Copyright PreCalculusCoach.com

Size: px
Start display at page:

Download "Copyright PreCalculusCoach.com"

Transcription

1 Continuit, End Behavior, and Limits Assignment Determine whether each function is continuous at the given -values. Justif using the continuit test. If discontinuous, identif the tpe of discontinuit as infinite, jump, or removable.. f = + at =. 7 f = if > 0 if < 0 = Copright PreCalculusCoach.com

2 Continuit, End Behavior, and Limits Assignment. f = + if 0 if < 0 at = 0. f = + at = Copright PreCalculusCoach.com

3 Continuit, End Behavior, and Limits Assignment. f = + at = and =. f = + at = and = Copright PreCalculusCoach.com

4 Continuit, End Behavior, and Limits Assignment Find the value of k so that f is continuous. 7. f = k + if > + k if. f = + if > 0 k if = 0 + if < 0 Determine between which consecutive integers the real zeros of function are located on the given interval. 9. f = + [0, ] 0. f = [, ] Copright PreCalculusCoach.com

5 Continuit, End Behavior, and Limits Assignment Use the graph of each function to describe its end behavior. Support the conjecture numericall.. f = f = + 0 Evaluate the following limits lim = =?. lim =? Copright PreCalculusCoach.com

6 Continuit, End Behavior, and Limits Assignment Determine the interval(s) on which the function is increasing and the interval(s) on which the function is decreasing.. f = f = Copright PreCalculusCoach.com

7 Continuit, End Behavior, and Limits Assignment ANSWERS Determine whether each function is continuous at the given -values. Justif using the continuit test. If discontinuous, identif the tpe of discontinuit as infinite, jump, or removable.. f = + at =. 7 f = if > 0 if < 0 = f = + at = f = + f = f eists F f I f = if > 0 if < 0 f is undefined in = 0 if > 0 f = if < 0 is discontinuous at = 0 0 F 0 = f f I f = and from both side of = lim + = f () f = + is continuous at = f if > 0 f = has point discontinuit if < 0 since 0 on opposite sides of = 0 = 0 is point of Copright PreCalculusCoach.com 7

8 Continuit, End Behavior, and Limits Assignment. f = + if 0 if < 0 at = 0. f = + at = f = + if 0 if < 0 f 0 = + = 0 + = f 0 eists at = 0 f = + at = f = + f = 7 f eists 0 F 0 F 7 0 I f f I f f = f f has jump discontinuit at = 0 and 7 from both side of = lim + = f () f = + is continuous at = Copright PreCalculusCoach.com

9 Continuit, End Behavior, and Limits Assignment. f = + at = and =. f = + at = and = 0 + f = at = and = + f = = f = = 0 f and f are undefined F f I f lim f() 0. F F I f f 0 00, 000 lim f() does not eists lim f() 0. but f is undefined F f has a removable discontinuit at = f has an infinite discontinuit at = f = + f = + f = + at = and = = 0 0 = 0 0 = 0 f undefined F f I f lim f() = 0 F F I lim F f f lim f() = f = 0 f() eists but f is undefined f has a removable discontinuit at = lim f() = f = 0 f is continuous at = Copright PreCalculusCoach.com 9

10 Continuit, End Behavior, and Limits Assignment Find the value of k so that f is continuous. 7. f = k + if > + k if k + = + k =. f = + if > 0 k if = 0 + if < 0 + = + = 0 k + = + k k + = + k 9k = k = = + = k = Determine between which consecutive integers the real zeros of function are located on the given interval. 9. f = + [0, ] 0. f = [, ] f is negative positive and f is positive, f change sign in f has zero in interval: 0 7 f is negative and f is positive, f change sign in f is positive and f is negative f change sign in f has zeros in intervals: and Copright PreCalculusCoach.com 0

11 Continuit, End Behavior, and Limits Assignment Use the graph of each function to describe its end behavior. Support the conjecture numericall.. f = From the graph, it appears that: f as and f as The table supports this conjecture f = From the graph, it appears that: f as and f as The table supports this conjecture Evaluate the following limits.. lim = =?. lim =? Copright PreCalculusCoach.com

12 Continuit, End Behavior, and Limits Assignment lim = + = lim = lim ( + ) = + = lim + = lim = lim = lim = Determine the interval(s) on which the function is increasing and the interval(s) on which the function is decreasing.. f = From the graph, it appears that: A function + + is increasing for < 0. A function + + is decreasing for > 0. The table supports this conjecture f = From the graph, it appears that: A function + 9 is increasing for <. A function + 9 is decreasing for. < < 0. A function + 9 s increasing for > 0. The table supports this conjecture Copright PreCalculusCoach.com

13 Continuit, End Behavior, and Limits Assignment Copright PreCalculusCoach.com

Continuity, End Behavior, and Limits. Unit 1 Lesson 3

Continuity, End Behavior, and Limits. Unit 1 Lesson 3 Unit Lesson 3 Students will be able to: Interpret ke features of graphs and tables in terms of the quantities, and sketch graphs showing ke features given a verbal description of the relationship. Ke Vocabular:

