Diffusion d une particule marquée dans un gaz dilué de sphères dures

Size: px
Start display at page:

Download "Diffusion d une particule marquée dans un gaz dilué de sphères dures"

Transcription

1 Diffusion d une particule marquée dans un gaz dilué de sphères dures Thierry Bodineau Isabelle Gallagher, Laure Saint-Raymond Journées MAS 2014

2 Outline. Particle Diffusion Introduction

3 Diluted Gas of hard spheres Gas of N hard spheres with deterministic Newtonian dynamics (elastic collisions). Dimension : d 2 Periodic domain: Td = [0,1]d Sphere radius = ε " T d Boltzmann-Grad scaling N" d 1 =

4 T Diluted Gas of hard spheres Gas of N hard spheres with deterministic Newtonian dynamics (elastic collisions). " T d Dimension : d 2 Periodic domain: Td = [0,1]d Sphere radius = ε P Solid Liquid Boltzmann-Grad scaling N" d 1 = Vapor

5 Boltzmann-Grad scaling tv " d 1 Volume covered by a particle = tv" d 1 N On average particles per unit volume On average, a particle has collisions per unit of time N " d 1

6 Diluted Gas of hard spheres Gas of N hard spheres with deterministic Newtonian dynamics (elastic collisions). Initial data at equilibrium and a tagged particle (x 1,v 1 ) Questions. In the Boltzmann-Grad scaling N " d 1 and N 1 1. Distribution of (x 1 (t),v 1 (t)) " 2. Position of the tagged particle x 1 ( t) when 1 5

7 Hard Sphere dynamics Gas of N hard spheres : Z N = {(x i (t),v i (t)} iapplen dx i dt = v i, dv i dt = 0 as long as x i(t) x j (t) >", and elastic collisions if x i (t) x j (t) = " ( v i (t + )=v i (t ) 1 " 2 (v i v j ) (x i x j )(x i x j )(t ) v j (t + )=v j (t )+ 1 " 2 (v i v j ) (x i x j )(x i x j )(t ) Liouville equation for the particle density f N (t, Z N ) t f N + v i r f xi N =0 in the phase space i=1 D N " := Z N 2 T dn R dn / 8i 6= j, x i x j >" with specular reflection on the D N ".

8 The tagged particle Equilibrium distribution M N, (Z N )= 1 Z N, exp 2 NX i=1 v i 2 Y i6=j 1 xi x j >" Particle Z 1 =(x 1, v 1 ) is tagged. Initial distribution : Uniform bound: 0 x 1 apple µ f 0 N (Z N)=M N, (Z N ) 0 x 1 Notation: Marginals t 0, 8s 1, f (s) N (t, Z s)= ZZ f N (t, Z N ) dz s+1...dz N Tagged particle distribution f (1) N (t, (x 1, v 1 ))

9 Limiting stochastic process single particle dynamics Position : x(t) = R t 0 v(u)du 1 Markov process on the velocities {v(t)} t 0 with generator L ZZ Lg(v) := [g(v) g(v 0 )] (v v 1 ) M (v + 1 ) dv 1 d v 0 = v +( (v 1 v)), v1 0 = v 1 ( (v 1 v))

10 Limiting stochastic process single particle dynamics Position : x(t) = R t 0 v(u)du 1 Markov process on the velocities {v(t)} t 0 with generator L Particle distribution M (v)' (x, v, t) follows the Linear Boltzmann t ' + v r x ' = L' Probabilist approaches : Tanaka, Sznitman, Méléard, Graham, Fournier...

11 [van Beijeren, Lanford, Lebowitz, Spohn] N particle system f (1) = N" d 1 N 1 Linear Boltzmann equation N (x 1, v 1,t) t>0 ' (x 1, v 1,t) M (v 1 )

12 [van Beijeren, Lanford, Lebowitz, Spohn] N particle system f (1) = N" d 1 N 1 Linear Boltzmann equation N (x 1, v 1,t) t>0 ' (x 1, v 1,t) M (v 1 ) 1 t = 1 Heat equation Large time asymptotic Brownian motion

13 [van Beijeren, Lanford, Lebowitz, Spohn] N particle system f (1) = N" d 1 N 1 Linear Boltzmann equation N (x 1, v 1,t) t>0 ' (x 1, v 1,t) M (v 1 ) N 1 t = 1 = p log log N Heat equation Large time asymptotic Brownian motion

14 Convergence to the Brownian motion Rescaled position of the tagged particle ( ) =x 1 with = p log log N Initial data f 0 N (Z N )=M N, (Z N ) 0 x 1 Theorem [B.,Gallagher, Saint-Raymond] converges weakly to a brownian motion with variance apple The distribution of the tagged particle converges as N 1to M (v 1 ) (x 1, ) f (1) N (x 1,v 1, = apple x on R + [0, 1] d, =0 = 0 Quantum brownian motion: [Erdös, Salmhofer, Yau] Lorentz gas

15 Boltzmann equation Theorem. For chaotic initial data fn 0 (Z N ) ' Q N i=1 f 0 (z i ) the density of the particle system converges up to a time t >0 to the solution of the Boltzmann equation when N 1, N" d 1 t f + v r x f ZZ = S d [f(v 0 )f(v1) 0 1 R d f(v)f(v 1 )] (v v 1 ) + dv 1 d with v 0 = v + (v 1 v), v1 0 = v 1 (v 1 v) [Lanford], [King], [Alexander], [Uchiyama], [Cercignani, Illner, Pulvirenti], [Simonella], [Gallagher, Saint-Raymond, Texier], [Pulvirenti, Saffirio, Simonella]

