From Newton s law to the linear Boltzmann equation without cut-off

Size: px
Start display at page:

Download "From Newton s law to the linear Boltzmann equation without cut-off"

Transcription

1 From Newton s law to the linear Boltzmann equation without cut-off Nathalie Ayi 1,2 1 Laboratoire J.A. Dieudonné, Université de Nice Sophia-Antipolis 2 Project COFFEE, INRIA Sophia Antipolis Méditerranée 13 Mai 216 Nathalie AYI MATKIT Cambridge 13 Mai / 23

2 Context Kinetic theory of gases = Describe a gas as a physical system constituted of a large number of small particles. Nathalie AYI MATKIT Cambridge 13 Mai / 23

3 Context Kinetic theory of gases = Describe a gas as a physical system constituted of a large number of small particles. Statistical point of view : we are interested in the evolution of the density of particles f (t, x, v) where Nathalie AYI MATKIT Cambridge 13 Mai / 23

4 Context Kinetic theory of gases = Describe a gas as a physical system constituted of a large number of small particles. Statistical point of view : we are interested in the evolution of the density of particles f (t, x, v) where t = time x = position v = velocity Nathalie AYI MATKIT Cambridge 13 Mai / 23

5 Historical results : A fundamental example, the Boltzmann equation (1872) = the evolution equation for the density of particles of a sufficiently rarefied gas. t f + v. x f = }{{} Q(f, f ) }{{} free transport localized binary collisions Nathalie AYI MATKIT Cambridge 13 Mai / 23

6 Historical results : A fundamental example, the Boltzmann equation (1872) = the evolution equation for the density of particles of a sufficiently rarefied gas. t f + v. x f = }{{} Q(f, f ) }{{} free transport localized binary collisions In the sixth problem of Hilbert (19), idea = Boltzmann equation as an intermediate step in the transition between atomistic and contiuous model for gas dynamics. Nathalie AYI MATKIT Cambridge 13 Mai / 23

7 Historical results : A fundamental example, the Boltzmann equation (1872) = the evolution equation for the density of particles of a sufficiently rarefied gas. t f + v. x f = }{{} Q(f, f ) }{{} free transport localized binary collisions In the sixth problem of Hilbert (19), idea = Boltzmann equation as an intermediate step in the transition between atomistic and contiuous model for gas dynamics. Nathalie AYI MATKIT Cambridge 13 Mai / 23

8 Historical results : A fundamental example, the Boltzmann equation (1872) = the evolution equation for the density of particles of a sufficiently rarefied gas. t f + v. x f = }{{} Q(f, f ) }{{} free transport localized binary collisions In the sixth problem of Hilbert (19), idea = Boltzmann equation as an intermediate step in the transition between atomistic and contiuous model for gas dynamics. Nathalie AYI MATKIT Cambridge 13 Mai / 23

9 Lanford proved the derivation of the Boltzmann equation from systems of particles in the context of hard-spheres (1975). Nathalie AYI MATKIT Cambridge 13 Mai / 23

10 Lanford proved the derivation of the Boltzmann equation from systems of particles in the context of hard-spheres (1975). Particles bounces off according to the laws of elastic reflection. Nathalie AYI MATKIT Cambridge 13 Mai / 23

11 Recently rigorously proved by Gallagher, Saint-Raymond and Texier, Pulvirenti, Saffirio and Simonella in the context of hard-spheres and short range potentials. (Figure : The Boltzmann equation and its application, Cercignani.) Nathalie AYI MATKIT Cambridge 13 Mai / 23

12 Recently rigorously proved by Gallagher, Saint-Raymond and Texier, Pulvirenti, Saffirio and Simonella in the context of hard-spheres and short range potentials. (Figure : The Boltzmann equation and its application, Cercignani.) Our context : infinite-range potentials. Nathalie AYI MATKIT Cambridge 13 Mai / 23

13 The Boltzmann equation without cut-off t f + v. x f = Q(f, f ) where Q(f, f ) = [f f 1 ff 1 ]B(v v 1, ω)dv 1 dω, with f = f (v), f = f (v ), f 1 = f (v 1 ), f 1 = f (v 1 ). B = cross-section, B( v v 1, cosθ) with θ = deviation angle. Nathalie AYI MATKIT Cambridge 13 Mai / 23

14 The Boltzmann equation without cut-off t f + v. x f = Q(f, f ) where Q(f, f ) = [f f 1 ff 1 ]B(v v 1, ω)dv 1 dω, with f = f (v), f = f (v ), f 1 = f (v 1 ), f 1 = f (v 1 ). B = cross-section, B( v v 1, cosθ) with θ = deviation angle. Example Inverse-power law potentials : The cross-section satisfies Φ(r) = 1, s > 2. rs 1 B( v v 1, cos θ) = b(cosθ) v v 1 γ, sin d 2 θb(cos θ) Cθ 1 α, α > Nathalie AYI MATKIT Cambridge 13 Mai / 23

15 Grazing collisions = Singularity. Nathalie AYI MATKIT Cambridge 13 Mai / 23

16 Grazing collisions = Singularity. Cauchy theory : Alexandre, Villani (22), Gressman et al (21), Alexandre et al (211)... Nathalie AYI MATKIT Cambridge 13 Mai / 23

17 Grazing collisions = Singularity. Cauchy theory : Alexandre, Villani (22), Gressman et al (21), Alexandre et al (211)... f (v)f (v 1 ) f (v )f (v 1) Nathalie AYI MATKIT Cambridge 13 Mai / 23

18 Result Microscopic Model : for i {1,..., N}, x i T d, v i R d, dx i = v i, dt dv i = 1 Φ( x i x j ). dt ε ε j i Nathalie AYI MATKIT Cambridge 13 Mai / 23

