1. Principle of large deviations

Size: px
Start display at page:

Download "1. Principle of large deviations"

Transcription

1 1. Principle of large deviations This section will provide a short introduction to the Law of large deviations. The basic principle behind this theory centers on the observation that certain functions F of a large number of i.i.d random variables often have the following property [ ] (1) Where s and n are real constants such that In other words, this suggests that the probability that the Function F takes on a value near a point x decays exponentially fast with speed s n and rate function I(x) The following example provided by [1] goes some way in further explaining the concept. Consider a sum (more appropriately, sample mean) of real random variables having the form (2) It is desired to calculate the probability density function of S n, or P Sn (s) where the n random variables are mutually independent and identically distributed. Since the random variables are independent, (3) Now, depending on the nature of p(x), i.e, the probability mass function of the random variables, an appropriate form of the expression for P Sn (s) can be obtained. If p(x) follows a Gaussian or exponential distribution, it can be shown that Where, (4). for the Gaussian pdf and for the Exponential pdf. If the Random variables are Bernoulli with a probability of success α,

2 For simplicity (without going into rigorous concepts of topology and measure theory), the author in [1] states that, a random variable S n or its pdf satisfies a Large Deviation Principle (LDP) if a following form of limit exists. (5) and gives rise to a function I(s), which is the rate function and is not everywhere zero. This can be arrived at in the following manner. As was already mentioned earlier, This implies that, where o(n) is a correction term that is sub-linear in n. As a result, taking a limit of the above expression as n tends to infinity leads to The author however, emphasizes that the above definition is a simplified one of the actual rigorous definition provided by Varadhan [2]. He states that the actual definition is expressed in terms of measures of sets rather than as probability distribution functions, and involves upper and lower bounds on these probabilities rather than a simple limit. Large Deviation Theory has two important aspects. On the one hand, there is the question of how to formalize the intuitive formula for the LDP. On the other, there is the question of determining an appropriate form of the rate function for various forms of functions of independent random variables. It must be emphasized that the rate function in the LDP is related to the concept of entropy from Statistical Mechanics. It takes a simple example to illustrate this point. In statistical mechanics, the entropy of a particular micro-state is related to the number of micro-states which occupies a particular macro-state. Consider the earlier example involving the sample mean wherein each random variable is Bernoulli. In that example, the sample mean could designate a particular macro-state, whereas the particular sequence of heads or tails that gives rise to that value of S n could represent a microstate. Loosely speaking, a macro-state having a higher number of micro-states giving rise to it has higher entropy. A state with higher entropy has a higher chance of being realized in actual experiments. The macro-state with mean value of ½, with an equal number of heads and tails, has the highest number micro-states giving rise to it and it is indeed the state with the highest entropy. In most practical situations we observe that we indeed obtain this macro-state for large numbers of trials. The "rate function" in the LDP on the other hand measures the probability of appearance of a particular macro-state. The smaller the rate function, the higher is the chance of a macro-state appearing. Consider again the rate function for the sample mean defined above if the Random variables are Bernoulli with a probability of success α,

3 In the coin-tossing experiment (considering a fair coin with = ½) the value of the "rate function" for mean value equal to 1/2 is zero. This suggests that as the number of trials approaches infinity, the value of the mean approaches that of the expected value. It can be seen quite clearly that this takes the form of the Kullbeck-Leibler Divergence. 2. Chatterjee s Contribution Now, Chatterjee in his paper [3] provides a rigorous mathematical formulation of the LDP for random graphs. Just as Sanov s theorem provides a large deviation principle for an i.i.d sample, Chatterjee formulates a large deviation principle for the Erdos-Renyi Graph and this is the main goal of his paper. The formulation used in [3] was then extended by Chatterjee in [4] wherein a theoretical method is introduced for the analysis of exponential random graph models. Without going into as much mathematical detail as provided by Chatterjee, an attempt will be made here at examining the results of [4] through a simplified approach. The first hurdle that was faced was construction and visualization of a space wherein all the graphs could be viewed as random elements irrespective of sample size. Chatterjee used the concept of graph limits to build this space (W * ). A large deviation principle (much like the one demonstrated in equation (5)) was then formulated for the random graph in the space W *. It was shown in [3] that, (6) where h * F *. The above expression is defined for a closed function F * W *. Now, let T: G * R be a bounded continuous function on the metric space defined. Then, ( ) (7) The coefficient of n 2 is introduced in order to ensure the presence of a non-trivial limit. From equations (6) and (7), ( ) Eventually, after a derivation to this effect, the following form is obtained Where, the supremum is over h * W * This is the main result of Chatterjee s paper [4]. There needs to be emphasis on the incompleteness of (and inconsistencies present in) the above treatment. The actual proof is provided by Chatterjee in [4] and, as mentioned earlier, involves a complete treatment of the concepts. However, for the sake of intuitive understanding, the explanation given here provides a

