Théorie des grandes déviations: Des mathématiques à la physique

Size: px
Start display at page:

Download "Théorie des grandes déviations: Des mathématiques à la physique"

Transcription

1 Théorie des grandes déviations: Des mathématiques à la physique Hugo Touchette National Institute for Theoretical Physics (NITheP) Stellenbosch, Afrique du Sud CERMICS, École des Ponts Paris, France 30 novembre 2015 Hugo Touchette (NITheP) Grandes déviations Novembre / 22 Plan Themes Typical states Fluctuations around typicality Many components Outline A bit of history Basics of large deviations Equilibrium systems Nonequilibrium systems. Lewis (80s) Ellis (1984) Graham (80s) Lanford (1973) Onsager (1953) Einstein (1910) Boltzmann (1877). Gärtner (1977) Freidlin-Wentzell (70s) Donsker-Varadhan (70s) Sanov (1957) Cramér (1938) Hugo Touchette (NITheP) Grandes déviations Novembre / 22

2 Boltzmann (1877) Energy levels j N Particles i Energy distribution: w j = # particles in level j Multinomial distribution: ln N! j w j! N j w j ln w j = Ns(w) P(w) e Ns(w) Hugo Touchette (NITheP) Grandes déviations Novembre / 22 Einstein (1910) Generalize Boltzmann Macrostate: M N Density of states (complexion): W (m) = # microstates with M N = m Einstein s postulate W (m) = e Ns(m) Probability: P(m) = e N[s(m) s(m )] Equilibrium: s(m ) is max Hugo Touchette (NITheP) Grandes déviations Novembre / 22

3 Cramér (1938) Sample mean: S n = 1 n X i, n Cumulant: i=1 λ(k) = ln E[e kx ] = X i p(x) IID p(x) e kx dx R Harald Cramér ( ) Probability density: ( ni (s) 1 P(S n = s) = e b 0 + b 1 n n + Rate function: I (s) = max{ks λ(k)} k R Hugo Touchette (NITheP) Grandes déviations Novembre / 22 ) Sanov (1957) Sequence of IID RVs: X 1, X 2,..., X n X i p(x) Empirical distribution: L n (x) = 1 n n i=1 δ Xi,x P(L n = ρ) e nd(ρ p) Relative entropy: D(ρ p) = dx ρ(x) ln ρ(x) p(x) Ivan Nikolaevich Sanov ( ) ( ) Law of Large Numbers: L n ρ Hugo Touchette (NITheP) Grandes déviations Novembre / 22

4 Large deviation theory Random variable: A n Probability density: P(A n = a) Large deviation principle (LDP) ni (a) P(A n = a) e Meaning of : lim n 1 n ln P(a) = ni (a) + o(n) ln P(a) = I (a) Rate function: I (a) 0 Goals of large deviation theory 1 Prove that a large deviation principle exists 2 Calculate the rate function Hugo Touchette (NITheP) Grandes déviations Novembre / 22 Varadhan s Theorem LDP: ni (a) P(A n = a) e Exponential expectation: E[e nf (An) ] = e nf (a) P(A n = a) da Limit functional: λ(f ) = lim n Theorem: Varadhan (1966) 1 n ln E[enf (A n) ] S. R. Srinivasa Varadhan Abel Prize 2007 Special case: f (a) = ka λ(f ) = max{f (a) I (a)} a λ(k) = max{ka I (a)} a Hugo Touchette (NITheP) Grandes déviations Novembre / 22

5 Gärtner-Ellis Theorem Scaled cumulant generating function (SCGF) λ(k) = lim n 1 n ln E[enkA n ], k R Theorem: Gärtner (1977), Ellis (1984) If λ(k) is differentiable, then 1 LDP: 2 Rate function: ni (a) P(A n = a) e Richard S. Ellis I (a) = max{ka λ(k)} k I (a) is the Legendre transform of λ(k) J. Gärtner Hugo Touchette (NITheP) Grandes déviations Novembre / 22 Cramer s Theorem Sample mean: SCGF: Gaussian S n = 1 n n X i, X i p(x), IID i=1 λ(k) = lim n λ(k) = µk + σ2 2 k2, k R I (s) = 1 (s µ) 2, 2σ 2 s R 1 n ln E[enkS n ] = ln E[e kx ] Exponential λ(k) = ln(1 µk), k < 1 µ I (s) = s µ 1 ln s µ, s > 0 p(s n=s) n=500 p(s =s) n n=500 n=100 I(s) n=10 n=100 n=10 I(s) µ s µ s Hugo Touchette (NITheP) Grandes déviations Novembre / 22

6 Sanov s Theorem n IID random variables: ω = ω 1, ω 2,..., ω n, P(ω i = j) = p j Empirical frequencies: L n,j = 1 n δ ωi,j = # (ω i = j), L n = (L n,1, L n,2,...) n n Gärtner-Ellis SCGF: Rate function: i=1 λ(k) = lim n 1 n ln E[enk L n ] = ln q D(µ) = inf{k µ λ(k)} = k q p j e k j j=1 j=1 µ j ln µ j p j Hugo Touchette (NITheP) Grandes déviations Novembre / 22 Beyond IID Markov processes {X t } T t=0 A T = 1 T T 0 f (X t) dt P(A T = a) e TI (a) Long time limit Donsker & Varadhan (1975) SDEs ẋ(t) = f (x(t)) + ɛ ξ(t) P[x] e I [x]/ɛ Low noise limit Freidlin & Wentzell (1970s) Onsager & Machlup (1953) Applications Noisy dynamical systems Interacting SDEs Stochastic PDEs Interacting particle systems RWs random environments Queueing theory Statistics, estimation Information theory Hugo Touchette (NITheP) Grandes déviations Novembre / 22