16 Boltzmann equation Theorem. For chaotic initial data fn 0 (Z N ) ' Q N i=1 f 0 (z i ) the density of the particle system converges up to a time t >0 to the solution of the Boltzmann equation when N 1, N" d 1 t f + v r x f ZZ = S d [f(v 0 )f(v1) 0 1 R d f(v)f(v 1 )] (v v 1 ) + dv 1 d with v 0 = v + (v 1 v), v1 0 = v 1 (v 1 v) Lanford's strategy leads to a short time convergence which depends on f. 0 The convergence time remains short even if initially the system starts from equilibrium

17 Equilibrium Properties P Boltzmann-Grad : N " d 1 Solid Liquid Low density : N " d = 1 Vapor High density : N " d = 1 T Open Problem : Vapor/Solid phase transition.

18 Equilibrium Properties P Boltzmann-Grad : N " d 1 Solid Liquid Low density : N " d = 1 Vapor High density : N " d = 1 T Open Problem : Vapor/Solid phase transition.

19 Equilibrium Properties P Boltzmann-Grad : N " d 1 Solid Liquid Low density : N " d = 1 Vapor High density : N " d = 1 T Open Problem : Vapor/Solid phase transition.

20 Liquid/Vapor phase transition Interaction potential H(X) = P i,j V xi x j " Lennard-Jones potential 400 V 200 Gibbs measure X = {x i 2 [0, 1] d ; i apple N} µ N,T (X) = 1 1 exp Z N,T T H(X)

21 Liquid/Vapor phase transition Interaction potential H(X) = P i,j V xi x j " Lennard-Jones potential 400 V 200 Gibbs measure X = {x i 2 [0, 1] d ; i apple N} µ N,T (X) = 1 1 exp Z N,T T H(X) There is a density = N" d and a temperature T µ N,T Phase transition N1 1 [Lebowitz,Mazel, Presutti]

22 Continuum percolation Disks of radius ε randomly distributed No interaction, No exclusion. density = N" d Phase transition : N 1 < c : small percolation clusters > c : percolation of a macroscopic cluster Many more models : R. Marchand

23 Continuum percolation Disks of radius ε randomly distributed No interaction, No exclusion. density = N" d Phase transition : N 1 < c : small percolation clusters > c : percolation of a macroscopic cluster Many more models : R. Marchand

24 Lattice gas models Simplifying the model: discrete variables i =1 i 2{0, 1} with i 2{1,..., 1 " }d nearest neighbor interaction H( ) = X i j i j h X i i " j =1 Gibbs measure µ N,T ( ) = 1 Z N,T exp 1 T H( )

25 Lattice gas models Simplifying the model: discrete variables i =1 i 2{0, 1} with i 2{1,..., 1 " }d nearest neighbor interaction H( ) = X i j i j h X i i " j =1 Gibbs measure µ N,T ( ) = 1 Z N,T exp 1 T H( ) P Solid Liquid Ising Model : i =2 i 1 Vapor B. de Tilière T

26 Equilibrium systems : Gibbs measure Parameters : (T, h); (T, P ) Critical curve : T = F h Non-equilibrium systems : Local dynamical rules Sandpile models; Driven particle systems Long range correlations; Self-organized criticality (in general no obvious Hamiltonian) M. Gorny : A mean field approach

Dynamique d un gaz de sphères dures et équation de Boltzmann

Dynamique d un gaz de sphères dures et équation de Boltzmann Dynamique d un gaz de sphères dures et équation de Boltzmann Thierry Bodineau Travaux avec Isabelle Gallagher, Laure Saint-Raymond Outline. Linear Boltzmann equation & Brownian motion Linearized Boltzmann

More information

VALIDITY OF THE BOLTZMANN EQUATION

VALIDITY OF THE BOLTZMANN EQUATION VALIDITY OF THE BOLTZMANN EQUATION BEYOND HARD SPHERES based on joint work with M. Pulvirenti and C. Saffirio Sergio Simonella Technische Universität München Sergio Simonella - TU München Academia Sinica

More information

From Newton s law to the linear Boltzmann equation without cut-off

From Newton s law to the linear Boltzmann equation without cut-off From Newton s law to the linear Boltzmann equation without cut-off Nathalie Ayi (1) (1) Université Pierre et Marie Curie 27 Octobre 217 Nathalie AYI Séminaire LJLL 27 Octobre 217 1 / 35 Organisation of

More information

From Newton s law to the linear Boltzmann equation without cut-off

From Newton s law to the linear Boltzmann equation without cut-off From Newton s law to the linear Boltzmann equation without cut-off Nathalie Ayi 1,2 1 Laboratoire J.A. Dieudonné, Université de Nice Sophia-Antipolis 2 Project COFFEE, INRIA Sophia Antipolis Méditerranée

More information

The propagation of chaos for a rarefied gas of hard spheres

The propagation of chaos for a rarefied gas of hard spheres The propagation of chaos for a rarefied gas of hard spheres Ryan Denlinger 1 1 University of Texas at Austin 35th Annual Western States Mathematical Physics Meeting Caltech February 13, 2017 Ryan Denlinger