19 Result Microscopic Model : for i {1,..., N}, x i T d, v i R d, dx i = v i, dt dv i = 1 Φ( x i x j ). dt ε ε Small perturbation around the equilibrium : j i f N(Z N ) := M N,β (Z N )ρ (x 1 ) (1) ρ density of probability on T d, M N,β Gibbs measure : for β > with H N (Z N ) := M N,β (Z N ) := 1 ( ) dn/2 β exp( βh N (Z N )) (2) Z N 2π 1 i N 1 2 v i i<j N Φ( (x i x j ). ε Nathalie AYI MATKIT Cambridge 13 Mai / 23

20 Theorem (A., 216) Consider the initial distribution fn defined above, then the distribution f (1) N (t, x, v) of the tagged particle converges in D (T d R d ) when N goes to under the Boltzmann-Grad scaling Nε d 1 = 1 to M β (v)h(t, x, v) where h(t, x, v) is the solution of the linear Boltzmann equation without cut-off t h + v. x h = [h(v) h(v 1 )]M β (v 1 )b(v v 1 )dv 1 dν (3) with initial data ρ (x 1 ) and where M β (v) := ( ) d/2 ) β 2π exp ( β2 v 2, β >. Nathalie AYI MATKIT Cambridge 13 Mai / 23

21 Theorem (A., 216) Consider the initial distribution fn defined above, then the distribution f (1) N (t, x, v) of the tagged particle converges in D (T d R d ) when N goes to under the Boltzmann-Grad scaling Nε d 1 = 1 to M β (v)h(t, x, v) where h(t, x, v) is the solution of the linear Boltzmann equation without cut-off t h + v. x h = [h(v) h(v 1 )]M β (v 1 )b(v v 1 )dv 1 dν (3) with initial data ρ (x 1 ) and where M β (v) := ( ) d/2 ) β 2π exp ( β2 v 2, β >. First partial result : The linear Boltzmann equation for long-range forces : a derivation from particles system, Desvillettes and Pulvirenti (1999). Nathalie AYI MATKIT Cambridge 13 Mai / 23

22 Theorem (A., 216) Consider the initial distribution fn defined above, then the distribution f (1) N (t, x, v) of the tagged particle converges in D (T d R d ) when N goes to under the Boltzmann-Grad scaling Nε d 1 = 1 to M β (v)h(t, x, v) where h(t, x, v) is the solution of the linear Boltzmann equation without cut-off t h + v. x h = [h(v) h(v 1 )]M β (v 1 )b(v v 1 )dv 1 dν (3) with initial data ρ (x 1 ) and where M β (v) := ( ) d/2 ) β 2π exp ( β2 v 2, β >. First partial result : The linear Boltzmann equation for long-range forces : a derivation from particles system, Desvillettes and Pulvirenti (1999). Idea : Φ = Φ >R + Φ <R. Nathalie AYI MATKIT Cambridge 13 Mai / 23

23 The hard-sphere case The BBGKY hierarchy : for s < N, ( t + s i=1 v i. xi )f (s) N (t, Z s) = (C s,s+1 f (s+1) N )(t, Z s ) with C s,s+1 = the collision term, Z s = (z 1,..., z s ), z i = (x i, v i ). Nathalie AYI MATKIT Cambridge 13 Mai / 23

24 The hard-sphere case The BBGKY hierarchy : for s < N, ( t + s i=1 v i. xi )f (s) N (t, Z s) = (C s,s+1 f (s+1) N )(t, Z s ) with C s,s+1 = the collision term, Z s = (z 1,..., z s ), z i = (x i, v i ). Duhamel s formula : f (s) N (t) = T s(t)f (s) N () + t T s (t t 1 )C s,s+1 f (s+1) N (t 1 )dt 1. Nathalie AYI MATKIT Cambridge 13 Mai / 23

25 Iterated Duhamel s formula. The BBGKY series : f (s) N N s (t) = n= t t1 tn 1... T s (t t 1 )C s,s+1 T s+1 (t 1 t 2 )C s+1,s+2... T s+n (t n ) f (s+n) N ()dt n... dt 1. Nathalie AYI MATKIT Cambridge 13 Mai / 23

26 Iterated Duhamel s formula. The BBGKY series : f (s) N N s (t) = n= t t1 tn 1... T s (t t 1 )C s,s+1 T s+1 (t 1 t 2 )C s+1,s+2... T s+n (t n ) f (s+n) N ()dt n... dt 1. The Boltzmann series : g (s) (t) = n t t1 tn 1... Ts (t t 1 )Cs,s+1T s+1(t 1 t 2 )Cs+1,s+2... T s+n (t n ) g (s+n) ()dt n... dt 1 Nathalie AYI MATKIT Cambridge 13 Mai / 23

27 Iterated Duhamel s formula. The BBGKY series : f (s) N N s (t) = n= t t1 tn 1... T s (t t 1 )C s,s+1 T s+1 (t 1 t 2 )C s+1,s+2... T s+n (t n ) f (s+n) N ()dt n... dt 1. The Boltzmann series : g (s) (t) = n t t1 tn 1... Ts (t t 1 )Cs,s+1T s+1(t 1 t 2 )Cs+1,s+2... T s+n (t n ) g (s+n) ()dt n... dt 1 Strategy : Notion of pseudo-trajectories. Nathalie AYI MATKIT Cambridge 13 Mai / 23

28 t 2 t 1 t Figure : Representation of a collision tree associated to the term t t T 3 (t t 1 )C j1,2 3,4 T 4 (t 1 t 2 )C j2,1 4,5 T 5(t 2 )f (5) N ()dt 2dt Nathalie AYI MATKIT Cambridge 13 Mai / 23

29 t 2 t 1 t Figure : Representation of a collision tree associated to the term t t T 3 (t t 1 )C j1,2 3,4 T 4 (t 1 t 2 )C j2,1 4,5 T 5(t 2 )f (5) N ()dt 2dt 1. Strategy : Coupling of the pseudo-trajectories Nathalie AYI MATKIT Cambridge 13 Mai / 23

30 Recollision v 1 v 2 v 3 t t 2 Figure : An example of a recollision between particles 1 and 2 at time t. t 1 t Nathalie AYI MATKIT Cambridge 13 Mai / 23

