infinity ( ) does not represent a real number. We use to describe the behavior of a function when the values in its domain or range outgrow all finite bounds. For example,

More information

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS RECALL: VERTICAL ASYMPTOTES Remember that for a rational function, vertical asymptotes occur at values of x = a which have infinite its (either positive or

More information

Section Properties of Rational Expressions

Section Properties of Rational Expressions 88 Section. - Properties of Rational Expressions Recall that a rational number is any number that can be written as the ratio of two integers where the integer in the denominator cannot be. Rational Numbers:

More information

3 Polynomial and Rational Functions

3 Polynomial and Rational Functions 3 Polynomial and Rational Functions 3.1 Polynomial Functions and their Graphs So far, we have learned how to graph polynomials of degree 0, 1, and. Degree 0 polynomial functions are things like f(x) =,

More information

2.6. Graphs of Rational Functions. Copyright 2011 Pearson, Inc.

2.6. Graphs of Rational Functions. Copyright 2011 Pearson, Inc. 2.6 Graphs of Rational Functions Copyright 2011 Pearson, Inc. Rational Functions What you ll learn about Transformations of the Reciprocal Function Limits and Asymptotes Analyzing Graphs of Rational Functions

More information

Chapter 2: Functions, Limits and Continuity

Chapter 2: Functions, Limits and Continuity Chapter 2: Functions, Limits and Continuity Functions Limits Continuity Chapter 2: Functions, Limits and Continuity 1 Functions Functions are the major tools for describing the real world in mathematical

More information

Chapter 5B - Rational Functions

Chapter 5B - Rational Functions Fry Texas A&M University Math 150 Chapter 5B Fall 2015 143 Chapter 5B - Rational Functions Definition: A rational function is The domain of a rational function is all real numbers, except those values

More information

To get horizontal and slant asymptotes algebraically we need to know about end behaviour for rational functions.

To get horizontal and slant asymptotes algebraically we need to know about end behaviour for rational functions. Concepts: Horizontal Asymptotes, Vertical Asymptotes, Slant (Oblique) Asymptotes, Transforming Reciprocal Function, Sketching Rational Functions, Solving Inequalities using Sign Charts. Rational Function

More information

Chapter 2. Limits and Continuity. 2.1 Rates of change and Tangents to Curves. The average Rate of change of y = f(x) with respect to x over the

Chapter 2. Limits and Continuity. 2.1 Rates of change and Tangents to Curves. The average Rate of change of y = f(x) with respect to x over the Chapter 2 Limits and Continuity 2.1 Rates of change and Tangents to Curves Definition 2.1.1 : interval [x 1, x 2 ] is The average Rate of change of y = f(x) with respect to x over the y x = f(x 2) f(x

More information

Advanced Mathematics Unit 2 Limits and Continuity

Advanced Mathematics Unit 2 Limits and Continuity Advanced Mathematics 3208 Unit 2 Limits and Continuity NEED TO KNOW Expanding Expanding Expand the following: A) (a + b) 2 B) (a + b) 3 C) (a + b)4 Pascals Triangle: D) (x + 2) 4 E) (2x -3) 5 Random Factoring

More information

Advanced Mathematics Unit 2 Limits and Continuity

Advanced Mathematics Unit 2 Limits and Continuity Advanced Mathematics 3208 Unit 2 Limits and Continuity NEED TO KNOW Expanding Expanding Expand the following: A) (a + b) 2 B) (a + b) 3 C) (a + b)4 Pascals Triangle: D) (x + 2) 4 E) (2x -3) 5 Random Factoring

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus I - Homework Chapter 2 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether the graph is the graph of a function. 1) 1)

More information

Section 0.2 & 0.3 Worksheet. Types of Functions

Section 0.2 & 0.3 Worksheet. Types of Functions MATH 1142 NAME Section 0.2 & 0.3 Worksheet Types of Functions Now that we have discussed what functions are and some of their characteristics, we will explore different types of functions. Section 0.2

More information

1) The line has a slope of ) The line passes through (2, 11) and. 6) r(x) = x + 4. From memory match each equation with its graph.