7 Summary ni (a) P(A n = a) e p (a) n I(a) p (a) n I(a) Law of Large Numbers Typical value = zeros of I (a) Central Limit Theorem Quadratic minima = Gaussian fluctuations Small deviations Large deviations Fluctuations away from typical value a a General theory of typical states and fluctuations Hugo Touchette (NITheP) Grandes déviations Novembre / 22 Equilibrium systems N particles u Microstate: ω = ω 1, ω 2,..., ω N Statistical ensemble: P(ω) Macrostate: M N (ω) Macrostate distribution: P(M N = m) = ω:m N (ω)=m P(ω) Problems Calculate P(M N = m) Find most probable values of M N (= equilibrium states) Study fluctuations around most probable values Thermodynamic limit N Hugo Touchette (NITheP) Grandes déviations Novembre / 22

8 Equilibrium large deviations Microcanonical Einstein (1910) u Canonical Landau (1937) T P u (M N = m) = e S(u,m)/k B Extensivity: S N LDP: P u (M N = m) e NI u(m) F (β,m) P β (M N = m) = e Extensivity: F N LDP: P β (M N = m) e NI β(m) Exponential concentration of probability Equilibrium states = minima and zeros of I Hugo Touchette (NITheP) Grandes déviations Novembre / 22 Maxwell distribution ρ(v) Velocity distribution: Sanov s Theorem L N (v) = # particles with v i [v, v + v] N v P u (L N = ρ) e NI u(ρ) v Equilibrium distribution: ρ (v) = c v 2 e mv 2 2k B T Hugo Touchette (NITheP) Grandes déviations Novembre / 22

9 Entropy and free energy Density of states: u Ω(u) = # ω with U/N = u Large deviation form: Ω(u) e Ns(u) Gärtner-Ellis Theorem Free energy: ϕ(β) = lim N 1 N s(u) = min{βu ϕ(β)} β ln Z(β), Z(β) = dω e βu(ω) Z(β) = partition function = generating function ϕ(β) = free energy = SCGF Basis of Legendre transform in thermodynamics Hugo Touchette (NITheP) Grandes déviations Novembre / 22 Sources and applications Finite-range systems Lanford (1973) Spin systems Ellis (1980s) Bose condensation Lewis (1980s) 2D turbulence Long-range systems Quantum systems Lenci, Lebowitz (2000) Spin glasses Large deviation structure Typical states and fluctuations Oscar Lanford III ( ) John T. Lewis ( ) Hugo Touchette (NITheP) Grandes déviations Novembre / 22

10 Nonequilibrium systems Process: X t One or many particles Markov process External forces Boundary reservoirs T a J T b Trajectory: {x t } T t=0 Path distribution: P[x] Observable: A N,T [x] Problems Calculate P(A N,T = a) Find most probable values of A N,T (= stationary states) Study fluctuations around typical values Scaling limits: N T noise 0 Hugo Touchette (NITheP) Grandes déviations Novembre / 22 Example: Pulled Brownian particle Glass bead in water Laser tweezers Langevin dynamics: mẍ(t) = αẋ }{{} k[x(t) vt] }{{} drag spring force + ξ(t) }{{} noise Fluctuating work: Q vt W T }{{} work = }{{} U + Q }{{} T potential heat U T LDP TI (w) P(W T = w) e Fluctuation relation P(W T = w) P(W T = w) = etcw Hugo Touchette (NITheP) Grandes déviations Novembre / 22

11 Applications Driven nonequilibrium systems Interacting particle models Current, density fluctuations Macroscopic, hydrodynamic limit Thermal activation Kramers escape problem Disorded systems Multifractals Chaotic systems Quantum systems T a T b 56 H. Touchette / Physics Reports 478 (20 a Fig. 20. (a) Exclusion process on the lattice Z n and (b) rescaled lattice Z n /n. A particle can (red arrow). The thin line at the bottom indicates the periodic boundary condition (0) = interest for these models comes from the F fact that their macroscopic o their microscopic dynamics, sometimes in an exact way. Moreover, be studied by deriving large deviation principles which characterize th the hydrodynamic evolution [164]. The interpretation of these large d x theory, in that a deterministic dynamical behavior here the hydrodyn zero of a given (functional) rate function. From this point of view, the hy motion describing the hydrodynamic behavior, can be characterized as t minimum dissipation principle of Onsager [214]. Two excellent review papers [113,215] have appeared recently on int so we will not review this subject in detail here. The next example il the results that are typically obtained when studying these models. T Varadhan [216], who were the first to apply large deviation theory for stud Hugo Touchette (NITheP) models. Grandes déviations Novembre / 22 Exponentially rare fluctuations Exponential concentration of typical states Same theory for equilibrium and nonequilibrium systems Summary Example 6.11 (Simple Symmetric Exclusion Process). Consider a system ranging from 0 to n, n > k; see Fig. 20(a). The rules that determine th following: A particle at site i waits for a random exponential time with mean 1, The particle at i jumps to j if j is unoccupied; if j is occupied, then the p before choosing another neighbor to jump to (exclusion principle). Random variables ensembles stochastic systems Most probable values equilibrium states typical states Fluctuations rare events Rate function = entropy Cumulant function = free energy (Lf )( ) = 1 X Scaling limit: N, T, ɛ 0 2 i j =1 Unified language for statistical mechanics We denote by t (i) the occupation of the site i 2 Z n at time t, and configuration or microstate of the system. Because of the exclusion princ conditions on the lattice by identifying the first and last site. The generator of the Markovian process defined by the rules above c a jump from i to j only if (i) = 1 and (j) = 0. Therefore, J (i)[1 (j)][f ( i,j ) f ( )], where f is any function of, and i,j is the configuration obtained afte exchanging the occupied state at i with the unoccupied state at j: ( (i) if k = j H. Touchette The large deviation approach to statistical mechanics i,j (k) = Physics Reports 478, 1-69, 2009 (j) (k) Prochain exposé if k = i otherwise. Markov processes conditioned on large deviations To obtain a hydrodynamic description of this dynamics, we rescale the la and take the limit n!1with r = k/n, the density of particles, fixed n 2 to overcome the fact that the diffusion dynamics of the particle syste proved that the empirical density of the rescaled dynamics, defined by n (x) = 1 X t n n 2 t(i) (x i2z n When a fluctuation happens, how does it happen? Hugo Touchette (NITheP) where Grandes x is déviations a point of the unit circle C, weakly Novembre converges in/ probability 22 t diffusion equation F(x) i/n), b