31 Recollision v 1 v 2 v 3 t t 2 Figure : An example of a recollision between particles 1 and 2 at time t. Strategy : Geometrical control of the recollisions t 1 t Nathalie AYI MATKIT Cambridge 13 Mai / 23

32 The linear Boltzmann equation case Bodineau, Gallagher and Saint-Raymond (214) : overcome the difficulty of the short time validity in the case of a fluctuation around the equilibrium. Nathalie AYI MATKIT Cambridge 13 Mai / 23

33 The linear Boltzmann equation without cut-off Truncated marginals : (s) f N,R (t, Z s) := f N (t, Z s, z s+1,..., z N ) T d(n s) R d(n s) 1 i s s+1 j N 1 { xi x j >Rε}dz s+1... dz N Nathalie AYI MATKIT Cambridge 13 Mai / 23

34 The linear Boltzmann equation without cut-off Truncated marginals : (s) f N,R (t, Z s) := f N (t, Z s, z s+1,..., z N ) T d(n s) R d(n s) The BBGKY hierachy : for s < N, t f (s) N,R + s i=1 = C s,s+1 f (s+1) N,R v i. xi f (s) N,R 1 ε +C s,s+1 f (s+1) N,R + (N s) ε i=1 s i,j=1 i j + 1 ε 1 i s s+1 j N Φ < ( x i x j (s) ). vi f N,R ε s i,j=1 i j Φ > ( x i x j (s) ). vi f N,R ε 1 { xi x j >Rε}dz s+1... dz N s Φ( x i x s+1 ). vi f N (t, Z N ) T d(n s) R ε d(n s) 1 l s s+1 k N 1 { xl x k >Rε}dZ (s+1,n) Nathalie AYI MATKIT Cambridge 13 Mai / 23

35 Duhamel s formula : f (s) N,R (t, Z s) = S s (t) f (s) N,R (, Z s) + + t t + 1 ε + S s (t t 1 )C s,s+1 f (s+1) N,R (t 1, Z s )dt 1 S s (t t 1 )C s,s+1 f (s+1) N,R (t 1, Z s )dt 1 s t [ S s (t t 1 ) i,j=1 i j (N s) ε s i=1 t Φ > ( x i x j (s) ). vi f N,R ε ] (t 1, Z s )dt 1 [ S s (t t 1 ) Φ( x i x s+1 ). vi f N T d(n s) R ε d(n s) 1 l s s+1 k N 1 { xl x k >Rε}dZ (s+1,n) (t 1, Z s )dt 1 Nathalie AYI MATKIT Cambridge 13 Mai / 23

36 Obstacles to the convergence Four possible obstacles to the convergence : - the very long-range interactions, - multiple simultaneous interactions, - the presence of recollisions, - super-exponential collision process. Nathalie AYI MATKIT Cambridge 13 Mai / 23

37 Obstacles to the convergence Four possible obstacles to the convergence : - the very long-range interactions, - multiple simultaneous interactions, - the presence of recollisions, - super-exponential collision process. New terms = Weak approach. Nathalie AYI MATKIT Cambridge 13 Mai / 23

38 Strategy Iteration on the term : t S s (t t 1 )C s,s+1 f (s+1) N,R (t 1, Z s )dt 1. Nathalie AYI MATKIT Cambridge 13 Mai / 23

39 Definition of the operators : Q s,s (t) := S s (t) Q s,s+n (t) := t δ t1 δ... tn 1 δ S s (t t 1 )C s,s+1 χ Hs+1 ( 1 χgeom(s+1) ) χηs S s+n 1 (t n 1 t n )C s+n 1,s+n χ Hs+n ( 1 χgeom(s+n) ) χηs+n S s+n (t n )dt n... dt 1. Nathalie AYI MATKIT Cambridge 13 Mai / 23

40 Definition of the operators : Q s,s (t) := S s (t) Q s,s+n (t) := t δ t1 δ... tn 1 δ S s (t t 1 )C s,s+1 χ Hs+1 ( 1 χgeom(s+1) ) χηs S s+n 1 (t n 1 t n )C s+n 1,s+n χ Hs+n ( 1 χgeom(s+n) ) χηs+n S s+n (t n )dt n... dt 1. Remainders associated to the long-range part : r Pot,a s,m+1 (, t, Z s) := m n= t nδ Q s,s+n (t t n+1 ) 1 ε s+n [ i,j=1 i j Φ > ( x i x j (s+n) ). vi f N,R ε ] (t n+1, Z s )dt n+1 Nathalie AYI MATKIT Cambridge 13 Mai / 23

41 r Pot,b s,m+1 (, t, Z s) := m n= (N (s + n)) ε t nδ Q s,s+n (t t n+1 ) s+n [ Φ( x i x s+n+1 ). vi f N i=1 T d(n (s+n)) R ε d(n (s+n)) 1 l s+n s+n+1 k N 1 { xl x k >Rε}dZ (s+n,n) (t n+1, Z s )dt n+1. Nathalie AYI MATKIT Cambridge 13 Mai / 23

42 Advantage of the iteration method no pathological situations easy to pass from Z m (t m ) to z (state of particle 1 at time t) via changes of variables such as T d R d [, t δ] S d 1 R d [, t m 1 δ] S d 1 R d T (m+1)d R (m+1)d (z, t 1, ν 2, v 2,..., t m, ν m+1, v m+1 ) Z m+1 = Z m+1 (t m). Nathalie AYI MATKIT Cambridge 13 Mai / 23

43 Advantage of the iteration method no pathological situations easy to pass from Z m (t m ) to z (state of particle 1 at time t) via changes of variables such as T d R d [, t δ] S d 1 R d [, t m 1 δ] S d 1 R d T (m+1)d R (m+1)d (z, t 1, ν 2, v 2,..., t m, ν m+1, v m+1 ) Z m+1 = Z m+1 (t m). Key point : z Lipschitz function of ( x 1, ṽ 1,..., x m+1, ṽ m+1 ) Nathalie AYI MATKIT Cambridge 13 Mai / 23