1) The line has a slope of ) The line passes through (2, 11) and. 6) r(x) = x + 4. From memory match each equation with its graph. Review Test 2 Math 1314 Name Write an equation of the line satisfying the given conditions. Write the answer in standard form. 1) The line has a slope of - 2 7 and contains the point (3, 1). Use the point-slope

More information

Horizontal and Vertical Asymptotes from section 2.6

Horizontal and Vertical Asymptotes from section 2.6 Horizontal and Vertical Asymptotes from section 2.6 Definition: In either of the cases f(x) = L or f(x) = L we say that the x x horizontal line y = L is a horizontal asymptote of the function f. Note:

More information

Relations and Functions (for Math 026 review)

Relations and Functions (for Math 026 review) Section 3.1 Relations and Functions (for Math 026 review) Objective 1: Understanding the s of Relations and Functions Relation A relation is a correspondence between two sets A and B such that each element

More information

Limits at Infinity. Use algebraic techniques to help with indeterminate forms of ± Use substitutions to evaluate limits of compositions of functions.

Limits at Infinity. Use algebraic techniques to help with indeterminate forms of ± Use substitutions to evaluate limits of compositions of functions. SUGGESTED REFERENCE MATERIAL: Limits at Infinity As you work through the problems listed below, you should reference Chapter. of the recommended textbook (or the equivalent chapter in your alternative

More information

Rational Functions. Elementary Functions. Algebra with mixed fractions. Algebra with mixed fractions

Rational Functions. Elementary Functions. Algebra with mixed fractions. Algebra with mixed fractions Rational Functions A rational function f (x) is a function which is the ratio of two polynomials, that is, Part 2, Polynomials Lecture 26a, Rational Functions f (x) = where and are polynomials Dr Ken W

More information

2. If the values for f(x) can be made as close as we like to L by choosing arbitrarily large. lim

2. If the values for f(x) can be made as close as we like to L by choosing arbitrarily large. lim Limits at Infinity and Horizontal Asymptotes As we prepare to practice graphing functions, we should consider one last piece of information about a function that will be helpful in drawing its graph the

More information

Introduction. A rational function is a quotient of polynomial functions. It can be written in the form

Introduction. A rational function is a quotient of polynomial functions. It can be written in the form RATIONAL FUNCTIONS Introduction A rational function is a quotient of polynomial functions. It can be written in the form where N(x) and D(x) are polynomials and D(x) is not the zero polynomial. 2 In general,

More information

56 CHAPTER 3. POLYNOMIAL FUNCTIONS

56 CHAPTER 3. POLYNOMIAL FUNCTIONS 56 CHAPTER 3. POLYNOMIAL FUNCTIONS Chapter 4 Rational functions and inequalities 4.1 Rational functions Textbook section 4.7 4.1.1 Basic rational functions and asymptotes As a first step towards understanding

More information

CH 2: Limits and Derivatives

CH 2: Limits and Derivatives 2 The tangent and velocity problems CH 2: Limits and Derivatives the tangent line to a curve at a point P, is the line that has the same slope as the curve at that point P, ie the slope of the tangent

More information

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS Math 473: Practice Problems for Test 1, Fall 011, SOLUTIONS Show your work: 1. (a) Compute the Taylor polynomials P n (x) for f(x) = sin x and x 0 = 0. Solution: Compute f(x) = sin x, f (x) = cos x, f

More information

Holes in a function. Even though the function does not exist at that point, the limit can still obtain that value.

Holes in a function. Even though the function does not exist at that point, the limit can still obtain that value. Holes in a function For rational functions, factor both the numerator and the denominator. If they have a common factor, you can cancel the factor and a zero will exist at that x value. Even though the

More information

MA 123 (Calculus I) Lecture 3: September 12, 2017 Section A2. Professor Jennifer Balakrishnan,

MA 123 (Calculus I) Lecture 3: September 12, 2017 Section A2. Professor Jennifer Balakrishnan, What is on today Professor Jennifer Balakrishnan, jbala@bu.edu 1 Techniques for computing limits 1 1.1 Limit laws..................................... 1 1.2 One-sided limits..................................