arxiv: v3 [cond-mat.stat-mech] 29 Feb 2012

arxiv: v3 [cond-mat.stat-mech] 29 Feb 2012 A basic introduction to large deviations: Theory, applications, simulations arxiv:1106.4146v3 [cond-mat.stat-mech] 29 Feb 2012 Hugo Touchette School of Mathematical Sciences, Queen Mary, University of

More information

Path integrals for classical Markov processes

Path integrals for classical Markov processes Path integrals for classical Markov processes Hugo Touchette National Institute for Theoretical Physics (NITheP) Stellenbosch, South Africa Chris Engelbrecht Summer School on Non-Linear Phenomena in Field

More information

A Note On Large Deviation Theory and Beyond

A Note On Large Deviation Theory and Beyond A Note On Large Deviation Theory and Beyond Jin Feng In this set of notes, we will develop and explain a whole mathematical theory which can be highly summarized through one simple observation ( ) lim

More information

Large-deviation theory and coverage in mobile phone networks

Large-deviation theory and coverage in mobile phone networks Weierstrass Institute for Applied Analysis and Stochastics Large-deviation theory and coverage in mobile phone networks Paul Keeler, Weierstrass Institute for Applied Analysis and Stochastics, Berlin joint

More information

Limitations of statistical mechanics: Hints from large deviation theory

Limitations of statistical mechanics: Hints from large deviation theory Limittions of sttisticl mechnics: Hints from lrge devition theory Hugo Touchette School of Mthemticl Sciences Queen Mry, University of London 3rd Interntionl Conference on Sttisticl Physics Lrnc, Cyprus,

More information

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble Recall from before: Internal energy (or Entropy): &, *, - (# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble & = /01Ω maximized Ω: fundamental statistical quantity

More information

Mathematical Structures of Statistical Mechanics: from equilibrium to nonequilibrium and beyond Hao Ge

Mathematical Structures of Statistical Mechanics: from equilibrium to nonequilibrium and beyond Hao Ge Mathematical Structures of Statistical Mechanics: from equilibrium to nonequilibrium and beyond Hao Ge Beijing International Center for Mathematical Research and Biodynamic Optical Imaging Center Peking

More information

INTRODUCTION TO о JLXJLA Из А lv-/xvj_y JrJrl Y üv_>l3 Second Edition

INTRODUCTION TO о JLXJLA Из А lv-/xvj_y JrJrl Y üv_>l3 Second Edition INTRODUCTION TO о JLXJLA Из А lv-/xvj_y JrJrl Y üv_>l3 Second Edition Kerson Huang CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group an Informa

More information

1 The fundamental equation of equilibrium statistical mechanics. 3 General overview on the method of ensembles 10

1 The fundamental equation of equilibrium statistical mechanics. 3 General overview on the method of ensembles 10 Contents EQUILIBRIUM STATISTICAL MECHANICS 1 The fundamental equation of equilibrium statistical mechanics 2 2 Conjugate representations 6 3 General overview on the method of ensembles 10 4 The relation

More information

Global Optimization, Generalized Canonical Ensembles, and Universal Ensemble Equivalence

Global Optimization, Generalized Canonical Ensembles, and Universal Ensemble Equivalence Richard S. Ellis, Generalized Canonical Ensembles 1 Global Optimization, Generalized Canonical Ensembles, and Universal Ensemble Equivalence Richard S. Ellis Department of Mathematics and Statistics University

More information

Basic Concepts and Tools in Statistical Physics

Basic Concepts and Tools in Statistical Physics Chapter 1 Basic Concepts and Tools in Statistical Physics 1.1 Introduction Statistical mechanics provides general methods to study properties of systems composed of a large number of particles. It establishes

More information

Elements of Statistical Mechanics

Elements of Statistical Mechanics Elements of Statistical Mechanics Thermodynamics describes the properties of macroscopic bodies. Statistical mechanics allows us to obtain the laws of thermodynamics from the laws of mechanics, classical

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble The object of this endeavor is to impose a simple probability

More information

Large Deviations Techniques and Applications

Large Deviations Techniques and Applications Amir Dembo Ofer Zeitouni Large Deviations Techniques and Applications Second Edition With 29 Figures Springer Contents Preface to the Second Edition Preface to the First Edition vii ix 1 Introduction 1

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-Thermodynamics & Statistical Mechanics 1. Kinetic theory of gases..(1-13) 1.1 Basic assumption of kinetic theory 1.1.1 Pressure exerted by a gas 1.2 Gas Law for Ideal gases: 1.2.1 Boyle s Law 1.2.2