More information

Limits 4: Continuity

Limits 4: Continuity Limits 4: Continuit 55 Limits 4: Continuit Model : Continuit I. II. III. IV. z V. VI. z a VII. VIII. IX. Construct Your Understanding Questions (to do in class). Which is the correct value of f (a) in

More information

Chapter 3: Three faces of the derivative. Overview

Chapter 3: Three faces of the derivative. Overview Overview We alread saw an algebraic wa of thinking about a derivative. Geometric: zooming into a line Analtic: continuit and rational functions Computational: approimations with computers 3. The geometric

More information

1. d = 1. or Use Only in Pilot Program F Review Exercises 131

1. d = 1. or Use Only in Pilot Program F Review Exercises 131 or Use Onl in Pilot Program F 0 0 Review Eercises. Limit proof Suppose f is defined for all values of near a, ecept possibl at a. Assume for an integer N 7 0, there is another integer M 7 0 such that f

More information

1.2 Functions and Their Properties PreCalculus

1.2 Functions and Their Properties PreCalculus 1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given

More information

Chapter The function f and its graph are shown below: + < x. lim f ( x) (a) Calculate. (b) Which value is greater

Chapter The function f and its graph are shown below: + < x. lim f ( x) (a) Calculate. (b) Which value is greater Chapter 1 1 1. The function f and its graph are shown below: f( ) = < 0 1 = 1 1< < 3 (a) Calculate lim f ( ) (b) Which value is greater lim f ( ) or f (1)? Justify your conclusion. (c) At what value(s)

More information

Mid-Chapter Quiz: Lessons 1-1 through 1-4

Mid-Chapter Quiz: Lessons 1-1 through 1-4 Determine whether each relation represents y as a function of x. 1. 3x + 7y = 21 This equation represents y as a function of x, because for every x-value there is exactly one corresponding y-value. function

More information

1.2 Functions and Their Properties PreCalculus

1.2 Functions and Their Properties PreCalculus 1. Functions and Their Properties PreCalculus 1. FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1. 1. Determine whether a set of numbers or a graph is a function. Find the domain of a function given

More information

x c x c This suggests the following definition.

x c x c This suggests the following definition. 110 Chapter 1 / Limits and Continuit 1.5 CONTINUITY A thrown baseball cannot vanish at some point and reappear someplace else to continue its motion. Thus, we perceive the path of the ball as an unbroken

More information

A function from a set D to a set R is a rule that assigns a unique element in R to each element in D.

A function from a set D to a set R is a rule that assigns a unique element in R to each element in D. 1.2 Functions and Their Properties PreCalculus 1.2 FUNCTIONS AND THEIR PROPERTIES Learning Targets for 1.2 1. Determine whether a set of numbers or a graph is a function 2. Find the domain of a function

More information

Math 104: Homework 7 solutions

Math 104: Homework 7 solutions Math 04: Homework 7 solutions. (a) The derivative of f () = is f () = 2 which is unbounded as 0. Since f () is continuous on [0, ], it is uniformly continous on this interval by Theorem 9.2. Hence for

More information

CHAPTER 1 Functions, Graphs, and Limits

CHAPTER 1 Functions, Graphs, and Limits CHAPTER Functions, Graphs, and Limits Section. The Cartesian Plane and the Distance Formula... Section. Graphs of Equations...8 Section. Lines in the Plane and Slope... Mid-Chapter Quiz Solutions... Section.

More information

Continuity. MATH 161 Calculus I. J. Robert Buchanan. Fall Department of Mathematics

Continuity. MATH 161 Calculus I. J. Robert Buchanan. Fall Department of Mathematics Continuity MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Fall 2017 Intuitive Idea A process or an item can be described as continuous if it exists without interruption. The mathematical

More information

MATH CALCULUS I 1.5: Continuity

MATH CALCULUS I 1.5: Continuity MATH 12002 - CALCULUS I 1.5: Continuity Professor Donald L. White Department of Mathematical Sciences Kent State University D.L. White (Kent State University) 1 / 12 Definition of Continuity Intuitively,

More information

Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 7. Discontinuities. is the tool to use,

Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 7. Discontinuities. is the tool to use, Roberto s Notes on Differential Calculus Chapter 1: Limits and continuity Section 7 Discontinuities What you need to know already: The concept and definition of continuity. What you can learn here: The

More information

The function graphed below is continuous everywhere. The function graphed below is NOT continuous everywhere, it is discontinuous at x 2 and

The function graphed below is continuous everywhere. The function graphed below is NOT continuous everywhere, it is discontinuous at x 2 and Section 1.4 Continuity A function is a continuous at a point if its graph has no gaps, holes, breaks or jumps at that point. If a function is not continuous at a point, then we say it is discontinuous

More information

Math Exam 1a. c) lim tan( 3x. 2) Calculate the derivatives of the following. DON'T SIMPLIFY! d) s = t t 3t

Math Exam 1a. c) lim tan( 3x. 2) Calculate the derivatives of the following. DON'T SIMPLIFY! d) s = t t 3t Math 111 - Eam 1a 1) Evaluate the following limits: 7 3 1 4 36 a) lim b) lim 5 1 3 6 + 4 c) lim tan( 3 ) + d) lim ( ) 100 1+ h 1 h 0 h ) Calculate the derivatives of the following. DON'T SIMPLIFY! a) y

More information

NO CALCULATORS: 1. Find A) 1 B) 0 C) D) 2. Find the points of discontinuity of the function y of discontinuity.