More information

Isabelle Gallagher. Laure Saint-Raymond. Benjamin Texier FROM NEWTON TO BOLTZMANN: HARD SPHERES AND SHORT-RANGE POTENTIALS

Isabelle Gallagher. Laure Saint-Raymond. Benjamin Texier FROM NEWTON TO BOLTZMANN: HARD SPHERES AND SHORT-RANGE POTENTIALS Isabelle Gallagher Laure Saint-Raymond Benjamin Texier FROM EWTO TO BOLTZMA: HARD SPHERES AD SHORT-RAGE POTETIALS I. Gallagher Institut de Mathématiques de Jussieu UMR CRS 7586, Université Paris-Diderot

More information

Entropy and irreversibility in gas dynamics. Joint work with T. Bodineau, I. Gallagher and S. Simonella

Entropy and irreversibility in gas dynamics. Joint work with T. Bodineau, I. Gallagher and S. Simonella Entropy and irreversibility in gas dynamics Joint work with T. Bodineau, I. Gallagher and S. Simonella Kinetic description for a gas of hard spheres Hard sphere dynamics The system evolves under the combined

More information

Phase transitions for particles in R 3

Phase transitions for particles in R 3 Phase transitions for particles in R 3 Sabine Jansen LMU Munich Konstanz, 29 May 208 Overview. Introduction to statistical mechanics: Partition functions and statistical ensembles 2. Phase transitions:

More information

Hilbert Sixth Problem

Hilbert Sixth Problem Academia Sinica, Taiwan Stanford University Newton Institute, September 28, 2010 : Mathematical Treatment of the Axioms of Physics. The investigations on the foundations of geometry suggest the problem:

More information

Kinetic Transport Theory

Kinetic Transport Theory Lecture notes on Kinetic Transport Theory Christian Schmeiser 1 Preface Kinetic transport equations are mathematical descriptions of the dynamics of large particle ensembles in terms of a phase space (i.e.

More information

Topics covered so far:

Topics covered so far: Topics covered so far: Chap 1: The kinetic theory of gases P, T, and the Ideal Gas Law Chap 2: The principles of statistical mechanics 2.1, The Boltzmann law (spatial distribution) 2.2, The distribution

More information

Lecture II: The Lorentz gas

Lecture II: The Lorentz gas Lecture II: The Lorentz gas Applications of measure rigidity: from number theory to statistical mechanics Simons Lectures, Stony Brook October 203 Jens Marklof University of Bristol http://www.maths.bristol.ac.uk

More information

From Hamiltonian particle systems to Kinetic equations

From Hamiltonian particle systems to Kinetic equations From Hamiltonian particle systems to Kinetic equations Università di Roma, La Sapienza WIAS, Berlin, February 2012 Plan of the lectures 1 Particle systems and BBKGY hierarchy (the paradigm of the Kinetic

More information

THE DERIVATION OF THE LINEAR BOLTZMANN EQUATION FROM A RAYLEIGH GAS PARTICLE MODEL

THE DERIVATION OF THE LINEAR BOLTZMANN EQUATION FROM A RAYLEIGH GAS PARTICLE MODEL THE DERIVATION OF THE LINEAR BOLTZMANN EQUATION FROM A RAYLEIGH GAS PARTICLE MODEL KARSTEN MATTHIES, GEORGE STONE, AND FLORIAN THEIL Abstract. A linear Boltzmann equation is derived in the Boltzmann-Grad

More information

Derivation of Kinetic Equations

Derivation of Kinetic Equations CHAPTER 2 Derivation of Kinetic Equations As we said, the mathematical object that we consider in Kinetic Theory is the distribution function 0 apple f(t, x, v). We will now be a bit more precise about

More information

Introduction Statistical Thermodynamics. Monday, January 6, 14

Introduction Statistical Thermodynamics. Monday, January 6, 14 Introduction Statistical Thermodynamics 1 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling r 1 r 2 r n MD MC r 1 r 2 2 r n 2 3 3 4 4 Questions How can

More information

From molecular dynamics to kinetic theory and hydrodynamics

From molecular dynamics to kinetic theory and hydrodynamics From molecular dynamics to kinetic theory and hydrodynamics Thierry Bodineau, Isabelle Gallagher, and Laure Saint-Raymond Abstract. In these notes we present the main ingredients of the proof of the convergence

More information

2. Thermodynamics. Introduction. Understanding Molecular Simulation

2. Thermodynamics. Introduction. Understanding Molecular Simulation 2. Thermodynamics Introduction Molecular Simulations Molecular dynamics: solve equations of motion r 1 r 2 r n Monte Carlo: importance sampling r 1 r 2 r n How do we know our simulation is correct? Molecular

More information

CURRICULUM VITAE. Sergio Simonella

CURRICULUM VITAE. Sergio Simonella CURRICULUM VITAE Sergio Simonella Zentrum Mathematik, TU München, Boltzmannstrasse 3, 85748 Garching, Germany Tel: +49(89)28917086 (office), +49(176)65222728 (mobile) Webpage: sergiosimonella.wordpress.com

More information

From microscopic dynamics to kinetic equations

From microscopic dynamics to kinetic equations Facoltà di Scienze Matematiche, Fisiche e Naturali PhD Thesis in Mathematics, Sapienza Università di Roma XXV ciclo From microscopic dynamics to kinetic equations Chiara Sa rio Advisor: Prof. Mario Pulvirenti