More information

Suggestions for Further Reading

Suggestions for Further Reading Contents Preface viii 1 From Microscopic to Macroscopic Behavior 1 1.1 Introduction........................................ 1 1.2 Some Qualitative Observations............................. 2 1.3 Doing

More information

Onsager theory: overview

Onsager theory: overview Onsager theory: overview Pearu Peterson December 18, 2006 1 Introduction Our aim is to study matter that consists of large number of molecules. A complete mechanical description of such a system is practically

More information

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications 6.730 Physics for Solid State Applications Lecture 25: Chemical Potential and Equilibrium Outline Microstates and Counting System and Reservoir Microstates Constants in Equilibrium Temperature & Chemical

More information

Diffusion d une particule marquée dans un gaz dilué de sphères dures

Diffusion d une particule marquée dans un gaz dilué de sphères dures Diffusion d une particule marquée dans un gaz dilué de sphères dures Thierry Bodineau Isabelle Gallagher, Laure Saint-Raymond Journées MAS 2014 Outline. Particle Diffusion Introduction Diluted Gas of hard

More information

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is 1 I. BROWNIAN MOTION The dynamics of small particles whose size is roughly 1 µmt or smaller, in a fluid at room temperature, is extremely erratic, and is called Brownian motion. The velocity of such particles

More information

Large deviation functions and fluctuation theorems in heat transport

Large deviation functions and fluctuation theorems in heat transport Large deviation functions and fluctuation theorems in heat transport Abhishek Dhar Anupam Kundu (CEA, Grenoble) Sanjib Sabhapandit (RRI) Keiji Saito (Tokyo University) Raman Research Institute Statphys

More information

An Outline of (Classical) Statistical Mechanics and Related Concepts in Machine Learning

An Outline of (Classical) Statistical Mechanics and Related Concepts in Machine Learning An Outline of (Classical) Statistical Mechanics and Related Concepts in Machine Learning Chang Liu Tsinghua University June 1, 2016 1 / 22 What is covered What is Statistical mechanics developed for? What

More information

UNIVERSITY OF OSLO FACULTY OF MATHEMATICS AND NATURAL SCIENCES

UNIVERSITY OF OSLO FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITY OF OSLO FCULTY OF MTHEMTICS ND NTURL SCIENCES Exam in: FYS430, Statistical Mechanics Day of exam: Jun.6. 203 Problem :. The relative fluctuations in an extensive quantity, like the energy, depends

More information

Stochastic thermodynamics

Stochastic thermodynamics University of Ljubljana Faculty of Mathematics and Physics Seminar 1b Stochastic thermodynamics Author: Luka Pusovnik Supervisor: prof. dr. Primož Ziherl Abstract The formulation of thermodynamics at a

More information

Part II: Statistical Physics

Part II: Statistical Physics Chapter 7: Quantum Statistics SDSMT, Physics 2013 Fall 1 Introduction 2 The Gibbs Factor Gibbs Factor Several examples 3 Quantum Statistics From high T to low T From Particle States to Occupation Numbers

More information

Ferromagnets and superconductors. Kay Kirkpatrick, UIUC

Ferromagnets and superconductors. Kay Kirkpatrick, UIUC Ferromagnets and superconductors Kay Kirkpatrick, UIUC Ferromagnet and superconductor models: Phase transitions and asymptotics Kay Kirkpatrick, Urbana-Champaign October 2012 Ferromagnet and superconductor

More information

Non-equilibrium phenomena and fluctuation relations

Non-equilibrium phenomena and fluctuation relations Non-equilibrium phenomena and fluctuation relations Lamberto Rondoni Politecnico di Torino Beijing 16 March 2012 http://www.rarenoise.lnl.infn.it/ Outline 1 Background: Local Thermodyamic Equilibrium 2

More information

Part II Statistical Physics

Part II Statistical Physics Part II Statistical Physics Theorems Based on lectures by H. S. Reall Notes taken by Dexter Chua Lent 2017 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Contents. 1 Introduction and guide for this text 1. 2 Equilibrium and entropy 6. 3 Energy and how the microscopic world works 21

Contents. 1 Introduction and guide for this text 1. 2 Equilibrium and entropy 6. 3 Energy and how the microscopic world works 21 Preface Reference tables Table A Counting and combinatorics formulae Table B Useful integrals, expansions, and approximations Table C Extensive thermodynamic potentials Table D Intensive per-particle thermodynamic

More information

Phys Midterm. March 17

Phys Midterm. March 17 Phys 7230 Midterm March 17 Consider a spin 1/2 particle fixed in space in the presence of magnetic field H he energy E of such a system can take one of the two values given by E s = µhs, where µ is the

More information

Principles of Equilibrium Statistical Mechanics

Principles of Equilibrium Statistical Mechanics Debashish Chowdhury, Dietrich Stauffer Principles of Equilibrium Statistical Mechanics WILEY-VCH Weinheim New York Chichester Brisbane Singapore Toronto Table of Contents Part I: THERMOSTATICS 1 1 BASIC

More information

STATIONARY NON EQULIBRIUM STATES F STATES FROM A MICROSCOPIC AND A MACROSCOPIC POINT OF VIEW

STATIONARY NON EQULIBRIUM STATES F STATES FROM A MICROSCOPIC AND A MACROSCOPIC POINT OF VIEW STATIONARY NON EQULIBRIUM STATES FROM A MICROSCOPIC AND A MACROSCOPIC POINT OF VIEW University of L Aquila 1 July 2014 GGI Firenze References L. Bertini; A. De Sole; D. G. ; G. Jona-Lasinio; C. Landim

More information

1. Principle of large deviations

1. Principle of large deviations 1. Principle of large deviations This section will provide a short introduction to the Law of large deviations. The basic principle behind this theory centers on the observation that certain functions