More information

Rational Functions 4.5

Rational Functions 4.5 Math 4 Pre-Calculus Name Date Rational Function Rational Functions 4.5 g ( ) A function is a rational function if f ( ), where g ( ) and ( ) h ( ) h are polynomials. Vertical asymptotes occur at -values

More information

Department of Mathematics, University of Wisconsin-Madison Math 114 Worksheet Sections (4.1),

Department of Mathematics, University of Wisconsin-Madison Math 114 Worksheet Sections (4.1), Department of Mathematics, University of Wisconsin-Madison Math 114 Worksheet Sections (4.1), 4.-4.6 1. Find the polynomial function with zeros: -1 (multiplicity ) and 1 (multiplicity ) whose graph passes

More information

King Fahd University of Petroleum and Minerals Prep-Year Math Program Math Term 161 Recitation (R1, R2)

King Fahd University of Petroleum and Minerals Prep-Year Math Program Math Term 161 Recitation (R1, R2) Math 001 - Term 161 Recitation (R1, R) Question 1: How many rational and irrational numbers are possible between 0 and 1? (a) 1 (b) Finite (c) 0 (d) Infinite (e) Question : A will contain how many elements

More information

GUIDED NOTES 5.6 RATIONAL FUNCTIONS

GUIDED NOTES 5.6 RATIONAL FUNCTIONS GUIDED NOTES 5.6 RATIONAL FUNCTIONS LEARNING OBJECTIVES In this section, you will: Use arrow notation. Solve applied problems involving rational functions. Find the domains of rational functions. Identify

More information

MTH4100 Calculus I. Lecture notes for Week 4. Thomas Calculus, Sections 2.4 to 2.6. Rainer Klages

MTH4100 Calculus I. Lecture notes for Week 4. Thomas Calculus, Sections 2.4 to 2.6. Rainer Klages MTH4100 Calculus I Lecture notes for Week 4 Thomas Calculus, Sections 2.4 to 2.6 Rainer Klages School of Mathematical Sciences Queen Mary University of London Autumn 2009 One-sided its and its at infinity

More information

function independent dependent domain range graph of the function The Vertical Line Test

function independent dependent domain range graph of the function The Vertical Line Test Functions A quantity y is a function of another quantity x if there is some rule (an algebraic equation, a graph, a table, or as an English description) by which a unique value is assigned to y by a corresponding

More information

Limits and Continuity

Limits and Continuity Limits and Continuity MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics Fall 2018 Objectives After this lesson we will be able to: Determine the left-hand and right-hand limits

More information

Section 2.6 Limits at infinity and infinite limits 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 2.6 Limits at infinity and infinite limits 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 2.6 Limits at infinity and infinite its 2 Lectures College of Science MATHS 0: Calculus I (University of Bahrain) Infinite Limits / 29 Finite its as ±. 2 Horizontal Asympotes. 3 Infinite its. 4

More information

Aim: How do we prepare for AP Problems on limits, continuity and differentiability? f (x)

Aim: How do we prepare for AP Problems on limits, continuity and differentiability? f (x) Name AP Calculus Date Supplemental Review 1 Aim: How do we prepare for AP Problems on limits, continuity and differentiability? Do Now: Use the graph of f(x) to evaluate each of the following: 1. lim x

More information

Chapter 4E - Combinations of Functions

Chapter 4E - Combinations of Functions Fry Texas A&M University!! Math 150!! Chapter 4E!! Fall 2015! 121 Chapter 4E - Combinations of Functions 1. Let f (x) = 3 x and g(x) = 3+ x a) What is the domain of f (x)? b) What is the domain of g(x)?