More information

Théorie des grandes déviations: Des mathématiques à la physique

Théorie des grandes déviations: Des mathématiques à la physique Théorie des grandes déviations: Des mathématiques à la physique Hugo Touchette National Institute for Theoretical Physics (NITheP) Stellenbosch, Afrique du Sud CERMICS, École des Ponts Paris, France 30

More information

Phase transitions and coarse graining for a system of particles in the continuum

Phase transitions and coarse graining for a system of particles in the continuum Phase transitions and coarse graining for a system of particles in the continuum Elena Pulvirenti (joint work with E. Presutti and D. Tsagkarogiannis) Leiden University April 7, 2014 Symposium on Statistical

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 24 Oct 2003

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 24 Oct 2003 THE BOLTZMANN ENTROPY FOR DENSE FLUIDS NOT IN LOCAL EQUILIBRIUM arxiv:cond-mat/0310575v1 [cond-mat.stat-mech] 24 Oct 2003 P.L. Garrido (1,2), S. Goldstein (2) and J.L. Lebowitz (2) (1) Depart. de E.M.

More information

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is 1 I. BROWNIAN MOTION The dynamics of small particles whose size is roughly 1 µmt or smaller, in a fluid at room temperature, is extremely erratic, and is called Brownian motion. The velocity of such particles

More information

3.320 Lecture 18 (4/12/05)

3.320 Lecture 18 (4/12/05) 3.320 Lecture 18 (4/12/05) Monte Carlo Simulation II and free energies Figure by MIT OCW. General Statistical Mechanics References D. Chandler, Introduction to Modern Statistical Mechanics D.A. McQuarrie,

More information

A Nobel Prize for Molecular Dynamics and QM/MM What is Classical Molecular Dynamics? Simulation of explicit particles (atoms, ions,... ) Particles interact via relatively simple analytical potential

More information

Step Bunching in Epitaxial Growth with Elasticity Effects

Step Bunching in Epitaxial Growth with Elasticity Effects Step Bunching in Epitaxial Growth with Elasticity Effects Tao Luo Department of Mathematics The Hong Kong University of Science and Technology joint work with Yang Xiang, Aaron Yip 05 Jan 2017 Tao Luo

More information

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or Physics 7b: Statistical Mechanics Brownian Motion Brownian motion is the motion of a particle due to the buffeting by the molecules in a gas or liquid. The particle must be small enough that the effects

More information

where (E) is the partition function of the uniform ensemble. Recalling that we have (E) = E (E) (E) i = ij x (E) j E = ij ln (E) E = k ij ~ S E = kt i

where (E) is the partition function of the uniform ensemble. Recalling that we have (E) = E (E) (E) i = ij x (E) j E = ij ln (E) E = k ij ~ S E = kt i G25.265: Statistical Mechanics Notes for Lecture 4 I. THE CLASSICAL VIRIAL THEOREM (MICROCANONICAL DERIVATION) Consider a system with Hamiltonian H(x). Let x i and x j be specic components of the phase

More information

Statistical mechanics of random billiard systems

Statistical mechanics of random billiard systems Statistical mechanics of random billiard systems Renato Feres Washington University, St. Louis Banff, August 2014 1 / 39 Acknowledgements Collaborators: Timothy Chumley, U. of Iowa Scott Cook, Swarthmore

More information

Two recent works on molecular systems out of equilibrium

Two recent works on molecular systems out of equilibrium Two recent works on molecular systems out of equilibrium Frédéric Legoll ENPC and INRIA joint work with M. Dobson, T. Lelièvre, G. Stoltz (ENPC and INRIA), A. Iacobucci and S. Olla (Dauphine). CECAM workshop:

More information

Lecture 1 Modeling and simulation for the growth of thin films

Lecture 1 Modeling and simulation for the growth of thin films Lecture 1 Modeling and simulation for the growth of thin films Russel Caflisch Mathematics Department Materials Science and Engineering Department UCLA & IPAM www.math.ucla.edu/~material 1 Outline Epitaxial

More information

From microscopic dynamics to macroscopic equations: scaling limits for the Lorentz gas

From microscopic dynamics to macroscopic equations: scaling limits for the Lorentz gas Facoltà di Scienze Matematiche Fisiche e Naturali Ph.D. Thesis in Mathematics, Sapienza Università di Roma XXVII ciclo From microscopic dynamics to macroscopic equations: scaling limits for the Lorentz

More information

Mean Field Limit for Stochastic Particle Systems

Mean Field Limit for Stochastic Particle Systems Mean Field Limit for Stochastic Particle Systems Pierre-Emmanuel Jabin and Zhenfu Wang Abstract We review some classical and more recent results for the derivation of mean field equations from systems

More information

Particles approximation for Vlasov equation with singular interaction

Particles approximation for Vlasov equation with singular interaction Particles approximation for Vlasov equation with singular interaction M. Hauray, in collaboration with P.-E. Jabin. Université d Aix-Marseille GRAVASCO Worshop, IHP, November 2013 M. Hauray (UAM) Particles

More information

Metropolis, 2D Ising model

Metropolis, 2D Ising model Metropolis, 2D Ising model You can get visual understanding from the java applets available, like: http://physics.ucsc.edu/~peter/ising/ising.html Average value of spin is magnetization. Abs of this as