NO CALCULATORS: 1. Find A) 1 B) 0 C) D) 2. Find the points of discontinuity of the function y of discontinuity. AP CALCULUS BC NO CALCULATORS: MIDTERM REVIEW. Find lim 7 7 9. B) C) D). Find the points of discontinuit of the function of discontinuit. 9. For each discontinuit identif the tpe A. Removable discontinuit

More information

17) y = log 4. 19) y = ) y = 23) f (x) = x 5 x 4 + 3x 3 3x 2 6x + 1. k = 0

17) y = log 4. 19) y = ) y = 23) f (x) = x 5 x 4 + 3x 3 3x 2 6x + 1. k = 0 Precalculus Assignment Evaluate each expression. Name ID: 1 Date Period 1) log 1 ) log 3) log 3 1 ) log 7 7 ) log 1 Expand each logarithm. ) ln (x ) 7) log (u v w ) ) log 9 (x z ) Condense each expression

More information

Limits and Continuity

Limits and Continuity Limits and Continuity MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics Fall 2018 Objectives After this lesson we will be able to: Determine the left-hand and right-hand limits

More information

2.5 CONTINUITY. a x. Notice that Definition l implicitly requires three things if f is continuous at a:

2.5 CONTINUITY. a x. Notice that Definition l implicitly requires three things if f is continuous at a: SECTION.5 CONTINUITY 9.5 CONTINUITY We noticed in Section.3 that the it of a function as approaches a can often be found simpl b calculating the value of the function at a. Functions with this propert

More information

Sample Problems. Practice Problems

Sample Problems. Practice Problems Lecture Notes Graphs of Factored Polnomials page Sample Problems. Plot the graph of f () = ( + ) ( ).. Plot the graph of f () = ( ) ( + ) ( ) ( ) (6 ) ( + ). Practice Problems Plot the graph of each of

More information

Limits and Continuous Functions. 2.2 Introduction to Limits. We first interpret limits loosely. We write. lim f(x) = L

Limits and Continuous Functions. 2.2 Introduction to Limits. We first interpret limits loosely. We write. lim f(x) = L 2 Limits and Continuous Functions 2.2 Introduction to Limits We first interpret limits loosel. We write lim f() = L and sa the limit of f() as approaches c, equals L if we can make the values of f() arbitraril

More information

Section 1.2 DOMAIN, RANGE, INTERCEPTS, SYMMETRY, EVEN/ODD

Section 1.2 DOMAIN, RANGE, INTERCEPTS, SYMMETRY, EVEN/ODD Section 1.2 DOMAIN, RANGE, INTERCEPTS, SYMMETRY, EVEN/ODD zeros roots line symmetry point symmetry even function odd function Estimate Function Values A. ADVERTISING The function f (x) = 5x 2 + 50x approximates

More information

Continuity. The Continuity Equation The equation that defines continuity at a point is called the Continuity Equation.

Continuity. The Continuity Equation The equation that defines continuity at a point is called the Continuity Equation. Continuity A function is continuous at a particular x location when you can draw it through that location without picking up your pencil. To describe this mathematically, we have to use limits. Recall

More information

Solution to Review Problems for Midterm #1

Solution to Review Problems for Midterm #1 Solution to Review Problems for Midterm # Midterm I: Wednesday, September in class Topics:.,.3 and.-.6 (ecept.3) Office hours before the eam: Monday - and 4-6 p.m., Tuesday - pm and 4-6 pm at UH 080B)

More information

4.1 Practice A. Name Date. as x +. Describe the degree and leading coefficient of the function. as x and f( x)

4.1 Practice A. Name Date. as x +. Describe the degree and leading coefficient of the function. as x and f( x) Name Date. Practice A In Exercises, decide whether the function is a polnomial function. If so, write it in standard form and state its degree, tpe, and leading coefficient.. f( x) = x x + 5x 7. ( ). g(

More information

In everyday speech, a continuous. Limits and Continuity. Critical Thinking Exercises

In everyday speech, a continuous. Limits and Continuity. Critical Thinking Exercises 062 Chapter Introduction to Calculus Critical Thinking Eercises Make Sense? In Eercises 74 77, determine whether each statement makes sense or does not make sense, and eplain our reasoning. 74. I evaluated

More information

Continuity at a Point

Continuity at a Point Continuity at a Point When we eplored the limit of f() as approaches c, the emphasis was on the function values close to = c rather than what happens to the function at = c. We will now consider the following

More information

Review: Limits of Functions - 10/7/16

Review: Limits of Functions - 10/7/16 Review: Limits of Functions - 10/7/16 1 Right and Left Hand Limits Definition 1.0.1 We write lim a f() = L to mean that the function f() approaches L as approaches a from the left. We call this the left

More information

Problems for Chapter 3.