4 sense of the direction that the authors took in order to arrive at this theory of Estimating and Understanding Random Graph Models. 3. Determining the rate function As mentioned earlier, the definition of the rate function I is one of the prime objectives of the large deviation theory. It was shown earlier that if the Random variables are Bernoulli, I(s) takes the following form, Accordingly, the rate function defined in [4] was I[0,1] R, such that Extending this over the space h W *, (8) ( ) The primary discussion regarding the derivation of Chatterjee s main result needs to be the means of determining the rate function. This is necessary because, as mentioned earlier, the rate function is related to the concept of entropy. The Gartner-Ellis theorem provides a means of calculating the rate function. It defines the Scaled Cumulant Generating Function (SCGF) as Here, E[.] is the expectation operator and A n is the random variable being considered. The Gartner-Ellis theorem states that if exists and is differentiable for all k, then A n satisfies the large deviation principle given by rate function, The transform defined by the supremum is the Legendre-Fenchel transform (also known as Fenchel Transform). Thus, the rate function is obtained by determining the Legendre-Fenchel transform of (also known as Fenchel conjugate). In the case of the random graph model, k is replaced by a function T, which represents the graph statistic, and a similar treatment is performed. It is supposed that obtaining the legendre-fenchel transform of as defined above would then lead to the form of rate function defined by Chatterjee, as in equation (8).

5 4. Thoughts and discussions Though the concepts are related, it is supposed that Chatterjee approached the problem of estimation of ERGMs purely from the standpoint of the Large Deviation Theory. Dudik, [5] on the other hand, provides the first complete framework of a generalized form of maxent including fully general and unified performance guarantees, algorithms and convergence proofs. As a part of this work, he derived the dual of the generalized maxent (which is the log likelihood) and the concept of Fenchel duality was used to derive the dual. There is a definite relation between the rate function of the LDP and the concept of entropy. As the fenchel conjugate is employed in both cases, it leads to similar expressions. 5. References [1] Touchette, H., The large deviation approach to statistical mechanics, Phys.Rep. 478 (1-3) (2009) [2] Varadhan, S.R.S., Asymptotic probabilities and differential equations. Comm. Pure Appl. Math., 19: , [3] S. Chatterjee, Varadhan, S.R.S., The large deviation principle for the Erdős-Rényi random graph, Eur J Combinatorics 32 ( 2011), [4] Chatterjee, S. and Diaconis, P. (2011). Estimating and understanding exponential random graph models. Available at arxiv: [5] Dudık, M., Maximum entropy density estimation and modeling geographic distributions of species. Ph.D. thesis.

Large-deviation theory and coverage in mobile phone networks

Large-deviation theory and coverage in mobile phone networks Weierstrass Institute for Applied Analysis and Stochastics Large-deviation theory and coverage in mobile phone networks Paul Keeler, Weierstrass Institute for Applied Analysis and Stochastics, Berlin joint

More information

arxiv: v3 [cond-mat.stat-mech] 29 Feb 2012

arxiv: v3 [cond-mat.stat-mech] 29 Feb 2012 A basic introduction to large deviations: Theory, applications, simulations arxiv:1106.4146v3 [cond-mat.stat-mech] 29 Feb 2012 Hugo Touchette School of Mathematical Sciences, Queen Mary, University of

More information

Large Deviations Techniques and Applications

Large Deviations Techniques and Applications Amir Dembo Ofer Zeitouni Large Deviations Techniques and Applications Second Edition With 29 Figures Springer Contents Preface to the Second Edition Preface to the First Edition vii ix 1 Introduction 1

More information

Exercises with solutions (Set D)

Exercises with solutions (Set D) Exercises with solutions Set D. A fair die is rolled at the same time as a fair coin is tossed. Let A be the number on the upper surface of the die and let B describe the outcome of the coin toss, where

More information

Name: Firas Rassoul-Agha

Name: Firas Rassoul-Agha Midterm 1 - Math 5010 - Spring 016 Name: Firas Rassoul-Agha Solve the following 4 problems. You have to clearly explain your solution. The answer carries no points. Only the work does. CALCULATORS ARE

More information

EMERGENT STRUCTURES IN LARGE NETWORKS

EMERGENT STRUCTURES IN LARGE NETWORKS Applied Probability Trust (29 November 2012) EMERGENT STRUCTURES IN LARGE NETWORKS DAVID ARISTOFF, University of Minnesota CHARLES RADIN, The University of Texas at Austin Abstract We consider a large

More information

The large deviation principle for the Erdős-Rényi random graph

The large deviation principle for the Erdős-Rényi random graph The large deviation principle for the Erdős-Rényi random graph (Courant Institute, NYU) joint work with S. R. S. Varadhan Main objective: how to count graphs with a given property Only consider finite

More information

Chapter 2 Random Variables

Chapter 2 Random Variables Stochastic Processes Chapter 2 Random Variables Prof. Jernan Juang Dept. of Engineering Science National Cheng Kung University Prof. Chun-Hung Liu Dept. of Electrical and Computer Eng. National Chiao Tung

More information

COMPSCI 650 Applied Information Theory Jan 21, Lecture 2

COMPSCI 650 Applied Information Theory Jan 21, Lecture 2 COMPSCI 650 Applied Information Theory Jan 21, 2016 Lecture 2 Instructor: Arya Mazumdar Scribe: Gayane Vardoyan, Jong-Chyi Su 1 Entropy Definition: Entropy is a measure of uncertainty of a random variable.