More information

Global Optimization, the Gaussian Ensemble, and Universal Ensemble Equivalence

Global Optimization, the Gaussian Ensemble, and Universal Ensemble Equivalence Richard S. Ellis, Gaussian Ensemble and Universal Ensemble Equivalence 1 Global Optimization, the Gaussian Ensemble, and Universal Ensemble Equivalence Richard S. Ellis Department of Mathematics and Statistics

More information

SOLVABLE VARIATIONAL PROBLEMS IN N STATISTICAL MECHANICS

SOLVABLE VARIATIONAL PROBLEMS IN N STATISTICAL MECHANICS SOLVABLE VARIATIONAL PROBLEMS IN NON EQUILIBRIUM STATISTICAL MECHANICS University of L Aquila October 2013 Tullio Levi Civita Lecture 2013 Coauthors Lorenzo Bertini Alberto De Sole Alessandra Faggionato

More information

Statistical Mechanics

Statistical Mechanics Statistical Mechanics Entropy, Order Parameters, and Complexity James P. Sethna Laboratory of Atomic and Solid State Physics Cornell University, Ithaca, NY OXFORD UNIVERSITY PRESS Contents List of figures

More information

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals Noèlia Viles Cuadros BCAM- Basque Center of Applied Mathematics with Prof. Enrico

More information

ChE 503 A. Z. Panagiotopoulos 1

ChE 503 A. Z. Panagiotopoulos 1 ChE 503 A. Z. Panagiotopoulos 1 STATISTICAL MECHANICAL ENSEMLES 1 MICROSCOPIC AND MACROSCOPIC ARIALES The central question in Statistical Mechanics can be phrased as follows: If particles (atoms, molecules,

More information

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Gang Chen Massachusetts Institute of Technology OXFORD UNIVERSITY PRESS 2005 Contents Foreword,

More information

STATISTICAL PHYSICS II

STATISTICAL PHYSICS II . STATISTICAL PHYSICS II (Statistical Physics of Non-Equilibrium Systems) Lecture notes 2009 V.S. Shumeiko 1 . Part I CLASSICAL KINETIC THEORY 2 1 Lecture Outline of equilibrium statistical physics 1.1

More information

Ferromagnets and the classical Heisenberg model. Kay Kirkpatrick, UIUC

Ferromagnets and the classical Heisenberg model. Kay Kirkpatrick, UIUC Ferromagnets and the classical Heisenberg model Kay Kirkpatrick, UIUC Ferromagnets and the classical Heisenberg model: asymptotics for a mean-field phase transition Kay Kirkpatrick, Urbana-Champaign June

More information

to satisfy the large number approximations, W W sys can be small.

to satisfy the large number approximations, W W sys can be small. Chapter 12. The canonical ensemble To discuss systems at constant T, we need to embed them with a diathermal wall in a heat bath. Note that only the system and bath need to be large for W tot and W bath

More information

Supplement: Statistical Physics

Supplement: Statistical Physics Supplement: Statistical Physics Fitting in a Box. Counting momentum states with momentum q and de Broglie wavelength λ = h q = 2π h q In a discrete volume L 3 there is a discrete set of states that satisfy

More information

Weak Ergodicity Breaking WCHAOS 2011

Weak Ergodicity Breaking WCHAOS 2011 Weak Ergodicity Breaking Eli Barkai Bar-Ilan University Bel, Burov, Korabel, Margolin, Rebenshtok WCHAOS 211 Outline Single molecule experiments exhibit weak ergodicity breaking. Blinking quantum dots,

More information

5. Systems in contact with a thermal bath

5. Systems in contact with a thermal bath 5. Systems in contact with a thermal bath So far, isolated systems (micro-canonical methods) 5.1 Constant number of particles:kittel&kroemer Chap. 3 Boltzmann factor Partition function (canonical methods)

More information

Non equilibrium thermodynamic transformations. Giovanni Jona-Lasinio

Non equilibrium thermodynamic transformations. Giovanni Jona-Lasinio Non equilibrium thermodynamic transformations Giovanni Jona-Lasinio Kyoto, July 29, 2013 1. PRELIMINARIES 2. RARE FLUCTUATIONS 3. THERMODYNAMIC TRANSFORMATIONS 1. PRELIMINARIES Over the last ten years,

More information

Fundamentals. Statistical. and. thermal physics. McGRAW-HILL BOOK COMPANY. F. REIF Professor of Physics Universüy of California, Berkeley

Fundamentals. Statistical. and. thermal physics. McGRAW-HILL BOOK COMPANY. F. REIF Professor of Physics Universüy of California, Berkeley Fundamentals of and Statistical thermal physics F. REIF Professor of Physics Universüy of California, Berkeley McGRAW-HILL BOOK COMPANY Auckland Bogota Guatemala Hamburg Lisbon London Madrid Mexico New

More information

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky MD Thermodynamics Lecture 1 3/6/18 1 Molecular dynamics The force depends on positions only (not velocities) Total energy is conserved (micro canonical evolution) Newton s equations of motion (second order

More information

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 Hydrodynamics Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 What is Hydrodynamics? Describes the evolution of physical systems (classical or quantum particles, fluids or fields) close to thermal

More information

Phase transitions for particles in R 3

Phase transitions for particles in R 3 Phase transitions for particles in R 3 Sabine Jansen LMU Munich Konstanz, 29 May 208 Overview. Introduction to statistical mechanics: Partition functions and statistical ensembles 2. Phase transitions:

More information

Ultracold Atoms and Quantum Simulators

Ultracold Atoms and Quantum Simulators Ultracold Atoms and Quantum Simulators Laurent Sanchez-Palencia Centre de Physique Théorique Ecole Polytechnique, CNRS, Univ. Paris-Saclay F-28 Palaiseau, France Marc Cheneau Laboratoire Charles Fabry

More information

Statistical Mechanics

Statistical Mechanics Statistical Mechanics Newton's laws in principle tell us how anything works But in a system with many particles, the actual computations can become complicated. We will therefore be happy to get some 'average'

More information

Physics 172H Modern Mechanics

Physics 172H Modern Mechanics Physics 172H Modern Mechanics Instructor: Dr. Mark Haugan Office: PHYS 282 haugan@purdue.edu TAs: Alex Kryzwda John Lorenz akryzwda@purdue.edu jdlorenz@purdue.edu Lecture 22: Matter & Interactions, Ch.