Problems for Chapter 3. Problems for Chapter 3. Let A denote a nonempty set of reals. The complement of A, denoted by A, or A C is the set of all points not in A. We say that belongs to the interior of A, Int A, if there eists

More information

1 DL3. Infinite Limits and Limits at Infinity

1 DL3. Infinite Limits and Limits at Infinity Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 78 Mark Sparks 01 Infinite Limits and Limits at Infinity In our graphical analysis of its, we have already seen both an infinite

More information

QUIZ ON CHAPTERS 1 AND 2 - SOLUTIONS REVIEW / LIMITS AND CONTINUITY; MATH 150 SPRING 2017 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100%

QUIZ ON CHAPTERS 1 AND 2 - SOLUTIONS REVIEW / LIMITS AND CONTINUITY; MATH 150 SPRING 2017 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100% QUIZ ON CHAPTERS AND 2 - SOLUTIONS REVIEW / LIMITS AND CONTINUITY; MATH 50 SPRING 207 KUNIYUKI 05 POINTS TOTAL, BUT 00 POINTS = 00% ) For a), b), and c) below, bo in the correct answer. (6 points total;

More information

CHAPTER 1 Functions, Graphs, and Limits

CHAPTER 1 Functions, Graphs, and Limits CHAPTER Functions, Graphs, and Limits Section. The Cartesian Plane and the Distance Formula.......... Section. Graphs of Equations........................ 8 Section. Lines in the Plane and Slope....................

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) 94 C) ) A) 1 2

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) 94 C) ) A) 1 2 Chapter Calculus MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the average rate of change of the function over the given interval. ) = 73-5

More information

2.5. Infinite Limits and Vertical Asymptotes. Infinite Limits

2.5. Infinite Limits and Vertical Asymptotes. Infinite Limits . Infinite Limits and Vertical Asmptotes. Infinite Limits and Vertical Asmptotes In this section we etend the concept of it to infinite its, which are not its as before, but rather an entirel new use of

More information

Time-Frequency Analysis: Fourier Transforms and Wavelets

Time-Frequency Analysis: Fourier Transforms and Wavelets Chapter 4 Time-Frequenc Analsis: Fourier Transforms and Wavelets 4. Basics of Fourier Series 4.. Introduction Joseph Fourier (768-83) who gave his name to Fourier series, was not the first to use Fourier

More information

Week #6 - Taylor Series, Derivatives and Graphs Section 4.1

Week #6 - Taylor Series, Derivatives and Graphs Section 4.1 Week #6 - Talor Series, Derivatives and Graphs Section 4.1 From Calculus, Single Variable b Hughes-Hallett, Gleason, McCallum et. al. Copright 2005 b John Wile & Sons, Inc. This material is used b permission

More information

Model Inverse Variation. p Write and graph inverse variation equations. VOCABULARY. Inverse variation. Constant of variation. Branches of a hyperbola

Model Inverse Variation. p Write and graph inverse variation equations. VOCABULARY. Inverse variation. Constant of variation. Branches of a hyperbola 12.1 Model Inverse Variation Goal p Write and graph inverse variation equations. Your Notes VOCABULARY Inverse variation Constant of variation Hperbola Branches of a hperbola Asmptotes of a hperbola Eample

More information

The Derivative Function. Differentiation

The Derivative Function. Differentiation The Derivative Function If we replace a in the in the definition of the derivative the function f at the point x = a with a variable x, we get the derivative function f (x). Using Formula 2 gives f (x)

More information

Math 2003 Test D This part of the Exam is to be done without a calculator

Math 2003 Test D This part of the Exam is to be done without a calculator Math 00 Test D This part of the Eam is to be done without a calculator. Which of the following is the correct graph of =? b) c) d) e). Find all the intercepts of = -intercept: 0 -intercepts: 0, -, b) -intercepts:

More information

Things to remember: x n a 1. x + a 0. x n + a n-1. P(x) = a n. Therefore, lim g(x) = 1. EXERCISE 3-2

Things to remember: x n a 1. x + a 0. x n + a n-1. P(x) = a n. Therefore, lim g(x) = 1. EXERCISE 3-2 lim f() = lim (0.8-0.08) = 0, " "!10!10 lim f() = lim 0 = 0.!10!10 Therefore, lim f() = 0.!10 lim g() = lim (0.8 - "!10!10 0.042-3) = 1, " lim g() = lim 1 = 1.!10!0 Therefore, lim g() = 1.!10 EXERCISE

More information

2.1 Limits, Rates of Change, and Tangent Lines. Preliminary Questions 1. Average velocity is defined as a ratio of which two quantities?

2.1 Limits, Rates of Change, and Tangent Lines. Preliminary Questions 1. Average velocity is defined as a ratio of which two quantities? LIMITS. Limits, Rates of Change, and Tangent Lines Preinar Questions. Average velocit is defined as a ratio of which two quantities? Average velocit is defined as the ratio of distance traveled to time

More information

Time-Frequency Analysis: Fourier Transforms and Wavelets

Time-Frequency Analysis: Fourier Transforms and Wavelets Chapter 4 Time-Frequenc Analsis: Fourier Transforms and Wavelets 4. Basics of Fourier Series 4.. Introduction Joseph Fourier (768-83) who gave his name to Fourier series, was not the first to use Fourier

More information

Definition (The carefully thought-out calculus version based on limits).