More information

1. Introductory Examples

1. Introductory Examples 1. Introductory Examples We introduce the concept of the deterministic and stochastic simulation methods. Two problems are provided to explain the methods: the percolation problem, providing an example

More information

Monte Carlo. Lecture 15 4/9/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

Monte Carlo. Lecture 15 4/9/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky Monte Carlo Lecture 15 4/9/18 1 Sampling with dynamics In Molecular Dynamics we simulate evolution of a system over time according to Newton s equations, conserving energy Averages (thermodynamic properties)

More information

Kinetic Monte Carlo (KMC) Kinetic Monte Carlo (KMC)

Kinetic Monte Carlo (KMC) Kinetic Monte Carlo (KMC) Kinetic Monte Carlo (KMC) Molecular Dynamics (MD): high-frequency motion dictate the time-step (e.g., vibrations). Time step is short: pico-seconds. Direct Monte Carlo (MC): stochastic (non-deterministic)

More information

Exam TFY4230 Statistical Physics kl Wednesday 01. June 2016

Exam TFY4230 Statistical Physics kl Wednesday 01. June 2016 TFY423 1. June 216 Side 1 av 5 Exam TFY423 Statistical Physics l 9. - 13. Wednesday 1. June 216 Problem 1. Ising ring (Points: 1+1+1 = 3) A system of Ising spins σ i = ±1 on a ring with periodic boundary

More information

CHAPTER V. Brownian motion. V.1 Langevin dynamics

CHAPTER V. Brownian motion. V.1 Langevin dynamics CHAPTER V Brownian motion In this chapter, we study the very general paradigm provided by Brownian motion. Originally, this motion is that a heavy particle, called Brownian particle, immersed in a fluid

More information

On Kinetic Equations Modeling Evolution of Systems in Mathematical Biology

On Kinetic Equations Modeling Evolution of Systems in Mathematical Biology On Kinetic Equations Modeling Evolution of Systems in Mathematical Biology arxiv:308.4504v [math-ph] 2 Aug 203 Yu.Yu. Fedchun and V.I. Gerasimenko 2 Taras Shevchenko National University of Kyiv, Department

More information

Beyond the Gaussian universality class

Beyond the Gaussian universality class Beyond the Gaussian universality class MSRI/Evans Talk Ivan Corwin (Courant Institute, NYU) September 13, 2010 Outline Part 1: Random growth models Random deposition, ballistic deposition, corner growth

More information

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University Plasma Astrophysics Chapter 1: Basic Concepts of Plasma Yosuke Mizuno Institute of Astronomy National Tsing-Hua University What is a Plasma? A plasma is a quasi-neutral gas consisting of positive and negative

More information

1 Phase Spaces and the Liouville Equation

1 Phase Spaces and the Liouville Equation Phase Spaces and the Liouville Equation emphasize the change of language from deterministic to probablistic description. Under the dynamics: ½ m vi = F i ẋ i = v i with initial data given. What is the

More information

Computer Simulation of Glasses: Jumps and Self-Organized Criticality

Computer Simulation of Glasses: Jumps and Self-Organized Criticality Computer Simulation of Glasses: Jumps and Self-Organized Criticality Katharina Vollmayr-Lee Bucknell University November 2, 2007 Thanks: E. A. Baker, A. Zippelius, K. Binder, and J. Horbach V glass crystal

More information

Kinetic Transport Theory

Kinetic Transport Theory Lecture notes on Kinetic Transport Theory Christian Schmeiser 1 Preface Kinetic transport equations are mathematical descriptions of the dynamics of large particle ensembles in terms of a phase space (i.e.

More information

Metropolis Monte Carlo simulation of the Ising Model

Metropolis Monte Carlo simulation of the Ising Model Metropolis Monte Carlo simulation of the Ising Model Krishna Shrinivas (CH10B026) Swaroop Ramaswamy (CH10B068) May 10, 2013 Modelling and Simulation of Particulate Processes (CH5012) Introduction The Ising

More information

Knudsen Diffusion and Random Billiards

Knudsen Diffusion and Random Billiards Knudsen Diffusion and Random Billiards R. Feres http://www.math.wustl.edu/ feres/publications.html November 11, 2004 Typeset by FoilTEX Gas flow in the Knudsen regime Random Billiards [1] Large Knudsen

More information

A Selective Modern History of the Boltzmann and Related Eq

A Selective Modern History of the Boltzmann and Related Eq A Selective Modern History of the Boltzmann and Related Equations October 2014, Fields Institute Synopsis 1. I have an ambivalent relation to surveys! 2. Key Words, Tools, People 3. Powerful Tools, I:

More information

1 Introduction. 1.1 The Subject Matter of Statistical Mechanics. Lies, damned lies, and statistics. Disraeli

1 Introduction. 1.1 The Subject Matter of Statistical Mechanics. Lies, damned lies, and statistics. Disraeli 1 Introduction Lies, damned lies, and statistics. Disraeli 1.1 The Subject Matter of Statistical Mechanics The goal of statistical mechanics is to predict the macroscopic properties of bodies, most especially

More information

A MOLECULAR DYNAMICS SIMULATION OF A BUBBLE NUCLEATION ON SOLID SURFACE

A MOLECULAR DYNAMICS SIMULATION OF A BUBBLE NUCLEATION ON SOLID SURFACE A MOLECULAR DYNAMICS SIMULATION OF A BUBBLE NUCLEATION ON SOLID SURFACE Shigeo Maruyama and Tatsuto Kimura Department of Mechanical Engineering The University of Tokyo 7-- Hongo, Bunkyo-ku, Tokyo -866,

More information

What is Classical Molecular Dynamics?