More information

1.1 Introduction to Limits

1.1 Introduction to Limits Chapter 1 LIMITS 1.1 Introduction to Limits Why Limit? Suppose that an object steadily moves forward, with s(t) denotes the position at time t. The average speed over the interval [1,2] is The average

More information

Example 9 Algebraic Evaluation for Example 1

Example 9 Algebraic Evaluation for Example 1 A Basic Principle Consider the it f(x) x a If you have a formula for the function f and direct substitution gives the indeterminate form 0, you may be able to evaluate the it algebraically. 0 Principle

More information

Limits, Continuity, and the Derivative

Limits, Continuity, and the Derivative Unit #2 : Limits, Continuity, and the Derivative Goals: Study and define continuity Review limits Introduce the derivative as the limit of a difference quotient Discuss the derivative as a rate of change

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 6 B) 14 C) 10 D) Does not exist

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. A) 6 B) 14 C) 10 D) Does not exist Assn 3.1-3.3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the limit, if it exists. 1) Find: lim x -1 6x + 5 5x - 6 A) -11 B) - 1 11 C)

More information

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents. Math120 - Precalculus. Final Review. Fall, 2011 Prepared by Dr. P. Babaali 1 Algebra 1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

More information

Evaluating Limits Analytically. By Tuesday J. Johnson

Evaluating Limits Analytically. By Tuesday J. Johnson Evaluating Limits Analytically By Tuesday J. Johnson Suggested Review Topics Algebra skills reviews suggested: Evaluating functions Rationalizing numerators and/or denominators Trigonometric skills reviews

More information

1.2 Functions and Their Properties Name:

1.2 Functions and Their Properties Name: 1.2 Functions and Their Properties Name: Objectives: Students will be able to represent functions numerically, algebraically, and graphically, determine the domain and range for functions, and analyze

More information

Section 3.1 Quadratic Functions

Section 3.1 Quadratic Functions Chapter 3 Lecture Notes Page 1 of 72 Section 3.1 Quadratic Functions Objectives: Compare two different forms of writing a quadratic function Find the equation of a quadratic function (given points) Application

More information

Topic 3 Outline. What is a Limit? Calculating Limits Infinite Limits Limits at Infinity Continuity. 1 Limits and Continuity

Topic 3 Outline. What is a Limit? Calculating Limits Infinite Limits Limits at Infinity Continuity. 1 Limits and Continuity Topic 3 Outline 1 Limits and Continuity What is a Limit? Calculating Limits Infinite Limits Limits at Infinity Continuity D. Kalajdzievska (University of Manitoba) Math 1520 Fall 2015 1 / 27 Topic 3 Learning

More information

CHAPTER 8A- RATIONAL FUNCTIONS AND RADICAL FUNCTIONS Section Multiplying and Dividing Rational Expressions

CHAPTER 8A- RATIONAL FUNCTIONS AND RADICAL FUNCTIONS Section Multiplying and Dividing Rational Expressions Name Objectives: Period CHAPTER 8A- RATIONAL FUNCTIONS AND RADICAL FUNCTIONS Section 8.3 - Multiplying and Dividing Rational Expressions Multiply and divide rational expressions. Simplify rational expressions,

More information

Solutions to Math 41 First Exam October 15, 2013

Solutions to Math 41 First Exam October 15, 2013 Solutions to Math 41 First Exam October 15, 2013 1. (16 points) Find each of the following its, with justification. If the it does not exist, explain why. If there is an infinite it, then explain whether

More information

Replacing the a in the definition of the derivative of the function f at a with a variable x, gives the derivative function f (x).

Replacing the a in the definition of the derivative of the function f at a with a variable x, gives the derivative function f (x). Definition of The Derivative Function Definition (The Derivative Function) Replacing the a in the definition of the derivative of the function f at a with a variable x, gives the derivative function f

More information

Precalculus Lesson 4.1 Polynomial Functions and Models Mrs. Snow, Instructor

Precalculus Lesson 4.1 Polynomial Functions and Models Mrs. Snow, Instructor Precalculus Lesson 4.1 Polynomial Functions and Models Mrs. Snow, Instructor Let s review the definition of a polynomial. A polynomial function of degree n is a function of the form P(x) = a n x n + a

More information

2. Algebraic functions, power functions, exponential functions, trig functions

2. Algebraic functions, power functions, exponential functions, trig functions Math, Prep: Familiar Functions (.,.,.5, Appendix D) Name: Names of collaborators: Main Points to Review:. Functions, models, graphs, tables, domain and range. Algebraic functions, power functions, exponential

More information

This Week. Professor Christopher Hoffman Math 124

This Week. Professor Christopher Hoffman Math 124 This Week Sections 2.1-2.3,2.5,2.6 First homework due Tuesday night at 11:30 p.m. Average and instantaneous velocity worksheet Tuesday available at http://www.math.washington.edu/ m124/ (under week 2)

More information

. State whether the triangle is an isosceles triangle, a right triangle, neither of these, or both.