More information

Legendre-Fenchel transforms in a nutshell

Legendre-Fenchel transforms in a nutshell 1 2 3 Legendre-Fenchel transforms in a nutshell Hugo Touchette School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS, UK Started: July 11, 2005; last compiled: August 14, 2007

More information

Chapter 2: Random Variables

Chapter 2: Random Variables ECE54: Stochastic Signals and Systems Fall 28 Lecture 2 - September 3, 28 Dr. Salim El Rouayheb Scribe: Peiwen Tian, Lu Liu, Ghadir Ayache Chapter 2: Random Variables Example. Tossing a fair coin twice:

More information

Large Deviations for Weakly Dependent Sequences: The Gärtner-Ellis Theorem

Large Deviations for Weakly Dependent Sequences: The Gärtner-Ellis Theorem Chapter 34 Large Deviations for Weakly Dependent Sequences: The Gärtner-Ellis Theorem This chapter proves the Gärtner-Ellis theorem, establishing an LDP for not-too-dependent processes taking values in

More information

A Note On Large Deviation Theory and Beyond

A Note On Large Deviation Theory and Beyond A Note On Large Deviation Theory and Beyond Jin Feng In this set of notes, we will develop and explain a whole mathematical theory which can be highly summarized through one simple observation ( ) lim

More information

Basic Probability space, sample space concepts and order of a Stochastic Process

Basic Probability space, sample space concepts and order of a Stochastic Process The Lecture Contains: Basic Introduction Basic Probability space, sample space concepts and order of a Stochastic Process Examples Definition of Stochastic Process Marginal Distributions Moments Gaussian

More information

MARKOV PROCESSES. Valerio Di Valerio

MARKOV PROCESSES. Valerio Di Valerio MARKOV PROCESSES Valerio Di Valerio Stochastic Process Definition: a stochastic process is a collection of random variables {X(t)} indexed by time t T Each X(t) X is a random variable that satisfy some

More information

Théorie des grandes déviations: Des mathématiques à la physique

Théorie des grandes déviations: Des mathématiques à la physique Théorie des grandes déviations: Des mathématiques à la physique Hugo Touchette National Institute for Theoretical Physics (NITheP) Stellenbosch, Afrique du Sud CERMICS, École des Ponts Paris, France 30

More information

POISSON PROCESSES 1. THE LAW OF SMALL NUMBERS

POISSON PROCESSES 1. THE LAW OF SMALL NUMBERS POISSON PROCESSES 1. THE LAW OF SMALL NUMBERS 1.1. The Rutherford-Chadwick-Ellis Experiment. About 90 years ago Ernest Rutherford and his collaborators at the Cavendish Laboratory in Cambridge conducted

More information

Great Theoretical Ideas in Computer Science

Great Theoretical Ideas in Computer Science 15-251 Great Theoretical Ideas in Computer Science Probability Theory: Counting in Terms of Proportions Lecture 10 (September 27, 2007) Some Puzzles Teams A and B are equally good In any one game, each

More information

Continuous-Valued Probability Review

Continuous-Valued Probability Review CS 6323 Continuous-Valued Probability Review Prof. Gregory Provan Department of Computer Science University College Cork 2 Overview Review of discrete distributions Continuous distributions 3 Discrete

More information

Probability and Statistics Concepts

Probability and Statistics Concepts University of Central Florida Computer Science Division COT 5611 - Operating Systems. Spring 014 - dcm Probability and Statistics Concepts Random Variable: a rule that assigns a numerical value to each

More information

Probability Rules. MATH 130, Elements of Statistics I. J. Robert Buchanan. Fall Department of Mathematics

Probability Rules. MATH 130, Elements of Statistics I. J. Robert Buchanan. Fall Department of Mathematics Probability Rules MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2018 Introduction Probability is a measure of the likelihood of the occurrence of a certain behavior

More information

Lecture 3. Discrete Random Variables

Lecture 3. Discrete Random Variables Math 408 - Mathematical Statistics Lecture 3. Discrete Random Variables January 23, 2013 Konstantin Zuev (USC) Math 408, Lecture 3 January 23, 2013 1 / 14 Agenda Random Variable: Motivation and Definition

More information

MATH Notebook 5 Fall 2018/2019

MATH Notebook 5 Fall 2018/2019 MATH442601 2 Notebook 5 Fall 2018/2019 prepared by Professor Jenny Baglivo c Copyright 2004-2019 by Jenny A. Baglivo. All Rights Reserved. 5 MATH442601 2 Notebook 5 3 5.1 Sequences of IID Random Variables.............................