44 Advantage of the iteration method no pathological situations easy to pass from Z m (t m ) to z (state of particle 1 at time t) via changes of variables such as T d R d [, t δ] S d 1 R d [, t m 1 δ] S d 1 R d T (m+1)d R (m+1)d (z, t 1, ν 2, v 2,..., t m, ν m+1, v m+1 ) Z m+1 = Z m+1 (t m). Key point : z Lipschitz function of ( x 1, ṽ 1,..., x m+1, ṽ m+1 ) Tools to prove it : study of the reduced dynamics - bound on the microscopic time of interaction thanks to the lower bound on relative velocites, - use of the Cauchy-Lipschitz theorem, Φ being Lipschitz, - Lipschitz character of the collision times. Nathalie AYI MATKIT Cambridge 13 Mai / 23

45 Lipschitz control associated to the pseudo-trajectories = bound of the remainder associated to the long-range part controlled by ( ) 2 K+1 e C R2 η Φ >. Nathalie AYI MATKIT Cambridge 13 Mai / 23

46 Lipschitz control associated to the pseudo-trajectories = bound of the remainder associated to the long-range part controlled by ( ) 2 K+1 e C R2 η Φ >. Limit of the approach : Very decreasing potentials. Nathalie AYI MATKIT Cambridge 13 Mai / 23

47 Thank you for your attention. Nathalie AYI MATKIT Cambridge 13 Mai / 23

From Newton s law to the linear Boltzmann equation without cut-off

From Newton s law to the linear Boltzmann equation without cut-off From Newton s law to the linear Boltzmann equation without cut-off Nathalie Ayi (1) (1) Université Pierre et Marie Curie 27 Octobre 217 Nathalie AYI Séminaire LJLL 27 Octobre 217 1 / 35 Organisation of

More information

VALIDITY OF THE BOLTZMANN EQUATION

VALIDITY OF THE BOLTZMANN EQUATION VALIDITY OF THE BOLTZMANN EQUATION BEYOND HARD SPHERES based on joint work with M. Pulvirenti and C. Saffirio Sergio Simonella Technische Universität München Sergio Simonella - TU München Academia Sinica

More information

The propagation of chaos for a rarefied gas of hard spheres

The propagation of chaos for a rarefied gas of hard spheres The propagation of chaos for a rarefied gas of hard spheres Ryan Denlinger 1 1 University of Texas at Austin 35th Annual Western States Mathematical Physics Meeting Caltech February 13, 2017 Ryan Denlinger

More information

Entropy and irreversibility in gas dynamics. Joint work with T. Bodineau, I. Gallagher and S. Simonella

Entropy and irreversibility in gas dynamics. Joint work with T. Bodineau, I. Gallagher and S. Simonella Entropy and irreversibility in gas dynamics Joint work with T. Bodineau, I. Gallagher and S. Simonella Kinetic description for a gas of hard spheres Hard sphere dynamics The system evolves under the combined

More information

Diffusion d une particule marquée dans un gaz dilué de sphères dures

Diffusion d une particule marquée dans un gaz dilué de sphères dures Diffusion d une particule marquée dans un gaz dilué de sphères dures Thierry Bodineau Isabelle Gallagher, Laure Saint-Raymond Journées MAS 2014 Outline. Particle Diffusion Introduction Diluted Gas of hard

More information

Dynamique d un gaz de sphères dures et équation de Boltzmann

Dynamique d un gaz de sphères dures et équation de Boltzmann Dynamique d un gaz de sphères dures et équation de Boltzmann Thierry Bodineau Travaux avec Isabelle Gallagher, Laure Saint-Raymond Outline. Linear Boltzmann equation & Brownian motion Linearized Boltzmann

More information

From Hamiltonian particle systems to Kinetic equations

From Hamiltonian particle systems to Kinetic equations From Hamiltonian particle systems to Kinetic equations Università di Roma, La Sapienza WIAS, Berlin, February 2012 Plan of the lectures 1 Particle systems and BBKGY hierarchy (the paradigm of the Kinetic

More information

Hilbert Sixth Problem

Hilbert Sixth Problem Academia Sinica, Taiwan Stanford University Newton Institute, September 28, 2010 : Mathematical Treatment of the Axioms of Physics. The investigations on the foundations of geometry suggest the problem:

More information

Isabelle Gallagher. Laure Saint-Raymond. Benjamin Texier FROM NEWTON TO BOLTZMANN: HARD SPHERES AND SHORT-RANGE POTENTIALS

Isabelle Gallagher. Laure Saint-Raymond. Benjamin Texier FROM NEWTON TO BOLTZMANN: HARD SPHERES AND SHORT-RANGE POTENTIALS Isabelle Gallagher Laure Saint-Raymond Benjamin Texier FROM EWTO TO BOLTZMA: HARD SPHERES AD SHORT-RAGE POTETIALS I. Gallagher Institut de Mathématiques de Jussieu UMR CRS 7586, Université Paris-Diderot

More information

Kinetic theory of gases

Kinetic theory of gases Kinetic theory of gases Toan T. Nguyen Penn State University http://toannguyen.org http://blog.toannguyen.org Graduate Student seminar, PSU Jan 19th, 2017 Fall 2017, I teach a graduate topics course: same

More information

Exponential tail behavior for solutions to the homogeneous Boltzmann equation

Exponential tail behavior for solutions to the homogeneous Boltzmann equation Exponential tail behavior for solutions to the homogeneous Boltzmann equation Maja Tasković The University of Texas at Austin Young Researchers Workshop: Kinetic theory with applications in physical sciences

More information

THE DERIVATION OF THE LINEAR BOLTZMANN EQUATION FROM A RAYLEIGH GAS PARTICLE MODEL

THE DERIVATION OF THE LINEAR BOLTZMANN EQUATION FROM A RAYLEIGH GAS PARTICLE MODEL THE DERIVATION OF THE LINEAR BOLTZMANN EQUATION FROM A RAYLEIGH GAS PARTICLE MODEL KARSTEN MATTHIES, GEORGE STONE, AND FLORIAN THEIL Abstract. A linear Boltzmann equation is derived in the Boltzmann-Grad