Definition (The carefully thought-out calculus version based on limits). 4.1. Continuity and Graphs Definition 4.1.1 (Intuitive idea used in algebra based on graphing). A function, f, is continuous on the interval (a, b) if the graph of y = f(x) can be drawn over the interval

More information

Section 2.6 Limits at infinity and infinite limits 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 2.6 Limits at infinity and infinite limits 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 2.6 Limits at infinity and infinite its 2 Lectures College of Science MATHS 0: Calculus I (University of Bahrain) Infinite Limits / 29 Finite its as ±. 2 Horizontal Asympotes. 3 Infinite its. 4

More information

UNIT 3. Rational Functions Limits at Infinity (Horizontal and Slant Asymptotes) Infinite Limits (Vertical Asymptotes) Graphing Rational Functions

UNIT 3. Rational Functions Limits at Infinity (Horizontal and Slant Asymptotes) Infinite Limits (Vertical Asymptotes) Graphing Rational Functions UNIT 3 Rational Functions Limits at Infinity (Horizontal and Slant Asymptotes) Infinite Limits (Vertical Asymptotes) Graphing Rational Functions Recall From Unit Rational Functions f() is a rational function

More information

b. Create a graph that gives a more complete representation of f.

b. Create a graph that gives a more complete representation of f. or Use Onl in Pilot Program F 96 Chapter Limits 6 7. Steep secant lines a. Given the graph of f in the following figures, find the slope of the secant line that passes through, and h, f h in terms of h,

More information

AP Calculus AB Worksheet - Differentiability

AP Calculus AB Worksheet - Differentiability Name AP Calculus AB Worksheet - Differentiability MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. The figure shows the graph of a function. At the

More information

Increasing and Decreasing Functions and the First Derivative Test

Increasing and Decreasing Functions and the First Derivative Test Section 3.3 Increasing and Decreasing Functions and the First Derivative Test 3 Section 3.3 Increasing and Decreasing Functions and the First Derivative Test. f 8 3. 3, Decreasing on:, 3 3 3,,, Decreasing

More information

Maintaining Mathematical Proficiency

Maintaining Mathematical Proficiency Name Date Chapter 3 Maintaining Mathematical Proficienc Plot the point in a coordinate plane. Describe the location of the point. 1. A( 3, 1). B (, ) 3. C ( 1, 0). D ( 5, ) 5. Plot the point that is on

More information

5.6 RATIOnAl FUnCTIOnS. Using Arrow notation. learning ObjeCTIveS

5.6 RATIOnAl FUnCTIOnS. Using Arrow notation. learning ObjeCTIveS CHAPTER PolNomiAl ANd rational functions learning ObjeCTIveS In this section, ou will: Use arrow notation. Solve applied problems involving rational functions. Find the domains of rational functions. Identif

More information

1.1 Introduction to Limits

1.1 Introduction to Limits Chapter 1 LIMITS 1.1 Introduction to Limits Why Limit? Suppose that an object steadily moves forward, with s(t) denotes the position at time t. The average speed over the interval [1,2] is The average

More information

Chapter 3.5: Rational Functions

Chapter 3.5: Rational Functions Chapter.5: Rational Functions A rational number is a ratio of two integers. A rational function is a quotient of two polynomials. All rational numbers are, therefore, rational functions as well. Let s

More information

Chapter (AB/BC, non-calculator) (a) Find the critical numbers of g. (b) For what values of x is g increasing? Justify your answer.

Chapter (AB/BC, non-calculator) (a) Find the critical numbers of g. (b) For what values of x is g increasing? Justify your answer. Chapter 3 1. (AB/BC, non-calculator) Given g ( ) 2 4 3 6 : (a) Find the critical numbers of g. (b) For what values of is g increasing? Justify your answer. (c) Identify the -coordinate of the critical

More information

So, t = 1 is a point of inflection of s(). Use s () t to find the velocity at t = Because 0, use 144.

So, t = 1 is a point of inflection of s(). Use s () t to find the velocity at t = Because 0, use 144. AP Eam Practice Questions for Chapter AP Eam Practice Questions for Chapter f 4 + 6 7 9 f + 7 0 + 6 0 ( + )( ) 0,. The critical numbers of f( ) are and.. Evaluate each point. A: d d C: d d B: D: d d d

More information

7.5 Solve Special Types of

7.5 Solve Special Types of 75 Solve Special Tpes of Linear Sstems Goal p Identif the number of of a linear sstem Your Notes VOCABULARY Inconsistent sstem Consistent dependent sstem Eample A linear sstem with no Show that the linear

More information

Rolle s Theorem, the Mean Value Theorem, and L Hôpital s Rule

Rolle s Theorem, the Mean Value Theorem, and L Hôpital s Rule Rolle s Theorem, the Mean Value Theorem, and L Hôpital s Rule 5. Rolle s Theorem In the following problems (a) Verify that the three conditions of Rolle s theorem have been met. (b) Find all values z that