More information

Chapter 2.5 Random Variables and Probability The Modern View (cont.)

Chapter 2.5 Random Variables and Probability The Modern View (cont.) Chapter 2.5 Random Variables and Probability The Modern View (cont.) I. Statistical Independence A crucially important idea in probability and statistics is the concept of statistical independence. Suppose

More information

Probability Theory and Applications

Probability Theory and Applications Probability Theory and Applications Videos of the topics covered in this manual are available at the following links: Lesson 4 Probability I http://faculty.citadel.edu/silver/ba205/online course/lesson

More information

Random Processes. DS GA 1002 Probability and Statistics for Data Science.

Random Processes. DS GA 1002 Probability and Statistics for Data Science. Random Processes DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Aim Modeling quantities that evolve in time (or space)

More information

The random variable 1

The random variable 1 The random variable 1 Contents 1. Definition 2. Distribution and density function 3. Specific random variables 4. Functions of one random variable 5. Mean and variance 2 The random variable A random variable

More information

Classical and Bayesian inference

Classical and Bayesian inference Classical and Bayesian inference AMS 132 Claudia Wehrhahn (UCSC) Classical and Bayesian inference January 8 1 / 11 The Prior Distribution Definition Suppose that one has a statistical model with parameter

More information

ECE 302: Probabilistic Methods in Electrical Engineering

ECE 302: Probabilistic Methods in Electrical Engineering ECE 302: Probabilistic Methods in Electrical Engineering Test I : Chapters 1 3 3/22/04, 7:30 PM Print Name: Read every question carefully and solve each problem in a legible and ordered manner. Make sure

More information

The Beginning of Graph Theory. Theory and Applications of Complex Networks. Eulerian paths. Graph Theory. Class Three. College of the Atlantic

The Beginning of Graph Theory. Theory and Applications of Complex Networks. Eulerian paths. Graph Theory. Class Three. College of the Atlantic Theory and Applications of Complex Networs 1 Theory and Applications of Complex Networs 2 Theory and Applications of Complex Networs Class Three The Beginning of Graph Theory Leonhard Euler wonders, can

More information

Probability Density Functions and the Normal Distribution. Quantitative Understanding in Biology, 1.2

Probability Density Functions and the Normal Distribution. Quantitative Understanding in Biology, 1.2 Probability Density Functions and the Normal Distribution Quantitative Understanding in Biology, 1.2 1. Discrete Probability Distributions 1.1. The Binomial Distribution Question: You ve decided to flip

More information

A Potpourri of Nonlinear Algebra

A Potpourri of Nonlinear Algebra a a 2 a 3 + c c 2 c 3 =2, a a 3 b 2 + c c 3 d 2 =0, a 2 a 3 b + c 2 c 3 d =0, a 3 b b 2 + c 3 d d 2 = 4, a a 2 b 3 + c c 2 d 3 =0, a b 2 b 3 + c d 2 d 3 = 4, a 2 b b 3 + c 2 d 3 d =4, b b 2 b 3 + d d 2

More information

Statistics 612: L p spaces, metrics on spaces of probabilites, and connections to estimation

Statistics 612: L p spaces, metrics on spaces of probabilites, and connections to estimation Statistics 62: L p spaces, metrics on spaces of probabilites, and connections to estimation Moulinath Banerjee December 6, 2006 L p spaces and Hilbert spaces We first formally define L p spaces. Consider

More information

Statistical Preliminaries. Stony Brook University CSE545, Fall 2016

Statistical Preliminaries. Stony Brook University CSE545, Fall 2016 Statistical Preliminaries Stony Brook University CSE545, Fall 2016 Random Variables X: A mapping from Ω to R that describes the question we care about in practice. 2 Random Variables X: A mapping from

More information

Human-Oriented Robotics. Probability Refresher. Kai Arras Social Robotics Lab, University of Freiburg Winter term 2014/2015

Human-Oriented Robotics. Probability Refresher. Kai Arras Social Robotics Lab, University of Freiburg Winter term 2014/2015 Probability Refresher Kai Arras, University of Freiburg Winter term 2014/2015 Probability Refresher Introduction to Probability Random variables Joint distribution Marginalization Conditional probability

More information

Sample Spaces, Random Variables

Sample Spaces, Random Variables Sample Spaces, Random Variables Moulinath Banerjee University of Michigan August 3, 22 Probabilities In talking about probabilities, the fundamental object is Ω, the sample space. (elements) in Ω are denoted