More information

Complex systems: Self-organization vs chaos assumption

Complex systems: Self-organization vs chaos assumption 1 Complex systems: Self-organization vs chaos assumption P. Degond Institut de Mathématiques de Toulouse CNRS and Université Paul Sabatier pierre.degond@math.univ-toulouse.fr (see http://sites.google.com/site/degond/)

More information

From microscopic dynamics to kinetic equations

From microscopic dynamics to kinetic equations Facoltà di Scienze Matematiche, Fisiche e Naturali PhD Thesis in Mathematics, Sapienza Università di Roma XXV ciclo From microscopic dynamics to kinetic equations Chiara Sa rio Advisor: Prof. Mario Pulvirenti

More information

in Bounded Domains Ariane Trescases CMLA, ENS Cachan

in Bounded Domains Ariane Trescases CMLA, ENS Cachan CMLA, ENS Cachan Joint work with Yan GUO, Chanwoo KIM and Daniela TONON International Conference on Nonlinear Analysis: Boundary Phenomena for Evolutionnary PDE Academia Sinica December 21, 214 Outline

More information

From molecular dynamics to kinetic theory and hydrodynamics

From molecular dynamics to kinetic theory and hydrodynamics From molecular dynamics to kinetic theory and hydrodynamics Thierry Bodineau, Isabelle Gallagher, and Laure Saint-Raymond Abstract. In these notes we present the main ingredients of the proof of the convergence

More information

Semigroup factorization and relaxation rates of kinetic equations

Semigroup factorization and relaxation rates of kinetic equations Semigroup factorization and relaxation rates of kinetic equations Clément Mouhot, University of Cambridge Analysis and Partial Differential Equations seminar University of Sussex 24th of february 2014

More information

Derivation of Kinetic Equations

Derivation of Kinetic Equations CHAPTER 2 Derivation of Kinetic Equations As we said, the mathematical object that we consider in Kinetic Theory is the distribution function 0 apple f(t, x, v). We will now be a bit more precise about

More information

Kinetic Transport Theory

Kinetic Transport Theory Lecture notes on Kinetic Transport Theory Christian Schmeiser 1 Preface Kinetic transport equations are mathematical descriptions of the dynamics of large particle ensembles in terms of a phase space (i.e.

More information

On the Boltzmann equation: global solutions in one spatial dimension

On the Boltzmann equation: global solutions in one spatial dimension On the Boltzmann equation: global solutions in one spatial dimension Department of Mathematics & Statistics Colloque de mathématiques de Montréal Centre de Recherches Mathématiques November 11, 2005 Collaborators

More information

Entropic structure of the Landau equation. Coulomb interaction

Entropic structure of the Landau equation. Coulomb interaction with Coulomb interaction Laurent Desvillettes IMJ-PRG, Université Paris Diderot May 15, 2017 Use of the entropy principle for specific equations Spatially Homogeneous Kinetic equations: 1 Fokker-Planck:

More information

A Selective Modern History of the Boltzmann and Related Eq

A Selective Modern History of the Boltzmann and Related Eq A Selective Modern History of the Boltzmann and Related Equations October 2014, Fields Institute Synopsis 1. I have an ambivalent relation to surveys! 2. Key Words, Tools, People 3. Powerful Tools, I:

More information

YAN GUO, JUHI JANG, AND NING JIANG

YAN GUO, JUHI JANG, AND NING JIANG LOCAL HILBERT EXPANSION FOR THE BOLTZMANN EQUATION YAN GUO, JUHI JANG, AND NING JIANG Abstract. We revisit the classical ork of Caflisch [C] for compressible Euler limit of the Boltzmann equation. By using

More information

ON A NEW CLASS OF WEAK SOLUTIONS TO THE SPATIALLY HOMOGENEOUS BOLTZMANN AND LANDAU EQUATIONS

ON A NEW CLASS OF WEAK SOLUTIONS TO THE SPATIALLY HOMOGENEOUS BOLTZMANN AND LANDAU EQUATIONS ON A NEW CLASS OF WEAK SOLUTIONS TO THE SPATIALLY HOMOGENEOUS BOLTZMANN AND LANDAU EQUATIONS C. VILLANI Abstract. This paper deals with the spatially homogeneous Boltzmann equation when grazing collisions

More information

From the N-body problem to the cubic NLS equation

From the N-body problem to the cubic NLS equation From the N-body problem to the cubic NLS equation François Golse Université Paris 7 & Laboratoire J.-L. Lions golse@math.jussieu.fr Los Alamos CNLS, January 26th, 2005 Formal derivation by N.N. Bogolyubov

More information

Kinetic models of Maxwell type. A brief history Part I

Kinetic models of Maxwell type. A brief history Part I . A brief history Part I Department of Mathematics University of Pavia, Italy Porto Ercole, June 8-10 2008 Summer School METHODS AND MODELS OF KINETIC THEORY Outline 1 Introduction Wild result The central

More information

Exponential moments for the homogeneous Kac equation

Exponential moments for the homogeneous Kac equation Exponential moments for the homogeneous Kac equation Maja Tasković University of Pennsylvania Young Researchers Workshop: Stochastic and deterministic methods in kinetic theory, Duke University, November

More information

Models of collective displacements: from microscopic to macroscopic description

Models of collective displacements: from microscopic to macroscopic description Models of collective displacements: from microscopic to macroscopic description Sébastien Motsch CSCAMM, University of Maryland joint work with : P. Degond, L. Navoret (IMT, Toulouse) SIAM Analysis of

More information

Modelling and numerical methods for the diffusion of impurities in a gas

Modelling and numerical methods for the diffusion of impurities in a gas INERNAIONAL JOURNAL FOR NUMERICAL MEHODS IN FLUIDS Int. J. Numer. Meth. Fluids 6; : 6 [Version: /9/8 v.] Modelling and numerical methods for the diffusion of impurities in a gas E. Ferrari, L. Pareschi