. State whether the triangle is an isosceles triangle, a right triangle, neither of these, or both. PRECALCULUS MIDTERM PRACTICE TEST (2008-2009) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the distance d(, ) between the points and.

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Fall, 2016, WEEK 4 JoungDong Kim Week4 Section 2.6, 2.7, 3.1 Limits at infinity, Velocity, Differentiation Section 2.6 Limits at Infinity; Horizontal Asymptotes Definition.

More information

Chapter 2. Polynomial and Rational Functions. 2.6 Rational Functions and Their Graphs. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 2. Polynomial and Rational Functions. 2.6 Rational Functions and Their Graphs. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter Polynomial and Rational Functions.6 Rational Functions and Their Graphs Copyright 014, 010, 007 Pearson Education, Inc. 1 Objectives: Find the domains of rational functions. Use arrow notation.

More information

2 the maximum/minimum value is ( ).

2 the maximum/minimum value is ( ). Math 60 Ch3 practice Test The graph of f(x) = 3(x 5) + 3 is with its vertex at ( maximum/minimum value is ( ). ) and the The graph of a quadratic function f(x) = x + x 1 is with its vertex at ( the maximum/minimum

More information

1. Find the domain of the following functions. Write your answer using interval notation. (9 pts.)

1. Find the domain of the following functions. Write your answer using interval notation. (9 pts.) MATH- Sample Eam Spring 7. Find the domain of the following functions. Write your answer using interval notation. (9 pts.) a. 9 f ( ) b. g ( ) 9 8 8. Write the equation of the circle in standard form given

More information

Continuity. The Continuity Equation The equation that defines continuity at a point is called the Continuity Equation.

Continuity. The Continuity Equation The equation that defines continuity at a point is called the Continuity Equation. Continuity A function is continuous at a particular x location when you can draw it through that location without picking up your pencil. To describe this mathematically, we have to use limits. Recall

More information

Induction, sequences, limits and continuity

Induction, sequences, limits and continuity Induction, sequences, limits and continuity Material covered: eclass notes on induction, Chapter 11, Section 1 and Chapter 2, Sections 2.2-2.5 Induction Principle of mathematical induction: Let P(n) be

More information

Determine whether the formula determines y as a function of x. If not, explain. Is there a way to look at a graph and determine if it's a function?

Determine whether the formula determines y as a function of x. If not, explain. Is there a way to look at a graph and determine if it's a function? 1.2 Functions and Their Properties Name: Objectives: Students will be able to represent functions numerically, algebraically, and graphically, determine the domain and range for functions, and analyze

More information

Answers. 2. List all theoretically possible rational roots of the polynomial: P(x) = 2x + 3x + 10x + 14x ) = A( x 4 + 3x 2 4)

Answers. 2. List all theoretically possible rational roots of the polynomial: P(x) = 2x + 3x + 10x + 14x ) = A( x 4 + 3x 2 4) CHAPTER 5 QUIZ Tuesday, April 1, 008 Answers 5 4 1. P(x) = x + x + 10x + 14x 5 a. The degree of polynomial P is 5 and P must have 5 zeros (roots). b. The y-intercept of the graph of P is (0, 5). The number

More information

Analyzing Power Series using Computer Algebra and Precalculus Techniques

Analyzing Power Series using Computer Algebra and Precalculus Techniques Analyzing Power Series using Computer Algebra and Precalculus Techniques Dr. Ken Collins Chair, Mathematics Department Charlotte Latin School Charlotte, North Carolina, USA kcollins@charlottelatin.org

More information

2.2. Limits Involving Infinity. Copyright 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall

2.2. Limits Involving Infinity. Copyright 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall 2.2 Limits Involving Infinity Copyright 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall Finite Limits as x ± What you ll learn about Sandwich Theorem Revisited Infinite Limits as x a End