More information

Compute f(x θ)f(θ) dθ

Compute f(x θ)f(θ) dθ Bayesian Updating: Continuous Priors 18.05 Spring 2014 b a Compute f(x θ)f(θ) dθ January 1, 2017 1 /26 Beta distribution Beta(a, b) has density (a + b 1)! f (θ) = θ a 1 (1 θ) b 1 (a 1)!(b 1)! http://mathlets.org/mathlets/beta-distribution/

More information

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing

+ + ( + ) = Linear recurrent networks. Simpler, much more amenable to analytic treatment E.g. by choosing Linear recurrent networks Simpler, much more amenable to analytic treatment E.g. by choosing + ( + ) = Firing rates can be negative Approximates dynamics around fixed point Approximation often reasonable

More information

Concentration of Measures by Bounded Couplings

Concentration of Measures by Bounded Couplings Concentration of Measures by Bounded Couplings Subhankar Ghosh, Larry Goldstein and Ümit Işlak University of Southern California [arxiv:0906.3886] [arxiv:1304.5001] May 2013 Concentration of Measure Distributional

More information

ORF 245 Fundamentals of Statistics Chapter 9 Hypothesis Testing

ORF 245 Fundamentals of Statistics Chapter 9 Hypothesis Testing ORF 245 Fundamentals of Statistics Chapter 9 Hypothesis Testing Robert Vanderbei Fall 2014 Slides last edited on November 24, 2014 http://www.princeton.edu/ rvdb Coin Tossing Example Consider two coins.

More information

EE5319R: Problem Set 3 Assigned: 24/08/16, Due: 31/08/16

EE5319R: Problem Set 3 Assigned: 24/08/16, Due: 31/08/16 EE539R: Problem Set 3 Assigned: 24/08/6, Due: 3/08/6. Cover and Thomas: Problem 2.30 (Maimum Entropy): Solution: We are required to maimize H(P X ) over all distributions P X on the non-negative integers

More information

An inverse of Sanov s theorem

An inverse of Sanov s theorem An inverse of Sanov s theorem Ayalvadi Ganesh and Neil O Connell BRIMS, Hewlett-Packard Labs, Bristol Abstract Let X k be a sequence of iid random variables taking values in a finite set, and consider

More information

Classical Information Theory Notes from the lectures by prof Suhov Trieste - june 2006

Classical Information Theory Notes from the lectures by prof Suhov Trieste - june 2006 Classical Information Theory Notes from the lectures by prof Suhov Trieste - june 2006 Fabio Grazioso... July 3, 2006 1 2 Contents 1 Lecture 1, Entropy 4 1.1 Random variable...............................

More information

Legendre-Fenchel transforms in a nutshell

Legendre-Fenchel transforms in a nutshell 1 2 3 Legendre-Fenchel transforms in a nutshell Hugo Touchette School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS, UK Started: July 11, 2005; last compiled: October 16, 2014

More information

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com

Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com 1 School of Oriental and African Studies September 2015 Department of Economics Preliminary Statistics Lecture 2: Probability Theory (Outline) prelimsoas.webs.com Gujarati D. Basic Econometrics, Appendix

More information

Math 105 Course Outline

Math 105 Course Outline Math 105 Course Outline Week 9 Overview This week we give a very brief introduction to random variables and probability theory. Most observable phenomena have at least some element of randomness associated

More information

Longest runs in coin tossing. Teaching recursive formulae, asymptotic theorems and computer simulations

Longest runs in coin tossing. Teaching recursive formulae, asymptotic theorems and computer simulations tmcs-karacsony 2011/11/20 19:51 page 261 #1 9/2 (2011), 261 274 Longest runs in coin tossing. Teaching recursive formulae, asymptotic theorems and computer simulations Zsolt Karácsony and Józsefné Libor

More information

Random variables. DS GA 1002 Probability and Statistics for Data Science.

Random variables. DS GA 1002 Probability and Statistics for Data Science. Random variables DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Motivation Random variables model numerical quantities

More information

14 : Theory of Variational Inference: Inner and Outer Approximation

14 : Theory of Variational Inference: Inner and Outer Approximation 10-708: Probabilistic Graphical Models 10-708, Spring 2014 14 : Theory of Variational Inference: Inner and Outer Approximation Lecturer: Eric P. Xing Scribes: Yu-Hsin Kuo, Amos Ng 1 Introduction Last lecture

More information

Concentration of Measures by Bounded Size Bias Couplings

Concentration of Measures by Bounded Size Bias Couplings Concentration of Measures by Bounded Size Bias Couplings Subhankar Ghosh, Larry Goldstein University of Southern California [arxiv:0906.3886] January 10 th, 2013 Concentration of Measure Distributional

More information

Some Asymptotic Bayesian Inference (background to Chapter 2 of Tanner s book)