More information

Part II: Statistical Physics

Part II: Statistical Physics Chapter 6: Boltzmann Statistics SDSMT, Physics Fall Semester: Oct. - Dec., 2013 1 Introduction: Very brief 2 Boltzmann Factor Isolated System and System of Interest Boltzmann Factor The Partition Function

More information

We already came across a form of indistinguishably in the canonical partition function: V N Q =

We already came across a form of indistinguishably in the canonical partition function: V N Q = Bosons en fermions Indistinguishability We already came across a form of indistinguishably in the canonical partition function: for distinguishable particles Q = Λ 3N βe p r, r 2,..., r N ))dτ dτ 2...

More information

Solution. For one question the mean grade is ḡ 1 = 10p = 8 and the standard deviation is 1 = g

Solution. For one question the mean grade is ḡ 1 = 10p = 8 and the standard deviation is 1 = g Exam 23 -. To see how much of the exam grade spread is pure luck, consider the exam with ten identically difficult problems of ten points each. The exam is multiple-choice that is the correct choice of

More information

Stochastic Behavior of Dissipative Hamiltonian Systems with Limit Cycles

Stochastic Behavior of Dissipative Hamiltonian Systems with Limit Cycles Stochastic Behavior of Dissipative Hamiltonian Systems with Limit Cycles Wolfgang Mathis Florian Richter Richard Mathis Institut für Theoretische Elektrotechnik, Gottfried Wilhelm Leibniz Universität Hannover,

More information

Statistical Mechanics

Statistical Mechanics Franz Schwabl Statistical Mechanics Translated by William Brewer Second Edition With 202 Figures, 26 Tables, and 195 Problems 4u Springer Table of Contents 1. Basic Principles 1 1.1 Introduction 1 1.2

More information

Dynamique d un gaz de sphères dures et équation de Boltzmann

Dynamique d un gaz de sphères dures et équation de Boltzmann Dynamique d un gaz de sphères dures et équation de Boltzmann Thierry Bodineau Travaux avec Isabelle Gallagher, Laure Saint-Raymond Outline. Linear Boltzmann equation & Brownian motion Linearized Boltzmann

More information

Weak Ergodicity Breaking

Weak Ergodicity Breaking Weak Ergodicity Breaking Eli Barkai Bar-Ilan University 215 Ergodicity Ergodicity: time averages = ensemble averages. x = lim t t x(τ)dτ t. x = xp eq (x)dx. Ergodicity out of equilibrium δ 2 (, t) = t

More information

Statistical Mechanics of Active Matter

Statistical Mechanics of Active Matter Statistical Mechanics of Active Matter Umberto Marini Bettolo Marconi University of Camerino, Italy Naples, 24 May,2017 Umberto Marini Bettolo Marconi (2017) Statistical Mechanics of Active Matter 2017

More information

Statistical Physics. The Second Law. Most macroscopic processes are irreversible in everyday life.

Statistical Physics. The Second Law. Most macroscopic processes are irreversible in everyday life. Statistical Physics he Second Law ime s Arrow Most macroscopic processes are irreversible in everyday life. Glass breaks but does not reform. Coffee cools to room temperature but does not spontaneously

More information

Introduction Statistical Thermodynamics. Monday, January 6, 14

Introduction Statistical Thermodynamics. Monday, January 6, 14 Introduction Statistical Thermodynamics 1 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling r 1 r 2 r n MD MC r 1 r 2 2 r n 2 3 3 4 4 Questions How can

More information

Introduction to Fluctuation Theorems

Introduction to Fluctuation Theorems Hyunggyu Park Introduction to Fluctuation Theorems 1. Nonequilibrium processes 2. Brief History of Fluctuation theorems 3. Jarzynski equality & Crooks FT 4. Experiments 5. Probability theory viewpoint

More information

Chapter 4: Going from microcanonical to canonical ensemble, from energy to temperature.

Chapter 4: Going from microcanonical to canonical ensemble, from energy to temperature. Chapter 4: Going from microcanonical to canonical ensemble, from energy to temperature. All calculations in statistical mechanics can be done in the microcanonical ensemble, where all copies of the system

More information

CHAPTER V. Brownian motion. V.1 Langevin dynamics

CHAPTER V. Brownian motion. V.1 Langevin dynamics CHAPTER V Brownian motion In this chapter, we study the very general paradigm provided by Brownian motion. Originally, this motion is that a heavy particle, called Brownian particle, immersed in a fluid

More information

Grand Canonical Formalism

Grand Canonical Formalism Grand Canonical Formalism Grand Canonical Ensebmle For the gases of ideal Bosons and Fermions each single-particle mode behaves almost like an independent subsystem, with the only reservation that the

More information

Mesoscale Simulation Methods. Ronojoy Adhikari The Institute of Mathematical Sciences Chennai