More information

= lim. (1 + h) 1 = lim. = lim. = lim = 1 2. lim

= lim. (1 + h) 1 = lim. = lim. = lim = 1 2. lim Math 50 Exam # Solutions. Evaluate the following its or explain why they don t exist. (a) + h. h 0 h Answer: Notice that both the numerator and the denominator are going to zero, so we need to think a

More information

Exam 1. (2x + 1) 2 9. lim. (rearranging) (x 1 implies x 1, thus x 1 0

Exam 1. (2x + 1) 2 9. lim. (rearranging) (x 1 implies x 1, thus x 1 0 Department of Mathematical Sciences Instructor: Daiva Pucinskaite Calculus I January 28, 2016 Name: Exam 1 1. Evaluate the it x 1 (2x + 1) 2 9. x 1 (2x + 1) 2 9 4x 2 + 4x + 1 9 = 4x 2 + 4x 8 = 4(x 1)(x

More information

Math 1314 Lesson 1: Prerequisites. Example 1: Simplify and write the answer without using negative exponents:

Math 1314 Lesson 1: Prerequisites. Example 1: Simplify and write the answer without using negative exponents: Math 1314 Lesson 1: Prerequisites 1. Exponents 1 m n n n m Recall: x = x = x n x Example 1: Simplify and write the answer without using negative exponents: a. x 5 b. ( x) 5 Example : Write as a radical:

More information

Chapter 7 Polynomial Functions. Factoring Review. We will talk about 3 Types: ALWAYS FACTOR OUT FIRST! Ex 2: Factor x x + 64

Chapter 7 Polynomial Functions. Factoring Review. We will talk about 3 Types: ALWAYS FACTOR OUT FIRST! Ex 2: Factor x x + 64 Chapter 7 Polynomial Functions Factoring Review We will talk about 3 Types: 1. 2. 3. ALWAYS FACTOR OUT FIRST! Ex 1: Factor x 2 + 5x + 6 Ex 2: Factor x 2 + 16x + 64 Ex 3: Factor 4x 2 + 6x 18 Ex 4: Factor

More information

Mathematic 108, Fall 2015: Solutions to assignment #7

Mathematic 108, Fall 2015: Solutions to assignment #7 Mathematic 08, Fall 05: Solutions to assignment #7 Problem # Suppose f is a function with f continuous on the open interval I and so that f has a local maximum at both x = a and x = b for a, b I with a

More information

The Derivative Function. Differentiation

The Derivative Function. Differentiation The Derivative Function If we replace a in the in the definition of the derivative the function f at the point x = a with a variable x, we get the derivative function f (x). Using Formula 2 gives f (x)

More information

Chapter 2 Polynomial and Rational Functions

Chapter 2 Polynomial and Rational Functions Chapter 2 Polynomial and Rational Functions Overview: 2.2 Polynomial Functions of Higher Degree 2.3 Real Zeros of Polynomial Functions 2.4 Complex Numbers 2.5 The Fundamental Theorem of Algebra 2.6 Rational

More information

f (x) f (a) f (a) = lim x a f (a) x a

f (x) f (a) f (a) = lim x a f (a) x a Differentiability Revisited Recall that the function f is differentiable at a if exists and is finite. f (a) = lim x a f (x) f (a) x a Another way to say this is that the function f (x) f (a) F a (x) =

More information

UNIT 3. Rational Functions Limits at Infinity (Horizontal and Slant Asymptotes) Infinite Limits (Vertical Asymptotes) Graphing Rational Functions

UNIT 3. Rational Functions Limits at Infinity (Horizontal and Slant Asymptotes) Infinite Limits (Vertical Asymptotes) Graphing Rational Functions UNIT 3 Rational Functions Limits at Infinity (Horizontal and Slant Asymptotes) Infinite Limits (Vertical Asymptotes) Graphing Rational Functions Recall From Unit Rational Functions f() is a rational function

More information

f (x) = x 2 Chapter 2 Polynomial Functions Section 4 Polynomial and Rational Functions Shapes of Polynomials Graphs of Polynomials the form n

f (x) = x 2 Chapter 2 Polynomial Functions Section 4 Polynomial and Rational Functions Shapes of Polynomials Graphs of Polynomials the form n Chapter 2 Functions and Graphs Section 4 Polynomial and Rational Functions Polynomial Functions A polynomial function is a function that can be written in the form a n n 1 n x + an 1x + + a1x + a0 for