Some Asymptotic Bayesian Inference (background to Chapter 2 of Tanner s book) Some Asymptotic Bayesian Inference (background to Chapter 2 of Tanner s book) Principal Topics The approach to certainty with increasing evidence. The approach to consensus for several agents, with increasing

More information

Non-equilibrium dynamics of Kinetically Constrained Models. Paul Chleboun 20/07/2015 SMFP - Heraclion

Non-equilibrium dynamics of Kinetically Constrained Models. Paul Chleboun 20/07/2015 SMFP - Heraclion Non-equilibrium dynamics of Kinetically Constrained Models Paul Chleboun 20/07/2015 SMFP - Heraclion 1 Outline Kinetically constrained models (KCM)» Motivation» Definition Results» In one dimension There

More information

DEEP LEARNING CHAPTER 3 PROBABILITY & INFORMATION THEORY

DEEP LEARNING CHAPTER 3 PROBABILITY & INFORMATION THEORY DEEP LEARNING CHAPTER 3 PROBABILITY & INFORMATION THEORY OUTLINE 3.1 Why Probability? 3.2 Random Variables 3.3 Probability Distributions 3.4 Marginal Probability 3.5 Conditional Probability 3.6 The Chain

More information

Computational Perception. Bayesian Inference

Computational Perception. Bayesian Inference Computational Perception 15-485/785 January 24, 2008 Bayesian Inference The process of probabilistic inference 1. define model of problem 2. derive posterior distributions and estimators 3. estimate parameters

More information

Probability. Table of contents

Probability. Table of contents Probability Table of contents 1. Important definitions 2. Distributions 3. Discrete distributions 4. Continuous distributions 5. The Normal distribution 6. Multivariate random variables 7. Other continuous

More information

hp calculators HP 50g Probability distributions The MTH (MATH) menu Probability distributions

hp calculators HP 50g Probability distributions The MTH (MATH) menu Probability distributions The MTH (MATH) menu Probability distributions Practice solving problems involving probability distributions The MTH (MATH) menu The Math menu is accessed from the WHITE shifted function of the Pkey by

More information

Introduction and Overview STAT 421, SP Course Instructor

Introduction and Overview STAT 421, SP Course Instructor Introduction and Overview STAT 421, SP 212 Prof. Prem K. Goel Mon, Wed, Fri 3:3PM 4:48PM Postle Hall 118 Course Instructor Prof. Goel, Prem E mail: goel.1@osu.edu Office: CH 24C (Cockins Hall) Phone: 614

More information

STAT Chapter 3: Probability

STAT Chapter 3: Probability Basic Definitions STAT 515 --- Chapter 3: Probability Experiment: A process which leads to a single outcome (called a sample point) that cannot be predicted with certainty. Sample Space (of an experiment):

More information

Discrete and continuous

Discrete and continuous Discrete and continuous A curve, or a function, or a range of values of a variable, is discrete if it has gaps in it - it jumps from one value to another. In practice in S2 discrete variables are variables

More information

PROBABILITY AND INFORMATION THEORY. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

PROBABILITY AND INFORMATION THEORY. Dr. Gjergji Kasneci Introduction to Information Retrieval WS PROBABILITY AND INFORMATION THEORY Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Probability space Rules of probability

More information

Probability Distributions

Probability Distributions The ASTRO509-3 dark energy puzzle Probability Distributions I have had my results for a long time: but I do not yet know how I am to arrive at them. Johann Carl Friedrich Gauss 1777-1855 ASTR509 Jasper

More information

A brief review of basics of probabilities

A brief review of basics of probabilities brief review of basics of probabilities Milos Hauskrecht milos@pitt.edu 5329 Sennott Square robability theory Studies and describes random processes and their outcomes Random processes may result in multiple

More information

Machine Learning Lecture Notes

Machine Learning Lecture Notes Machine Learning Lecture Notes Predrag Radivojac January 3, 25 Random Variables Until now we operated on relatively simple sample spaces and produced measure functions over sets of outcomes. In many situations,

More information

Global Optimization, Generalized Canonical Ensembles, and Universal Ensemble Equivalence

Global Optimization, Generalized Canonical Ensembles, and Universal Ensemble Equivalence Richard S. Ellis, Generalized Canonical Ensembles 1 Global Optimization, Generalized Canonical Ensembles, and Universal Ensemble Equivalence Richard S. Ellis Department of Mathematics and Statistics University

More information

Review of Probability Theory

Review of Probability Theory Review of Probability Theory Arian Maleki and Tom Do Stanford University Probability theory is the study of uncertainty Through this class, we will be relying on concepts from probability theory for deriving

More information

Modèles stochastiques II

Modèles stochastiques II Modèles stochastiques II INFO 154 Gianluca Bontempi Département d Informatique Boulevard de Triomphe - CP 1 http://ulbacbe/di Modéles stochastiques II p1/50 The basics of statistics Statistics starts ith