More information

MATH section 3.1 Maximum and Minimum Values Page 1 of 7

MATH section 3.1 Maximum and Minimum Values Page 1 of 7 MATH section. Maimum and Minimum Values Page of 7 Definition : Let c be a number in the domain D of a function f. Then c ) is the Absolute maimum value of f on D if ) c f() for all in D. Absolute minimum

More information

1.1 Limits & Continuity

1.1 Limits & Continuity 1.1 Limits & Continuity What do you see below? We are building the House of Calculus, one side at a time... and we need a solid FOUNDATION. Page 1 of 11 Eample 1: (Calculator) For f ( ) (a) fill in the

More information

Name Date Period. Pre-Calculus Midterm Review Packet (Chapters 1, 2, 3)

Name Date Period. Pre-Calculus Midterm Review Packet (Chapters 1, 2, 3) Name Date Period Sections and Scoring Pre-Calculus Midterm Review Packet (Chapters,, ) Your midterm eam will test your knowledge of the topics we have studied in the first half of the school year There

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question Midterm Review 0 Precalculu Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question ) A graph of a function g is shown below. Find g(0). (-, ) (-, 0) - -

More information

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012 Unit # Understanding the Derivative Homework Packet f ( h) f ( Find lim for each of the functions below. Then, find the equation of the tangent line to h 0 h the graph of f( at the given value of. 1. f

More information

Infinite Limits. Let f be the function given by. f x 3 x 2.

Infinite Limits. Let f be the function given by. f x 3 x 2. 0_005.qd //0 :07 PM Page 8 SECTION.5 Infinite Limits 8, as Section.5, as + f() = f increases and decreases without bound as approaches. Figure.9 Infinite Limits Determine infinite its from the left and

More information

CALCULUS: THE ANSWERS MATH 150: CALCULUS WITH ANALYTIC GEOMETRY I. VERSION 1.3 KEN KUNIYUKI and LALEH HOWARD SAN DIEGO MESA COLLEGE

CALCULUS: THE ANSWERS MATH 150: CALCULUS WITH ANALYTIC GEOMETRY I. VERSION 1.3 KEN KUNIYUKI and LALEH HOWARD SAN DIEGO MESA COLLEGE CALCULUS: THE ANSWERS MATH 150: CALCULUS WITH ANALYTIC GEOMETRY I VERSION 1. KEN KUNIYUKI and LALEH HOWARD SAN DIEGO MESA COLLEGE 1) f 4 (Answers to Exercises for Chapter 1: Review) A.1.1. CHAPTER 1: REVIEW

More information

MATH 151 Engineering Mathematics I

MATH 151 Engineering Mathematics I MATH 151 Engineering Mathematics I Fall 2018, WEEK 3 JoungDong Kim Week 3 Section 2.3, 2.5, 2.6, Calculating Limits Using the Limit Laws, Continuity, Limits at Infinity; Horizontal Asymptotes. Section

More information

2.4 The Precise Definition of a Limit

2.4 The Precise Definition of a Limit 2.4 The Precise Definition of a Limit Reminders/Remarks: x 4 < 3 means that the distance between x and 4 is less than 3. In other words, x lies strictly between 1 and 7. So, x a < δ means that the distance

More information

Differentiation and applications

Differentiation and applications FS O PA G E PR O U N C O R R EC TE D Differentiation and applications. Kick off with CAS. Limits, continuit and differentiabilit. Derivatives of power functions.4 C oordinate geometr applications of differentiation.5

More information

Analyzing f, f, and f Solutions

Analyzing f, f, and f Solutions Analyzing f, f, and f Solutions We have intentionally included more material than can be covered in most Student Study Sessions to account for groups that are able to answer the questions at a faster rate.

More information

Revision notes for Pure 1(9709/12)

Revision notes for Pure 1(9709/12) Revision notes for Pure 1(9709/12) By WaqasSuleman A-Level Teacher Beaconhouse School System Contents 1. Sequence and Series 2. Functions & Quadratics 3. Binomial theorem 4. Coordinate Geometry 5. Trigonometry

More information

Limits. or Use Only in Pilot Program F The Idea of Limits 2.2 Definitions of Limits 2.3 Techniques for Computing.

Limits. or Use Only in Pilot Program F The Idea of Limits 2.2 Definitions of Limits 2.3 Techniques for Computing. Limits or Use Onl in Pilot Program F 03 04. he Idea of Limits. Definitions of Limits.3 echniques for Computing Limits.4 Infinite Limits.5 Limits at Infinit.6 Continuit.7 Precise Definitions of Limits Biologists

More information

Topic 2 Limits and Continuity c and d) Continuity Handout Notes Assigned Problems: Intro book pg 73, 1-3 and 6-8

Topic 2 Limits and Continuity c and d) Continuity Handout Notes Assigned Problems: Intro book pg 73, 1-3 and 6-8 c&d. Continuity Handout. Page 1 of 5 Topic Limits and Continuity c and d) Continuity Handout Notes Assigned Problems: Intro book pg 73, 1-3 and 6-8 Recall Limits and Function Values: We have already studied

More information

Name Date. Work with a partner. Each graph shown is a transformation of the parent function

Name Date. Work with a partner. Each graph shown is a transformation of the parent function 3. Transformations of Eponential and Logarithmic Functions For use with Eploration 3. Essential Question How can ou transform the graphs of eponential and logarithmic functions? 1 EXPLORATION: Identifing

More information

2.1 Rates of Change and Limits AP Calculus

2.1 Rates of Change and Limits AP Calculus . Rates of Change and Limits AP Calculus. RATES OF CHANGE AND LIMITS Limits Limits are what separate Calculus from pre calculus. Using a it is also the foundational principle behind the two most important

More information

Respect your friends! Do not distract anyone by chatting with people around you Be considerate of others in class.