More information

Chapter 2 Polynomial and Rational Functions

Chapter 2 Polynomial and Rational Functions Chapter 2 Polynomial and Rational Functions Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7 Quadratic Functions Polynomial Functions of Higher Degree Real Zeros of Polynomial Functions

More information

Solutions to Math 41 First Exam October 18, 2012

Solutions to Math 41 First Exam October 18, 2012 Solutions to Math 4 First Exam October 8, 202. (2 points) Find each of the following its, with justification. If the it does not exist, explain why. If there is an infinite it, then explain whether it

More information

Functions: Polynomial, Rational, Exponential

Functions: Polynomial, Rational, Exponential Functions: Polynomial, Rational, Exponential MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics Spring 2014 Objectives In this lesson we will learn to: identify polynomial expressions,

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Fall 2018, WEEK 3 JoungDong Kim Week 3 Section 2.3, 2.5, 2.6, Calculating Limits Using the Limit Laws, Continuity, Limits at Infinity; Horizontal Asymptotes. Section

More information

Finding Limits Analytically

Finding Limits Analytically Finding Limits Analytically Most of this material is take from APEX Calculus under terms of a Creative Commons License In this handout, we explore analytic techniques to compute its. Suppose that f(x)

More information

Lesson 2.1: Quadratic Functions

Lesson 2.1: Quadratic Functions Quadratic Functions: Lesson 2.1: Quadratic Functions Standard form (vertex form) of a quadratic function: Vertex: (h, k) Algebraically: *Use completing the square to convert a quadratic equation into standard

More information

AP Calculus Summer Homework

AP Calculus Summer Homework Class: Date: AP Calculus Summer Homework Show your work. Place a circle around your final answer. 1. Use the properties of logarithms to find the exact value of the expression. Do not use a calculator.

More information

Chapter 6: Rational Expr., Eq., and Functions Lecture notes Math 1010

Chapter 6: Rational Expr., Eq., and Functions Lecture notes Math 1010 Section 6.1: Rational Expressions and Functions Definition of a rational expression Let u and v be polynomials. The algebraic expression u v is a rational expression. The domain of this rational expression

More information

The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts.

The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts. Math 141 Review for Final The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts. Part 1 (no calculator) graphing (polynomial, rational, linear, exponential, and logarithmic

More information

Polynomial Degree Leading Coefficient. Sign of Leading Coefficient

Polynomial Degree Leading Coefficient. Sign of Leading Coefficient Chapter 1 PRE-TEST REVIEW Polynomial Functions MHF4U Jensen Section 1: 1.1 Power Functions 1) State the degree and the leading coefficient of each polynomial Polynomial Degree Leading Coefficient y = 2x

More information

Student: Date: Instructor: kumnit nong Course: MATH 105 by Nong https://xlitemprodpearsoncmgcom/api/v1/print/math Assignment: CH test review 1 Find the transformation form of the quadratic function graphed

More information

Chapter 2: Polynomial and Rational Functions

Chapter 2: Polynomial and Rational Functions Chapter 2: Polynomial and Rational Functions Section 2.1 Quadratic Functions Date: Example 1: Sketching the Graph of a Quadratic Function a) Graph f(x) = 3 1 x 2 and g(x) = x 2 on the same coordinate plane.

More information

8. Limit Laws. lim(f g)(x) = lim f(x) lim g(x), (x) = lim x a f(x) g lim x a g(x)

8. Limit Laws. lim(f g)(x) = lim f(x) lim g(x), (x) = lim x a f(x) g lim x a g(x) 8. Limit Laws 8.1. Basic Limit Laws. If f and g are two functions and we know the it of each of them at a given point a, then we can easily compute the it at a of their sum, difference, product, constant

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 2 Limits 2.1 The Tangent Problems The word tangent is derived from the Latin word tangens, which means touching. A tangent line to a curve is a line that touches the curve and a secant line is a line that