More information

Microscopic and soliton-like solutions of the Boltzmann Enskog and generalized Enskog equations for elastic and inelastic hard spheres

Microscopic and soliton-like solutions of the Boltzmann Enskog and generalized Enskog equations for elastic and inelastic hard spheres arxiv:307.474v2 [math-ph] 4 Mar 204 Microscopic and soliton-like solutions of the Boltzmann Enskog and generalized Enskog equations for elastic and inelastic hard spheres A. S. Trushechkin Steklov Mathematical

More information

Equilibrium and transport in Tokamaks

Equilibrium and transport in Tokamaks Equilibrium and transport in Tokamaks Jacques Blum Laboratoire J.-A. Dieudonné, Université de Nice Sophia-Antipolis Parc Valrose 06108 Nice Cedex 02, France jblum@unice.fr 08 septembre 2008 Jacques Blum

More information

The Boltzmann Equation and Its Applications

The Boltzmann Equation and Its Applications Carlo Cercignani The Boltzmann Equation and Its Applications With 42 Illustrations Springer-Verlag New York Berlin Heidelberg London Paris Tokyo CONTENTS PREFACE vii I. BASIC PRINCIPLES OF THE KINETIC

More information

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions

Lecture Models for heavy-ion collisions (Part III): transport models. SS2016: Dynamical models for relativistic heavy-ion collisions Lecture Models for heavy-ion collisions (Part III: transport models SS06: Dynamical models for relativistic heavy-ion collisions Quantum mechanical description of the many-body system Dynamics of heavy-ion

More information

Introduction Statistical Thermodynamics. Monday, January 6, 14

Introduction Statistical Thermodynamics. Monday, January 6, 14 Introduction Statistical Thermodynamics 1 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling r 1 r 2 r n MD MC r 1 r 2 2 r n 2 3 3 4 4 Questions How can

More information

Hypocoercivity for kinetic equations with linear relaxation terms

Hypocoercivity for kinetic equations with linear relaxation terms Hypocoercivity for kinetic equations with linear relaxation terms Jean Dolbeault dolbeaul@ceremade.dauphine.fr CEREMADE CNRS & Université Paris-Dauphine http://www.ceremade.dauphine.fr/ dolbeaul (A JOINT

More information

Transport coefficients in plasmas spanning weak to strong correlation

Transport coefficients in plasmas spanning weak to strong correlation Transport coefficients in plasmas spanning weak to strong correlation Scott D. Baalrud 1,2 and Jerome Daligault 1 1 Theoretical Division, Los Alamos National Laboratory 2 Department of Physics and Astronomy,

More information

From Boltzmann Equations to Gas Dynamics: From DiPerna-Lions to Leray

From Boltzmann Equations to Gas Dynamics: From DiPerna-Lions to Leray From Boltzmann Equations to Gas Dynamics: From DiPerna-Lions to Leray C. David Levermore Department of Mathematics and Institute for Physical Science and Technology University of Maryland, College Park

More information

Hydrodynamic Limit with Geometric Correction in Kinetic Equations

Hydrodynamic Limit with Geometric Correction in Kinetic Equations Hydrodynamic Limit with Geometric Correction in Kinetic Equations Lei Wu and Yan Guo KI-Net Workshop, CSCAMM University of Maryland, College Park 2015-11-10 1 Simple Model - Neutron Transport Equation

More information

CURRICULUM VITAE. Sergio Simonella

CURRICULUM VITAE. Sergio Simonella CURRICULUM VITAE Sergio Simonella Zentrum Mathematik, TU München, Boltzmannstrasse 3, 85748 Garching, Germany Tel: +49(89)28917086 (office), +49(176)65222728 (mobile) Webpage: sergiosimonella.wordpress.com

More information

Rigid Body Motion in a Special Lorentz Gas

Rigid Body Motion in a Special Lorentz Gas Rigid Body Motion in a Special Lorentz Gas Kai Koike 1) Graduate School of Science and Technology, Keio University 2) RIKEN Center for Advanced Intelligence Project BU-Keio Workshop 2018 @Boston University,

More information

Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck

Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck Jean Dolbeault dolbeaul@ceremade.dauphine.fr CEREMADE CNRS & Université Paris-Dauphine http://www.ceremade.dauphine.fr/ dolbeaul (EN

More information

A few words about the MTW tensor

A few words about the MTW tensor A few words about the Ma-Trudinger-Wang tensor Université Nice - Sophia Antipolis & Institut Universitaire de France Salah Baouendi Memorial Conference (Tunis, March 2014) The Ma-Trudinger-Wang tensor

More information

Mathematical modelling of collective behavior

Mathematical modelling of collective behavior Mathematical modelling of collective behavior Young-Pil Choi Fakultät für Mathematik Technische Universität München This talk is based on joint works with José A. Carrillo, Maxime Hauray, and Samir Salem

More information

(Ir)reversibility and entropy Cédric Villani University of Lyon & Institut Henri Poincaré 11 rue Pierre et Marie Curie Paris Cedex 05, FRANCE

(Ir)reversibility and entropy Cédric Villani University of Lyon & Institut Henri Poincaré 11 rue Pierre et Marie Curie Paris Cedex 05, FRANCE (Ir)reversibility and entropy Cédric Villani University of Lyon & Institut Henri Poincaré 11 rue Pierre et Marie Curie 75231 Paris Cedex 05, FRANCE La cosa più meravigliosa è la felicità del momento L.