Respect your friends! Do not distract anyone by chatting with people around you Be considerate of others in class. Math 1431 Dr. Melahat Almus almus@math.uh.edu http://www.math.uh.edu/~almus Visit CASA regularly for announcements and course material! If you e-mail me, please mention your course (1431) in the subject

More information

y = 3 2 x 3. The slope of this line is 3 and its y-intercept is (0, 3). For every two units to the right, the line rises three units vertically.

y = 3 2 x 3. The slope of this line is 3 and its y-intercept is (0, 3). For every two units to the right, the line rises three units vertically. Mat 2 - Calculus for Management and Social Science. Understanding te basics of lines in te -plane is crucial to te stud of calculus. Notes Recall tat te and -intercepts of a line are were te line meets

More information

Limits: An Intuitive Approach

Limits: An Intuitive Approach Limits: An Intuitive Approach SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should reference Chapter. of the recommended textbook (or the equivalent chapter in your alternative

More information

Bell Ringer. 1. Make a table and sketch the graph of the piecewise function. f(x) =

Bell Ringer. 1. Make a table and sketch the graph of the piecewise function. f(x) = Bell Ringer 1. Make a table and sketch the graph of the piecewise function f(x) = Power and Radical Functions Learning Target: 1. I can graph and analyze power functions. 2. I can graph and analyze radical

More information

Problem Sheet 1. 1) Use Theorem 1.1 to prove that. 1 p loglogx 1

Problem Sheet 1. 1) Use Theorem 1.1 to prove that. 1 p loglogx 1 Problem Sheet ) Use Theorem. to prove that p loglog for all real 3. This is a version of Theorem. with the integer N replaced by the real. Hint Given 3 let N = [], the largest integer. Then, importantly,

More information

Student s Printed Name:

Student s Printed Name: MATH 1060 Test 1 Fall 018 Calculus of One Variable I Version B KEY Sections 1.3 3. Student s Printed Name: Instructor: XID: C Section: No questions will be answered during this eam. If you consider a question

More information

Review Exercises for Chapter 3. Review Exercises for Chapter r v 0 2. v ft sec. x 1 2 x dx f x x 99.4.

Review Exercises for Chapter 3. Review Exercises for Chapter r v 0 2. v ft sec. x 1 2 x dx f x x 99.4. Review Eercises for Chapter 6. r v 0 sin. Let f, 00, d 0.6. v 0 00 ftsec changes from 0 to dr 00 cos d 6 0 d 0 r dr 80 00 6 96 feet 80 cos 0 96 feet 8080 f f fd d f 99. 00 0.6 9.97 00 Using a calculator:

More information

Math 0308 Final Exam Review(answers) Solve the given equations. 1. 3x 14 8x 1

Math 0308 Final Exam Review(answers) Solve the given equations. 1. 3x 14 8x 1 Math 8 Final Eam Review(answers) Solve the given equations.. 8.. 9.. 9 9 8 8.. 8 8 all real numbers 8. 9. all real numbers no solution 8 8 9 9 9 Solve the following inequalities. Graph our solution on

More information

Replacing the a in the definition of the derivative of the function f at a with a variable x, gives the derivative function f (x).

Replacing the a in the definition of the derivative of the function f at a with a variable x, gives the derivative function f (x). Definition of The Derivative Function Definition (The Derivative Function) Replacing the a in the definition of the derivative of the function f at a with a variable x, gives the derivative function f

More information

MA 123 (Calculus I) Lecture 3: September 12, 2017 Section A2. Professor Jennifer Balakrishnan,

MA 123 (Calculus I) Lecture 3: September 12, 2017 Section A2. Professor Jennifer Balakrishnan, What is on today Professor Jennifer Balakrishnan, jbala@bu.edu 1 Techniques for computing limits 1 1.1 Limit laws..................................... 1 1.2 One-sided limits..................................