Mesoscale Simulation Methods. Ronojoy Adhikari The Institute of Mathematical Sciences Chennai Mesoscale Simulation Methods Ronojoy Adhikari The Institute of Mathematical Sciences Chennai Outline What is mesoscale? Mesoscale statics and dynamics through coarse-graining. Coarse-grained equations

More information

LANGEVIN EQUATION AND THERMODYNAMICS

LANGEVIN EQUATION AND THERMODYNAMICS LANGEVIN EQUATION AND THERMODYNAMICS RELATING STOCHASTIC DYNAMICS WITH THERMODYNAMIC LAWS November 10, 2017 1 / 20 MOTIVATION There are at least three levels of description of classical dynamics: thermodynamic,

More information

Weak convergence and large deviation theory

Weak convergence and large deviation theory First Prev Next Go To Go Back Full Screen Close Quit 1 Weak convergence and large deviation theory Large deviation principle Convergence in distribution The Bryc-Varadhan theorem Tightness and Prohorov

More information

The Generalized Canonical Ensemble and Its Universal Equivalence with the Microcanonical Ensemble

The Generalized Canonical Ensemble and Its Universal Equivalence with the Microcanonical Ensemble Journal of Statistical Physics, Vol. 119, Nos. 5/6, June 2005 ( 2005) DOI: 10.1007/s10955-005-4407-0 The Generalized Canonical Ensemble and Its Universal Equivalence with the Microcanonical Ensemble Marius

More information

16. Working with the Langevin and Fokker-Planck equations

16. Working with the Langevin and Fokker-Planck equations 16. Working with the Langevin and Fokker-Planck equations In the preceding Lecture, we have shown that given a Langevin equation (LE), it is possible to write down an equivalent Fokker-Planck equation

More information

Langevin Methods. Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 10 D Mainz Germany

Langevin Methods. Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 10 D Mainz Germany Langevin Methods Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 1 D 55128 Mainz Germany Motivation Original idea: Fast and slow degrees of freedom Example: Brownian motion Replace

More information

Lecture 8. The Second Law of Thermodynamics; Energy Exchange

Lecture 8. The Second Law of Thermodynamics; Energy Exchange Lecture 8 The Second Law of Thermodynamics; Energy Exchange The second law of thermodynamics Statistics of energy exchange General definition of temperature Why heat flows from hot to cold Reading for

More information

Legendre-Fenchel transforms in a nutshell

Legendre-Fenchel transforms in a nutshell 1 2 3 Legendre-Fenchel transforms in a nutshell Hugo Touchette School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS, UK Started: July 11, 2005; last compiled: August 14, 2007

More information

3.320 Lecture 18 (4/12/05)

3.320 Lecture 18 (4/12/05) 3.320 Lecture 18 (4/12/05) Monte Carlo Simulation II and free energies Figure by MIT OCW. General Statistical Mechanics References D. Chandler, Introduction to Modern Statistical Mechanics D.A. McQuarrie,

More information

Part II: Statistical Physics

Part II: Statistical Physics Chapter 6: Boltzmann Statistics SDSMT, Physics Fall Semester: Oct. - Dec., 2014 1 Introduction: Very brief 2 Boltzmann Factor Isolated System and System of Interest Boltzmann Factor The Partition Function

More information

Large deviations in nonequilibrium systems and phase transitions

Large deviations in nonequilibrium systems and phase transitions Licence / Master Science de la matière Stage 213 214 École Normale Supérieure de Lyon Université Claude Bernard Lyon I M2 Physique Large deviations in nonequilibrium systems and phase transitions Abstract

More information

Anderson Localization Looking Forward

Anderson Localization Looking Forward Anderson Localization Looking Forward Boris Altshuler Physics Department, Columbia University Collaborations: Also Igor Aleiner Denis Basko, Gora Shlyapnikov, Vincent Michal, Vladimir Kravtsov, Lecture2

More information

Outline Review Example Problem 1. Thermodynamics. Review and Example Problems: Part-2. X Bai. SDSMT, Physics. Fall 2014

Outline Review Example Problem 1. Thermodynamics. Review and Example Problems: Part-2. X Bai. SDSMT, Physics. Fall 2014 Review and Example Problems: Part- SDSMT, Physics Fall 014 1 Review Example Problem 1 Exponents of phase transformation : contents 1 Basic Concepts: Temperature, Work, Energy, Thermal systems, Ideal Gas,

More information

BOLTZMANN-GIBBS ENTROPY: AXIOMATIC CHARACTERIZATION AND APPLICATION

BOLTZMANN-GIBBS ENTROPY: AXIOMATIC CHARACTERIZATION AND APPLICATION Internat. J. Math. & Math. Sci. Vol. 23, No. 4 2000 243 251 S0161171200000375 Hindawi Publishing Corp. BOLTZMANN-GIBBS ENTROPY: AXIOMATIC CHARACTERIZATION AND APPLICATION C. G. CHAKRABARTI and KAJAL DE

More information

Theoretical Statistical Physics

Theoretical Statistical Physics Theoretical Statistical Physics Prof. Dr. Christof Wetterich Institute for Theoretical Physics Heidelberg University Last update: March 25, 2014 Script prepared by Robert Lilow, using earlier student's

More information

CHEM-UA 652: Thermodynamics and Kinetics

CHEM-UA 652: Thermodynamics and Kinetics 1 CHEM-UA 652: Thermodynamics and Kinetics Notes for Lecture 2 I. THE IDEAL GAS LAW In the last lecture, we discussed the Maxwell-Boltzmann velocity and speed distribution functions for an ideal gas. Remember

More information

Stochastic (intermittent) Spikes and Strong Noise Limit of SDEs.