What is Classical Molecular Dynamics? What is Classical Molecular Dynamics? Simulation of explicit particles (atoms, ions,... ) Particles interact via relatively simple analytical potential functions Newton s equations of motion are integrated

More information

New ideas in the non-equilibrium statistical physics and the micro approach to transportation flows

New ideas in the non-equilibrium statistical physics and the micro approach to transportation flows New ideas in the non-equilibrium statistical physics and the micro approach to transportation flows Plenary talk on the conference Stochastic and Analytic Methods in Mathematical Physics, Yerevan, Armenia,

More information

Introduction to the Renormalization Group

Introduction to the Renormalization Group Introduction to the Renormalization Group Gregory Petropoulos University of Colorado Boulder March 4, 2015 1 / 17 Summary Flavor of Statistical Physics Universality / Critical Exponents Ising Model Renormalization

More information

Introduction to molecular dynamics

Introduction to molecular dynamics 1 Introduction to molecular dynamics Yves Lansac Université François Rabelais, Tours, France Visiting MSE, GIST for the summer Molecular Simulation 2 Molecular simulation is a computational experiment.

More information

The KPZ line ensemble: a marriage of integrability and probability

The KPZ line ensemble: a marriage of integrability and probability The KPZ line ensemble: a marriage of integrability and probability Ivan Corwin Clay Mathematics Institute, Columbia University, MIT Joint work with Alan Hammond [arxiv:1312.2600 math.pr] Introduction to

More information

CHAPTER 4. Basics of Fluid Dynamics

CHAPTER 4. Basics of Fluid Dynamics CHAPTER 4 Basics of Fluid Dynamics What is a fluid? A fluid is a substance that can flow, has no fixed shape, and offers little resistance to an external stress In a fluid the constituent particles (atoms,

More information

Anomalous transport of particles in Plasma physics

Anomalous transport of particles in Plasma physics Anomalous transport of particles in Plasma physics L. Cesbron a, A. Mellet b,1, K. Trivisa b, a École Normale Supérieure de Cachan Campus de Ker Lann 35170 Bruz rance. b Department of Mathematics, University

More information

On the Boltzmann equation: global solutions in one spatial dimension

On the Boltzmann equation: global solutions in one spatial dimension On the Boltzmann equation: global solutions in one spatial dimension Department of Mathematics & Statistics Colloque de mathématiques de Montréal Centre de Recherches Mathématiques November 11, 2005 Collaborators

More information

Monte Carlo Simulation of the Ising Model. Abstract

Monte Carlo Simulation of the Ising Model. Abstract Monte Carlo Simulation of the Ising Model Saryu Jindal 1 1 Department of Chemical Engineering and Material Sciences, University of California, Davis, CA 95616 (Dated: June 9, 2007) Abstract This paper

More information

Appendix 7: The chemical potential and the Gibbs factor

Appendix 7: The chemical potential and the Gibbs factor Appendix 7: he chemical potential and the Gibbs fact H. Matsuoka I. hermal equilibrium between two systems that can exchange both heat and particles Consider two systems that are separated by a wall which

More information

Statistical Mechanics

Statistical Mechanics Franz Schwabl Statistical Mechanics Translated by William Brewer Second Edition With 202 Figures, 26 Tables, and 195 Problems 4u Springer Table of Contents 1. Basic Principles 1 1.1 Introduction 1 1.2

More information

Particles approximation for Vlasov equation with singular interaction

Particles approximation for Vlasov equation with singular interaction Particles approximation for Vlasov equation with singular interaction M. Hauray, in collaboration with P.-E. Jabin. Université d Aix-Marseille Oberwolfach Worshop, December 2013 M. Hauray (UAM) Particles

More information

Evolution in prey-predator systems

Evolution in prey-predator systems Darwin: Le hasard et l évolution S. Méléard, Ecole Polytechnique, Centre de Mathématiques CMAP, École Polytechnique Appliquées in collaboration with N. Loeuille, C. Hauzy and S. Méléard 02/04/2013, Aussois

More information

Xt i Xs i N(0, σ 2 (t s)) and they are independent. This implies that the density function of X t X s is a product of normal density functions:

Xt i Xs i N(0, σ 2 (t s)) and they are independent. This implies that the density function of X t X s is a product of normal density functions: 174 BROWNIAN MOTION 8.4. Brownian motion in R d and the heat equation. The heat equation is a partial differential equation. We are going to convert it into a probabilistic equation by reversing time.