More information

Fluid Dynamics from Kinetic Equations

Fluid Dynamics from Kinetic Equations Fluid Dynamics from Kinetic Equations François Golse Université Paris 7 & IUF, Laboratoire J.-L. Lions golse@math.jussieu.fr & C. David Levermore University of Maryland, Dept. of Mathematics & IPST lvrmr@math.umd.edu

More information

Invisible Control of Self-Organizing Agents Leaving Unknown Environments

Invisible Control of Self-Organizing Agents Leaving Unknown Environments Invisible Control of Self-Organizing Agents Leaving Unknown Environments (joint work with G. Albi, E. Cristiani, and D. Kalise) Mattia Bongini Technische Universität München, Department of Mathematics,

More information

Stochastic Particle Methods for Rarefied Gases

Stochastic Particle Methods for Rarefied Gases CCES Seminar WS 2/3 Stochastic Particle Methods for Rarefied Gases Julian Köllermeier RWTH Aachen University Supervisor: Prof. Dr. Manuel Torrilhon Center for Computational Engineering Science Mathematics

More information

summary of statistical physics

summary of statistical physics summary of statistical physics Matthias Pospiech University of Hannover, Germany Contents 1 Probability moments definitions 3 2 bases of thermodynamics 4 2.1 I. law of thermodynamics..........................

More information

On the Interior Boundary-Value Problem for the Stationary Povzner Equation with Hard and Soft Interactions

On the Interior Boundary-Value Problem for the Stationary Povzner Equation with Hard and Soft Interactions On the Interior Boundary-Value Problem for the Stationary Povzner Equation with Hard and Soft Interactions Vladislav A. Panferov Department of Mathematics, Chalmers University of Technology and Göteborg

More information

ALMOST EXPONENTIAL DECAY NEAR MAXWELLIAN

ALMOST EXPONENTIAL DECAY NEAR MAXWELLIAN ALMOST EXPONENTIAL DECAY NEAR MAXWELLIAN ROBERT M STRAIN AND YAN GUO Abstract By direct interpolation of a family of smooth energy estimates for solutions near Maxwellian equilibrium and in a periodic

More information

REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS

REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS 1 REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS HENNING STRUCHTRUP ETH Zürich, Department of Materials, Polymer Physics, CH-8093 Zürich, Switzerland (on leave from University of Victoria,

More information

ON THE LANDAU APPROXIMATION IN PLASMA PHYSICS

ON THE LANDAU APPROXIMATION IN PLASMA PHYSICS ON THE LANDAU APPROXIMATION IN PLASMA PHYSICS R. ALEXANDRE AND C. VILLANI Abstract. This paper studies the approximation of the Boltzmann equation by the Landau equation in a regime when grazing collisions

More information

2. Thermodynamics. Introduction. Understanding Molecular Simulation

2. Thermodynamics. Introduction. Understanding Molecular Simulation 2. Thermodynamics Introduction Molecular Simulations Molecular dynamics: solve equations of motion r 1 r 2 r n Monte Carlo: importance sampling r 1 r 2 r n How do we know our simulation is correct? Molecular

More information

Mathematical modelling and analysis of polyatomic gases and mixtures in the context of kinetic theory of gases and fluid mechanics

Mathematical modelling and analysis of polyatomic gases and mixtures in the context of kinetic theory of gases and fluid mechanics University of Novi Sad École Normale Supérieure de Cachan Mathematical modelling and analysis of polyatomic gases and mixtures in the context of kinetic theory of gases and fluid mechanics Presented by

More information

Bayesian inverse problems with Laplacian noise

Bayesian inverse problems with Laplacian noise Bayesian inverse problems with Laplacian noise Remo Kretschmann Faculty of Mathematics, University of Duisburg-Essen Applied Inverse Problems 2017, M27 Hangzhou, 1 June 2017 1 / 33 Outline 1 Inverse heat

More information

Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling

Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling Anaïs Crestetto 1, Nicolas Crouseilles 2, Giacomo Dimarco 3 et Mohammed Lemou 4 Saint-Malo, 14 décembre 2017 1 Université de

More information

Fourier Law and Non-Isothermal Boundary in the Boltzmann Theory

Fourier Law and Non-Isothermal Boundary in the Boltzmann Theory in the Boltzmann Theory Joint work with Raffaele Esposito, Yan Guo, Rossana Marra DPMMS, University of Cambridge ICERM November 8, 2011 Steady Boltzmann Equation Steady Boltzmann Equation v x F = Q(F,

More information

arxiv: v1 [math.ap] 6 Apr 2016

arxiv: v1 [math.ap] 6 Apr 2016 From the Vlasov-Maxwell-Boltzmann system to incompressible viscous electro-magneto-hydrodynamics Diogo Arsénio arxiv:604.0547v [math.ap] 6 Apr 06 Laure Saint-Raymond CNRS & Université Paris Diderot, Institut

More information

arxiv: v1 [math.ap] 28 Apr 2009

arxiv: v1 [math.ap] 28 Apr 2009 ACOUSTIC LIMIT OF THE BOLTZMANN EQUATION: CLASSICAL SOLUTIONS JUHI JANG AND NING JIANG arxiv:0904.4459v [math.ap] 28 Apr 2009 Abstract. We study the acoustic limit from the Boltzmann equation in the framework

More information

Particle-Simulation Methods for Fluid Dynamics

Particle-Simulation Methods for Fluid Dynamics Particle-Simulation Methods for Fluid Dynamics X. Y. Hu and Marco Ellero E-mail: Xiangyu.Hu and Marco.Ellero at mw.tum.de, WS 2012/2013: Lectures for Mechanical Engineering Institute of Aerodynamics Technical

More information

On Kinetic Equations Modeling Evolution of Systems in Mathematical Biology

On Kinetic Equations Modeling Evolution of Systems in Mathematical Biology On Kinetic Equations Modeling Evolution of Systems in Mathematical Biology arxiv:308.4504v [math-ph] 2 Aug 203 Yu.Yu. Fedchun and V.I. Gerasimenko 2 Taras Shevchenko National University of Kyiv, Department

More information

Stochastic Proximal Gradient Algorithm

Stochastic Proximal Gradient Algorithm Stochastic Institut Mines-Télécom / Telecom ParisTech / Laboratoire Traitement et Communication de l Information Joint work with: Y. Atchade, Ann Arbor, USA, G. Fort LTCI/Télécom Paristech and the kind

More information

APPENDIX Z. USEFUL FORMULAS 1. Appendix Z. Useful Formulas. DRAFT 13:41 June 30, 2006 c J.D Callen, Fundamentals of Plasma Physics