Stochastic (intermittent) Spikes and Strong Noise Limit of SDEs. Stochastic (intermittent) Spikes and Strong Noise Limit of SDEs. D. Bernard in collaboration with M. Bauer and (in part) A. Tilloy. IPAM-UCLA, Jan 2017. 1 Strong Noise Limit of (some) SDEs Stochastic differential

More information

Monte Carlo. Lecture 15 4/9/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

Monte Carlo. Lecture 15 4/9/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky Monte Carlo Lecture 15 4/9/18 1 Sampling with dynamics In Molecular Dynamics we simulate evolution of a system over time according to Newton s equations, conserving energy Averages (thermodynamic properties)

More information

Entropy production and time asymmetry in nonequilibrium fluctuations

Entropy production and time asymmetry in nonequilibrium fluctuations Entropy production and time asymmetry in nonequilibrium fluctuations D. Andrieux and P. Gaspard Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Code Postal 231, Campus

More information

Large deviation approach to non equilibrium processes in stochastic lattice gases

Large deviation approach to non equilibrium processes in stochastic lattice gases Bull Braz Math Soc, New Series 37(4), 6-643 26, Sociedade Brasileira de Matemática Large deviation approach to non equilibrium processes in stochastic lattice gases Lorenzo Bertini, Alberto De Sole, Davide

More information

Lecture 8. The Second Law of Thermodynamics; Energy Exchange

Lecture 8. The Second Law of Thermodynamics; Energy Exchange Lecture 8 The Second Law of Thermodynamics; Energy Exchange The second law of thermodynamics Statistics of energy exchange General definition of temperature Why heat flows from hot to cold Reading for

More information

Temperature and Pressure Controls

Temperature and Pressure Controls Ensembles Temperature and Pressure Controls 1. (E, V, N) microcanonical (constant energy) 2. (T, V, N) canonical, constant volume 3. (T, P N) constant pressure 4. (T, V, µ) grand canonical #2, 3 or 4 are

More information

5. Systems in contact with a thermal bath

5. Systems in contact with a thermal bath 5. Systems in contact with a thermal bath So far, isolated systems (micro-canonical methods) 5.1 Constant number of particles:kittel&kroemer Chap. 3 Boltzmann factor Partition function (canonical methods)

More information

ChE 210B: Advanced Topics in Equilibrium Statistical Mechanics

ChE 210B: Advanced Topics in Equilibrium Statistical Mechanics ChE 210B: Advanced Topics in Equilibrium Statistical Mechanics Glenn Fredrickson Lecture 1 Reading: 3.1-3.5 Chandler, Chapters 1 and 2 McQuarrie This course builds on the elementary concepts of statistical

More information

Statistical Physics. How to connect the microscopic properties -- lots of changes to the macroscopic properties -- not changing much.

Statistical Physics. How to connect the microscopic properties -- lots of changes to the macroscopic properties -- not changing much. Statistical Physics How to connect the microscopic properties -- lots of changes to the macroscopic properties -- not changing much. We will care about: N = # atoms T = temperature V = volume U = total

More information

Statistical Mechanics

Statistical Mechanics 42 My God, He Plays Dice! Statistical Mechanics Statistical Mechanics 43 Statistical Mechanics Statistical mechanics and thermodynamics are nineteenthcentury classical physics, but they contain the seeds

More information

Local vs. Nonlocal Diffusions A Tale of Two Laplacians

Local vs. Nonlocal Diffusions A Tale of Two Laplacians Local vs. Nonlocal Diffusions A Tale of Two Laplacians Jinqiao Duan Dept of Applied Mathematics Illinois Institute of Technology Chicago duan@iit.edu Outline 1 Einstein & Wiener: The Local diffusion 2

More information

Nanoscale simulation lectures Statistical Mechanics

Nanoscale simulation lectures Statistical Mechanics Nanoscale simulation lectures 2008 Lectures: Thursdays 4 to 6 PM Course contents: - Thermodynamics and statistical mechanics - Structure and scattering - Mean-field approaches - Inhomogeneous systems -

More information

Property of Tsallis entropy and principle of entropy increase

Property of Tsallis entropy and principle of entropy increase Bull. Astr. Soc. India (2007) 35, 691 696 Property of Tsallis entropy and principle of entropy increase Du Jiulin Department of Physics, School of Science, Tianjin University, Tianjin 300072, China Abstract.

More information

Hopping transport in disordered solids

Hopping transport in disordered solids Hopping transport in disordered solids Dominique Spehner Institut Fourier, Grenoble, France Workshop on Quantum Transport, Lexington, March 17, 2006 p. 1 Outline of the talk Hopping transport Models for

More information

The Smoluchowski-Kramers Approximation: What model describes a Brownian particle?

The Smoluchowski-Kramers Approximation: What model describes a Brownian particle? The Smoluchowski-Kramers Approximation: What model describes a Brownian particle? Scott Hottovy shottovy@math.arizona.edu University of Arizona Applied Mathematics October 7, 2011 Brown observes a particle

More information

Approximations of displacement interpolations by entropic interpolations

Approximations of displacement interpolations by entropic interpolations Approximations of displacement interpolations by entropic interpolations Christian Léonard Université Paris Ouest Mokaplan 10 décembre 2015 Interpolations in P(X ) X : Riemannian manifold (state space)

More information

Derivation of the GENERIC form of nonequilibrium thermodynamics from a statistical optimization principle

Derivation of the GENERIC form of nonequilibrium thermodynamics from a statistical optimization principle Derivation of the GENERIC form of nonequilibrium thermodynamics from a statistical optimization principle Bruce Turkington Univ. of Massachusetts Amherst An optimization principle for deriving nonequilibrium

More information