More information

Math 150 Midterm 1 Review Midterm 1 - Monday February 28

Math 150 Midterm 1 Review Midterm 1 - Monday February 28 Math 50 Midterm Review Midterm - Monday February 28 The midterm will cover up through section 2.2 as well as the little bit on inverse functions, exponents, and logarithms we included from chapter 5. Notes

More information

Topics from Algebra and Pre-Calculus. (Key contains solved problems)

Topics from Algebra and Pre-Calculus. (Key contains solved problems) Topics from Algebra and Pre-Calculus (Key contains solved problems) Note: The purpose of this packet is to give you a review of basic skills. You are asked not to use the calculator, except on p. (8) and

More information

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents.

1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents. Math120 - Precalculus. Final Review Prepared by Dr. P. Babaali 1 Algebra 1. Use the properties of exponents to simplify the following expression, writing your answer with only positive exponents. (a) 5

More information

Math 1314 Lesson 4 Limits

Math 1314 Lesson 4 Limits Math 1314 Lesson 4 Limits Finding a it amounts to answering the following question: What is happening to the y-value of a function as the x-value approaches a specific target number? If the y-value is

More information

Extra Polynomial & Rational Practice!

Extra Polynomial & Rational Practice! Extra Polynomial & Rational Practice! EPRP- p1 1. Graph these polynomial functions. Label all intercepts and describe the end behavior. 3 a. P(x = x x 1x. b. P(x = x x x.. Use polynomial long division.

More information

Warm Up Lesson Presentation Lesson Quiz. Holt Algebra 2 2

Warm Up Lesson Presentation Lesson Quiz. Holt Algebra 2 2 6-7 Warm Up Lesson Presentation Lesson Quiz 2 Warm Up Identify all the real roots of each equation. 1. x 3 7x 2 + 8x + 16 = 0 1, 4 2. 2x 3 14x 12 = 0 1, 2, 3 3. x 4 + x 3 25x 2 27x = 0 4. x 4 26x 2 + 25

More information

2 = = 0 Thus, the number which is largest in magnitude is equal to the number which is smallest in magnitude.

2 = = 0 Thus, the number which is largest in magnitude is equal to the number which is smallest in magnitude. Limits at Infinity Two additional topics of interest with its are its as x ± and its where f(x) ±. Before we can properly discuss the notion of infinite its, we will need to begin with a discussion on

More information

ter. on Can we get a still better result? Yes, by making the rectangles still smaller. As we make the rectangles smaller and smaller, the

ter. on Can we get a still better result? Yes, by making the rectangles still smaller. As we make the rectangles smaller and smaller, the Area and Tangent Problem Calculus is motivated by two main problems. The first is the area problem. It is a well known result that the area of a rectangle with length l and width w is given by A = wl.

More information

College Algebra Notes

College Algebra Notes Metropolitan Community College Contents Introduction 2 Unit 1 3 Rational Expressions........................................... 3 Quadratic Equations........................................... 9 Polynomial,

More information

Date: 11/5/12- Section: 1.2 Obj.: SWBAT identify horizontal and vertical asymptotes.

Date: 11/5/12- Section: 1.2 Obj.: SWBAT identify horizontal and vertical asymptotes. Date: 11/5/12- Section: 1.2 Obj.: SWBAT identify horizontal and vertical asymptotes. http://www.freemathhelp.com/asymptotes.html Bell Ringer: Graded Quiz Evaluating Fucntions Homework Requests: Symmetry

More information

RATIONAL FUNCTIONS AND

RATIONAL FUNCTIONS AND RATIONAL FUNCTIONS AND GRAPHS ALGEBRA 5 INU0114/514 (MATHS 1) Dr Adrian Jannetta MIMA CMath FRAS Rational functions and graphs 1/ 20 Adrian Jannetta Objectives In this lecture (and next seminar) we will

More information

Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions. Recall that a power function has the form f(x) = x r where r is a real number.

Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions. Recall that a power function has the form f(x) = x r where r is a real number. L7-1 Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions Recall that a power function has the form f(x) = x r where r is a real number. f(x) = x 1/2 f(x) = x 1/3 ex. Sketch the graph of

More information