More information

Lecture 5: Kinetic theory of fluids

Lecture 5: Kinetic theory of fluids Lecture 5: Kinetic theory of fluids September 21, 2015 1 Goal 2 From atoms to probabilities Fluid dynamics descrines fluids as continnum media (fields); however under conditions of strong inhomogeneities

More information

An Extended van der Waals Equation of State Based on Molecular Dynamics Simulation

An Extended van der Waals Equation of State Based on Molecular Dynamics Simulation J. Comput. Chem. Jpn., Vol. 8, o. 3, pp. 97 14 (9) c 9 Society of Computer Chemistry, Japan An Extended van der Waals Equation of State Based on Molecular Dynamics Simulation Yosuke KATAOKA* and Yuri YAMADA

More information

An algebraic approach to stochastic duality. Cristian Giardinà

An algebraic approach to stochastic duality. Cristian Giardinà An algebraic approach to stochastic duality Cristian Giardinà RAQIS18, Annecy 14 September 2018 Collaboration with Gioia Carinci (Delft) Chiara Franceschini (Modena) Claudio Giberti (Modena) Jorge Kurchan

More information

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below Introduction In statistical physics Monte Carlo methods are considered to have started in the Manhattan project (1940

More information

Classical and quantum Brownian motion (Lecture Notes)

Classical and quantum Brownian motion (Lecture Notes) Classical and quantum Brownian motion (Lecture Notes) László Erdős Institute of Mathematics, University of Munich, Theresienstr. 39, D-80333 Munich, Germany September 22, 2009 Abstract Einstein s kinetic

More information

Deterministic chaos and diffusion in maps and billiards

Deterministic chaos and diffusion in maps and billiards Deterministic chaos and diffusion in maps and billiards Rainer Klages Queen Mary University of London, School of Mathematical Sciences Mathematics for the Fluid Earth Newton Institute, Cambridge, 14 November

More information

Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models

Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Multiscale Modeling of Epitaxial Growth Processes: Level Sets and Atomistic Models Russel Caflisch 1, Mark Gyure 2, Bo Li 4, Stan Osher 1, Christian Ratsch 1,2, David Shao 1 and Dimitri Vvedensky 3 1 UCLA,

More information

Time-Dependent Statistical Mechanics 1. Introduction

Time-Dependent Statistical Mechanics 1. Introduction Time-Dependent Statistical Mechanics 1. Introduction c Hans C. Andersen Announcements September 24, 2009 Lecture 1 9/22/09 1 Topics of concern in the course We shall be concerned with the time dependent

More information

Noise, AFMs, and Nanomechanical Biosensors

Noise, AFMs, and Nanomechanical Biosensors Noise, AFMs, and Nanomechanical Biosensors: Lancaster University, November, 2005 1 Noise, AFMs, and Nanomechanical Biosensors with Mark Paul (Virginia Tech), and the Caltech BioNEMS Collaboration Support:

More information

From the N-body problem to the cubic NLS equation

From the N-body problem to the cubic NLS equation From the N-body problem to the cubic NLS equation François Golse Université Paris 7 & Laboratoire J.-L. Lions golse@math.jussieu.fr Los Alamos CNLS, January 26th, 2005 Formal derivation by N.N. Bogolyubov

More information

Non-equilibrium phenomena and fluctuation relations

Non-equilibrium phenomena and fluctuation relations Non-equilibrium phenomena and fluctuation relations Lamberto Rondoni Politecnico di Torino Beijing 16 March 2012 http://www.rarenoise.lnl.infn.it/ Outline 1 Background: Local Thermodyamic Equilibrium 2

More information

Phase Transitions in Networks: Giant Components, Dynamic Networks, Combinatoric Solvability

Phase Transitions in Networks: Giant Components, Dynamic Networks, Combinatoric Solvability in Networks: Giant Components, Dynamic Networks, Combinatoric Solvability Department of Physics UC Davis April 27, 2009 Outline Historical Prospective Old School New School Non-Physics 1 Historical Prospective

More information

Introduction to Simulation - Lectures 17, 18. Molecular Dynamics. Nicolas Hadjiconstantinou

Introduction to Simulation - Lectures 17, 18. Molecular Dynamics. Nicolas Hadjiconstantinou Introduction to Simulation - Lectures 17, 18 Molecular Dynamics Nicolas Hadjiconstantinou Molecular Dynamics Molecular dynamics is a technique for computing the equilibrium and non-equilibrium properties

More information

Weakly interacting particle systems on graphs: from dense to sparse

Weakly interacting particle systems on graphs: from dense to sparse Weakly interacting particle systems on graphs: from dense to sparse Ruoyu Wu University of Michigan (Based on joint works with Daniel Lacker and Kavita Ramanan) USC Math Finance Colloquium October 29,

More information

On a class of stochastic differential equations in a financial network model

On a class of stochastic differential equations in a financial network model 1 On a class of stochastic differential equations in a financial network model Tomoyuki Ichiba Department of Statistics & Applied Probability, Center for Financial Mathematics and Actuarial Research, University

More information

Weak Ergodicity Breaking WCHAOS 2011

Weak Ergodicity Breaking WCHAOS 2011 Weak Ergodicity Breaking Eli Barkai Bar-Ilan University Bel, Burov, Korabel, Margolin, Rebenshtok WCHAOS 211 Outline Single molecule experiments exhibit weak ergodicity breaking. Blinking quantum dots,

More information

The low-density limit of the Lorentz gas: periodic, aperiodic and random

The low-density limit of the Lorentz gas: periodic, aperiodic and random The low-density limit of the Lorentz gas: periodic, aperiodic and random ICM 2014, Seoul Jens Marklof School of Mathematics, University of Bristol http://www.maths.bristol.ac.uk based on joint work with

More information

Free Boundary Problems Arising from Combinatorial and Probabilistic Growth Models

Free Boundary Problems Arising from Combinatorial and Probabilistic Growth Models Free Boundary Problems Arising from Combinatorial and Probabilistic Growth Models February 15, 2008 Joint work with Yuval Peres Internal DLA with Multiple Sources Finite set of points x 1,...,x k Z d.