More information

4.3 Mean-Value Theorem and Monotonicity

4.3 Mean-Value Theorem and Monotonicity .3 Mean-Value Theorem and Monotonicit 1. Mean Value Theorem Theorem: Suppose that f is continuous on the interval a, b and differentiable on the interval a, b. Then there eists a number c in a, b such

More information

THE REAL NUMBERS Chapter #4

THE REAL NUMBERS Chapter #4 FOUNDATIONS OF ANALYSIS FALL 2008 TRUE/FALSE QUESTIONS THE REAL NUMBERS Chapter #4 (1) Every element in a field has a multiplicative inverse. (2) In a field the additive inverse of 1 is 0. (3) In a field

More information

MAT12X Intermediate Algebra

MAT12X Intermediate Algebra MAT12X Intermediate Algebra Workshop 3 Rational Functions LEARNING CENTER Overview Workshop III Rational Functions General Form Domain and Vertical Asymptotes Range and Horizontal Asymptotes Inverse Variation

More information

y »x 2» x 1. Find x if a = be 2x, lna = 7, and ln b = 3 HAL ln 7 HBL 2 HCL 7 HDL 4 HEL e 3

y »x 2» x 1. Find x if a = be 2x, lna = 7, and ln b = 3 HAL ln 7 HBL 2 HCL 7 HDL 4 HEL e 3 . Find if a = be, lna =, and ln b = HAL ln HBL HCL HDL HEL e a = be and taing the natural log of both sides, we have ln a = ln b + ln e ln a = ln b + = + = B. lim b b b = HAL b HBL b HCL b HDL b HEL b

More information

Pre-Calculus Mathematics Limit Process Calculus

Pre-Calculus Mathematics Limit Process Calculus NOTES : LIMITS AND DERIVATIVES Name: Date: Period: Mrs. Nguyen s Initial: LESSON.1 THE TANGENT AND VELOCITY PROBLEMS Pre-Calculus Mathematics Limit Process Calculus The type of it that is used to find

More information

TABLE OF CONTENTS - UNIT 1 CHARACTERISTICS OF FUNCTIONS

TABLE OF CONTENTS - UNIT 1 CHARACTERISTICS OF FUNCTIONS TABLE OF CONTENTS - UNIT CHARACTERISTICS OF FUNCTIONS TABLE OF CONTENTS - UNIT CHARACTERISTICS OF FUNCTIONS INTRODUCTION TO FUNCTIONS RELATIONS AND FUNCTIONS EXAMPLES OF FUNCTIONS 4 VIEWING RELATIONS AND

More information

Finding Limits Graphically and Numerically. An Introduction to Limits

Finding Limits Graphically and Numerically. An Introduction to Limits 8 CHAPTER Limits and Their Properties Section Finding Limits Graphicall and Numericall Estimate a it using a numerical or graphical approach Learn different was that a it can fail to eist Stud and use

More information

Example Graphs of f x are given below. (c) no zero in 2,2

Example Graphs of f x are given below. (c) no zero in 2,2 . - Bisection Method The idea of the Bisection Method is based on the Intermediate Value Theorem that ou studied in Calculus I. Recall that: Intermediate Value Theorem: If f is continuous on a,b and K

More information

KEY IDEAS. Chapter 1 Function Transformations. 1.1 Horizontal and Vertical Translations Pre-Calculus 12 Student Workbook MHR 1

KEY IDEAS. Chapter 1 Function Transformations. 1.1 Horizontal and Vertical Translations Pre-Calculus 12 Student Workbook MHR 1 Chapter Function Transformations. Horizontal and Vertical Translations A translation can move the graph of a function up or down (vertical translation) and right or left (horizontal translation). A translation

More information

EQ: What are limits, and how do we find them? Finite limits as x ± Horizontal Asymptote. Example Horizontal Asymptote

EQ: What are limits, and how do we find them? Finite limits as x ± Horizontal Asymptote. Example Horizontal Asymptote Finite limits as x ± The symbol for infinity ( ) does not represent a real number. We use to describe the behavior of a function when the values in its domain or range outgrow all finite bounds. For example,

More information

Induction, sequences, limits and continuity

Induction, sequences, limits and continuity Induction, sequences, limits and continuity Material covered: eclass notes on induction, Chapter 11, Section 1 and Chapter 2, Sections 2.2-2.5 Induction Principle of mathematical induction: Let P(n) be

More information

Anna D Aloise May 2, 2017 INTD 302: Final Project. Demonstrate an Understanding of the Fundamental Concepts of Calculus

Anna D Aloise May 2, 2017 INTD 302: Final Project. Demonstrate an Understanding of the Fundamental Concepts of Calculus Anna D Aloise May 2, 2017 INTD 302: Final Project Demonstrate an Understanding of the Fundamental Concepts of Calculus Analyzing the concept of limit numerically, algebraically, graphically, and in writing.

More information

Section 5.1 Polynomial Functions and Models

Section 5.1 Polynomial Functions and Models Term: A term is an expression that involves only multiplication and/or division with constants and/or variables. A term is separated by + or Polynomial: A polynomial is a single term or the sum of two

More information

Some commonly encountered sets and their notations

Some commonly encountered sets and their notations NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS (This notes are based on the book Introductory Mathematics by Ng Wee Seng ) LECTURE SETS & FUNCTIONS Some commonly encountered sets and their

More information

1.3 LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION

1.3 LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION . Limits at Infinit; End Behavior of a Function 89. LIMITS AT INFINITY; END BEHAVIOR OF A FUNCTION Up to now we have been concerned with its that describe the behavior of a function f) as approaches some

More information

Section 11.1 Sequences

Section 11.1 Sequences Math 152 c Lynch 1 of 8 Section 11.1 Sequences A sequence is a list of numbers written in a definite order: a 1, a 2, a 3,..., a n,... Notation. The sequence {a 1, a 2, a 3,...} can also be written {a

More information