More information

STAT2201. Analysis of Engineering & Scientific Data. Unit 3

STAT2201. Analysis of Engineering & Scientific Data. Unit 3 STAT2201 Analysis of Engineering & Scientific Data Unit 3 Slava Vaisman The University of Queensland School of Mathematics and Physics What we learned in Unit 2 (1) We defined a sample space of a random

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 5 Spring 2006

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 5 Spring 2006 Review problems UC Berkeley Department of Electrical Engineering and Computer Science EE 6: Probablity and Random Processes Solutions 5 Spring 006 Problem 5. On any given day your golf score is any integer

More information

MATH Solutions to Probability Exercises

MATH Solutions to Probability Exercises MATH 5 9 MATH 5 9 Problem. Suppose we flip a fair coin once and observe either T for tails or H for heads. Let X denote the random variable that equals when we observe tails and equals when we observe

More information

Notes on Mathematical Expectations and Classes of Distributions Introduction to Econometric Theory Econ. 770

Notes on Mathematical Expectations and Classes of Distributions Introduction to Econometric Theory Econ. 770 Notes on Mathematical Expectations and Classes of Distributions Introduction to Econometric Theory Econ. 77 Jonathan B. Hill Dept. of Economics University of North Carolina - Chapel Hill October 4, 2 MATHEMATICAL

More information

Introduction to Bayesian Statistics

Introduction to Bayesian Statistics Bayesian Parameter Estimation Introduction to Bayesian Statistics Harvey Thornburg Center for Computer Research in Music and Acoustics (CCRMA) Department of Music, Stanford University Stanford, California

More information

Review of probabilities

Review of probabilities CS 1675 Introduction to Machine Learning Lecture 5 Density estimation Milos Hauskrecht milos@pitt.edu 5329 Sennott Square Review of probabilities 1 robability theory Studies and describes random processes

More information

Probability Theory for Machine Learning. Chris Cremer September 2015

Probability Theory for Machine Learning. Chris Cremer September 2015 Probability Theory for Machine Learning Chris Cremer September 2015 Outline Motivation Probability Definitions and Rules Probability Distributions MLE for Gaussian Parameter Estimation MLE and Least Squares

More information

Hypothesis Testing. 1 Definitions of test statistics. CB: chapter 8; section 10.3

Hypothesis Testing. 1 Definitions of test statistics. CB: chapter 8; section 10.3 Hypothesis Testing CB: chapter 8; section 0.3 Hypothesis: statement about an unknown population parameter Examples: The average age of males in Sweden is 7. (statement about population mean) The lowest

More information

Stationary Time Series

Stationary Time Series Stationary Time Series Kyoung Hwan Lee First of all, we need to define what is Stationary Time Series and figure out why we study Stationary Time Series. Even before that, what is time series? According

More information

Bayesian Models in Machine Learning

Bayesian Models in Machine Learning Bayesian Models in Machine Learning Lukáš Burget Escuela de Ciencias Informáticas 2017 Buenos Aires, July 24-29 2017 Frequentist vs. Bayesian Frequentist point of view: Probability is the frequency of

More information

6.207/14.15: Networks Lecture 12: Generalized Random Graphs

6.207/14.15: Networks Lecture 12: Generalized Random Graphs 6.207/14.15: Networks Lecture 12: Generalized Random Graphs 1 Outline Small-world model Growing random networks Power-law degree distributions: Rich-Get-Richer effects Models: Uniform attachment model

More information

Graph Limits: Some Open Problems

Graph Limits: Some Open Problems Graph Limits: Some Open Problems 1 Introduction Here are some questions from the open problems session that was held during the AIM Workshop Graph and Hypergraph Limits, Palo Alto, August 15-19, 2011.

More information

CSE 312 Foundations, II Final Exam

CSE 312 Foundations, II Final Exam CSE 312 Foundations, II Final Exam 1 Anna Karlin June 11, 2014 DIRECTIONS: Closed book, closed notes except for one 8.5 11 sheet. Time limit 110 minutes. Calculators allowed. Grading will emphasize problem

More information

Probability theory basics

Probability theory basics Probability theory basics Michael Franke Basics of probability theory: axiomatic definition, interpretation, joint distributions, marginalization, conditional probability & Bayes rule. Random variables:

More information

Introduction: MLE, MAP, Bayesian reasoning (28/8/13)

Introduction: MLE, MAP, Bayesian reasoning (28/8/13) STA561: Probabilistic machine learning Introduction: MLE, MAP, Bayesian reasoning (28/8/13) Lecturer: Barbara Engelhardt Scribes: K. Ulrich, J. Subramanian, N. Raval, J. O Hollaren 1 Classifiers In this

More information

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS EXAM Exam # Math 3342 Summer II, 2 July 2, 2 ANSWERS i pts. Problem. Consider the following data: 7, 8, 9, 2,, 7, 2, 3. Find the first quartile, the median, and the third quartile. Make a box and whisker