More information

Random Matrix: From Wigner to Quantum Chaos

Random Matrix: From Wigner to Quantum Chaos Random Matrix: From Wigner to Quantum Chaos Horng-Tzer Yau Harvard University Joint work with P. Bourgade, L. Erdős, B. Schlein and J. Yin 1 Perhaps I am now too courageous when I try to guess the distribution

More information

2. Molecules in Motion

2. Molecules in Motion 2. Molecules in Motion Kinetic Theory of Gases (microscopic viewpoint) assumptions (1) particles of mass m and diameter d; ceaseless random motion (2) dilute gas: d λ, λ = mean free path = average distance

More information

Rigid Body Motion in a Special Lorentz Gas

Rigid Body Motion in a Special Lorentz Gas Rigid Body Motion in a Special Lorentz Gas Kai Koike 1) Graduate School of Science and Technology, Keio University 2) RIKEN Center for Advanced Intelligence Project BU-Keio Workshop 2018 @Boston University,

More information

Non-equilibrium phase transitions

Non-equilibrium phase transitions Non-equilibrium phase transitions An Introduction Lecture III Haye Hinrichsen University of Würzburg, Germany March 2006 Third Lecture: Outline 1 Directed Percolation Scaling Theory Langevin Equation 2

More information

MSE 102, Fall 2014 Midterm #2. Write your name here [10 points]:

MSE 102, Fall 2014 Midterm #2. Write your name here [10 points]: MSE 102, Fall 2014 Midterm #2 Write your name here [10 points]: Instructions: Answer all questions to the best of your abilities. Be sure to write legibly and state your answers clearly. The point values

More information

arxiv: v4 [math-ph] 29 Jan 2018

arxiv: v4 [math-ph] 29 Jan 2018 THE RANDOM GAS OF HARD SPHERES RAFAIL V. ABRAMOV arxiv:1712.01224v4 [math-ph] 29 Jan 2018 Abstract. We examine the random process of multiple hard spheres, with their collisions suitably driven by a Poisson

More information

SPDEs, criticality, and renormalisation

SPDEs, criticality, and renormalisation SPDEs, criticality, and renormalisation Hendrik Weber Mathematics Institute University of Warwick Potsdam, 06.11.2013 An interesting model from Physics I Ising model Spin configurations: Energy: Inverse

More information

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany

Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Phase Equilibria and Molecular Solutions Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany Preliminaries Learning Goals Phase Equilibria Phase diagrams and classical thermodynamics

More information

Supplement: Statistical Physics

Supplement: Statistical Physics Supplement: Statistical Physics Fitting in a Box. Counting momentum states with momentum q and de Broglie wavelength λ = h q = 2π h q In a discrete volume L 3 there is a discrete set of states that satisfy

More information

Nonparametric Drift Estimation for Stochastic Differential Equations

Nonparametric Drift Estimation for Stochastic Differential Equations Nonparametric Drift Estimation for Stochastic Differential Equations Gareth Roberts 1 Department of Statistics University of Warwick Brazilian Bayesian meeting, March 2010 Joint work with O. Papaspiliopoulos,

More information

in Bounded Domains Ariane Trescases CMLA, ENS Cachan

in Bounded Domains Ariane Trescases CMLA, ENS Cachan CMLA, ENS Cachan Joint work with Yan GUO, Chanwoo KIM and Daniela TONON International Conference on Nonlinear Analysis: Boundary Phenomena for Evolutionnary PDE Academia Sinica December 21, 214 Outline

More information

Stochastic Particle Methods for Rarefied Gases

Stochastic Particle Methods for Rarefied Gases CCES Seminar WS 2/3 Stochastic Particle Methods for Rarefied Gases Julian Köllermeier RWTH Aachen University Supervisor: Prof. Dr. Manuel Torrilhon Center for Computational Engineering Science Mathematics

More information

Controlled Diffusions and Hamilton-Jacobi Bellman Equations

Controlled Diffusions and Hamilton-Jacobi Bellman Equations Controlled Diffusions and Hamilton-Jacobi Bellman Equations Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2014 Emo Todorov (UW) AMATH/CSE 579, Winter

More information

Phase Transitions in Physics and Computer Science. Cristopher Moore University of New Mexico and the Santa Fe Institute

Phase Transitions in Physics and Computer Science. Cristopher Moore University of New Mexico and the Santa Fe Institute Phase Transitions in Physics and Computer Science Cristopher Moore University of New Mexico and the Santa Fe Institute Magnetism When cold enough, Iron will stay magnetized, and even magnetize spontaneously

More information

The existence of Burnett coefficients in the periodic Lorentz gas

The existence of Burnett coefficients in the periodic Lorentz gas The existence of Burnett coefficients in the periodic Lorentz gas N. I. Chernov and C. P. Dettmann September 14, 2006 Abstract The linear super-burnett coefficient gives corrections to the diffusion equation

More information

Microscopic and soliton-like solutions of the Boltzmann Enskog and generalized Enskog equations for elastic and inelastic hard spheres

Microscopic and soliton-like solutions of the Boltzmann Enskog and generalized Enskog equations for elastic and inelastic hard spheres arxiv:307.474v2 [math-ph] 4 Mar 204 Microscopic and soliton-like solutions of the Boltzmann Enskog and generalized Enskog equations for elastic and inelastic hard spheres A. S. Trushechkin Steklov Mathematical

More information