More information

Chapter 3. Chapter 3 sections

Chapter 3. Chapter 3 sections sections 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.4 Bivariate Distributions 3.5 Marginal Distributions 3.6 Conditional Distributions 3.7 Multivariate Distributions

More information

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018 CLASS NOTES Models, Algorithms and Data: Introduction to computing 208 Petros Koumoutsakos, Jens Honore Walther (Last update: June, 208) IMPORTANT DISCLAIMERS. REFERENCES: Much of the material (ideas,

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Introduction to Probabilistic Methods Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB

More information

Entropy and Large Deviations

Entropy and Large Deviations Entropy and Large Deviations p. 1/32 Entropy and Large Deviations S.R.S. Varadhan Courant Institute, NYU Michigan State Universiy East Lansing March 31, 2015 Entropy comes up in many different contexts.

More information

Machine Learning CMPT 726 Simon Fraser University. Binomial Parameter Estimation

Machine Learning CMPT 726 Simon Fraser University. Binomial Parameter Estimation Machine Learning CMPT 726 Simon Fraser University Binomial Parameter Estimation Outline Maximum Likelihood Estimation Smoothed Frequencies, Laplace Correction. Bayesian Approach. Conjugate Prior. Uniform

More information

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 3, MARCH

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 3, MARCH IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 3, MARCH 1998 315 Asymptotic Buffer Overflow Probabilities in Multiclass Multiplexers: An Optimal Control Approach Dimitris Bertsimas, Ioannis Ch. Paschalidis,

More information

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example continued : Coin tossing Math 425 Intro to Probability Lecture 37 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan April 8, 2009 Consider a Bernoulli trials process with

More information

Lecture 1: August 28

Lecture 1: August 28 36-705: Intermediate Statistics Fall 2017 Lecturer: Siva Balakrishnan Lecture 1: August 28 Our broad goal for the first few lectures is to try to understand the behaviour of sums of independent random

More information

Basics on Probability. Jingrui He 09/11/2007

Basics on Probability. Jingrui He 09/11/2007 Basics on Probability Jingrui He 09/11/2007 Coin Flips You flip a coin Head with probability 0.5 You flip 100 coins How many heads would you expect Coin Flips cont. You flip a coin Head with probability

More information

6.041/6.431 Fall 2010 Quiz 2 Solutions

6.041/6.431 Fall 2010 Quiz 2 Solutions 6.04/6.43: Probabilistic Systems Analysis (Fall 200) 6.04/6.43 Fall 200 Quiz 2 Solutions Problem. (80 points) In this problem: (i) X is a (continuous) uniform random variable on [0, 4]. (ii) Y is an exponential

More information

Chapter 2: The Random Variable

Chapter 2: The Random Variable Chapter : The Random Variable The outcome of a random eperiment need not be a number, for eample tossing a coin or selecting a color ball from a bo. However we are usually interested not in the outcome

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Parameter Estimation December 14, 2015 Overview 1 Motivation 2 3 4 What did we have so far? 1 Representations: how do we model the problem? (directed/undirected). 2 Inference: given a model and partially

More information

Fundamentals. CS 281A: Statistical Learning Theory. Yangqing Jia. August, Based on tutorial slides by Lester Mackey and Ariel Kleiner

Fundamentals. CS 281A: Statistical Learning Theory. Yangqing Jia. August, Based on tutorial slides by Lester Mackey and Ariel Kleiner Fundamentals CS 281A: Statistical Learning Theory Yangqing Jia Based on tutorial slides by Lester Mackey and Ariel Kleiner August, 2011 Outline 1 Probability 2 Statistics 3 Linear Algebra 4 Optimization

More information

The Sherrington-Kirkpatrick model

The Sherrington-Kirkpatrick model Stat 36 Stochastic Processes on Graphs The Sherrington-Kirkpatrick model Andrea Montanari Lecture - 4/-4/00 The Sherrington-Kirkpatrick (SK) model was introduced by David Sherrington and Scott Kirkpatrick

More information

1590 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 6, JUNE Source Coding, Large Deviations, and Approximate Pattern Matching

1590 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 6, JUNE Source Coding, Large Deviations, and Approximate Pattern Matching 1590 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 6, JUNE 2002 Source Coding, Large Deviations, and Approximate Pattern Matching Amir Dembo and Ioannis Kontoyiannis, Member, IEEE Invited Paper

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Tobias Neckel, Ionuț-Gabriel Farcaș Lehrstuhl Informatik V Summer Semester 2017 Lecture 2: Repetition of probability theory and statistics Example: coin flip Example

More information

Conditional Probability

Conditional Probability Conditional Probability Idea have performed a chance experiment but don t know the outcome (ω), but have some partial information (event A) about ω. Question: given this partial information what s the

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information