APPENDIX Z. USEFUL FORMULAS 1. Appendix Z. Useful Formulas. DRAFT 13:41 June 30, 2006 c J.D Callen, Fundamentals of Plasma Physics APPENDIX Z. USEFUL FORMULAS 1 Appendix Z Useful Formulas APPENDIX Z. USEFUL FORMULAS 2 Key Vector Relations A B = B A, A B = B A, A A = 0, A B C) = A B) C A B C) = B A C) C A B), bac-cab rule A B) C D)

More information

Transport Continuity Property

Transport Continuity Property On Riemannian manifolds satisfying the Transport Continuity Property Université de Nice - Sophia Antipolis (Joint work with A. Figalli and C. Villani) I. Statement of the problem Optimal transport on Riemannian

More information

arxiv: v2 [math-ph] 25 Jun 2009

arxiv: v2 [math-ph] 25 Jun 2009 RECENT RESULTS ON THE PERIODIC LORENTZ GAS FRANÇOIS GOLSE arxiv:0906.0191v2 [math-ph] 25 Jun 2009 Abstract. The Drude-Lorentz model for the motion of electrons in a solid is a classical model in statistical

More information

Hydrodynamic Limits for the Boltzmann Equation

Hydrodynamic Limits for the Boltzmann Equation Hydrodynamic Limits for the Boltzmann Equation François Golse Université Paris 7 & Laboratoire J.-L. Lions golse@math.jussieu.fr Academia Sinica, Taipei, December 2004 LECTURE 2 FORMAL INCOMPRESSIBLE HYDRODYNAMIC

More information

An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling

An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3 Saint-Malo 13 December 2016 1 Université

More information

The Hopf equation. The Hopf equation A toy model of fluid mechanics

The Hopf equation. The Hopf equation A toy model of fluid mechanics The Hopf equation A toy model of fluid mechanics 1. Main physical features Mathematical description of a continuous medium At the microscopic level, a fluid is a collection of interacting particles (Van

More information

Physics 212: Statistical mechanics II Lecture IV

Physics 212: Statistical mechanics II Lecture IV Physics 22: Statistical mechanics II Lecture IV Our program for kinetic theory in the last lecture and this lecture can be expressed in the following series of steps, from most exact and general to most

More information

Un problème inverse: l identification du profil de courant dans un Tokamak

Un problème inverse: l identification du profil de courant dans un Tokamak Un problème inverse: l identification du profil de courant dans un Tokamak Blaise Faugeras en collaboration avec J. Blum et C. Boulbe Université de Nice Sophia Antipolis Laboratoire J.-A. Dieudonné Nice,

More information

Concentration Inequalities for Random Matrices

Concentration Inequalities for Random Matrices Concentration Inequalities for Random Matrices M. Ledoux Institut de Mathématiques de Toulouse, France exponential tail inequalities classical theme in probability and statistics quantify the asymptotic

More information

Anomalous transport of particles in Plasma physics

Anomalous transport of particles in Plasma physics Anomalous transport of particles in Plasma physics L. Cesbron a, A. Mellet b,1, K. Trivisa b, a École Normale Supérieure de Cachan Campus de Ker Lann 35170 Bruz rance. b Department of Mathematics, University

More information

analysis for transport equations and applications

analysis for transport equations and applications Multi-scale analysis for transport equations and applications Mihaï BOSTAN, Aurélie FINOT University of Aix-Marseille, FRANCE mihai.bostan@univ-amu.fr Numerical methods for kinetic equations Strasbourg

More information

Nanoscale simulation lectures Statistical Mechanics

Nanoscale simulation lectures Statistical Mechanics Nanoscale simulation lectures 2008 Lectures: Thursdays 4 to 6 PM Course contents: - Thermodynamics and statistical mechanics - Structure and scattering - Mean-field approaches - Inhomogeneous systems -

More information

Turbulence modulation by fully resolved particles using Immersed Boundary Methods

Turbulence modulation by fully resolved particles using Immersed Boundary Methods Turbulence modulation by fully resolved particles using Immersed Boundary Methods Abouelmagd Abdelsamie and Dominique Thévenin Lab. of Fluid Dynamics & Technical Flows University of Magdeburg Otto von

More information

Remarks on 2D inverse cascade

Remarks on 2D inverse cascade Remarks on 2D inverse cascade Franco Flandoli, Scuola Normale Superiore Newton Institute, Dec. 2018 Franco Flandoli, Scuola Normale Superiore () 2D inverse cascade Newton Institute, Dec. 2018 1 / 54 Inverse

More information

Infinite Series. 1 Introduction. 2 General discussion on convergence

Infinite Series. 1 Introduction. 2 General discussion on convergence Infinite Series 1 Introduction I will only cover a few topics in this lecture, choosing to discuss those which I have used over the years. The text covers substantially more material and is available for

More information

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Anaïs Crestetto 1, Nicolas Crouseilles 2 et Mohammed Lemou 3 La Tremblade, Congrès SMAI 2017 5

More information

On Weak Solutions to the Linear Boltzmann Equation with Inelastic Coulomb Collisions

On Weak Solutions to the Linear Boltzmann Equation with Inelastic Coulomb Collisions On Weak Solutions to the Linear Boltzmann Equation with Inelastic Coulomb Collisions Rolf Pettersson epartment of Mathematics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden Abstract. This

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Thermodynamic Phase Equilibria Certain thermodynamic states

More information

A REVIEW OF THE KINETIC MODELINGS FOR NON-REACTIVE AND REACTIVE DENSE FLUIDS: QUESTIONS AND PROBLEMS. 1. Introduction

A REVIEW OF THE KINETIC MODELINGS FOR NON-REACTIVE AND REACTIVE DENSE FLUIDS: QUESTIONS AND PROBLEMS. 1. Introduction A REVIEW OF THE KINETIC MODELINGS FOR NON-REACTIVE AND REACTIVE DENSE FLUIDS: QUESTIONS AND PROBLEMS JACEK POLEWCZAK Abstract. A review of various kinetic models for non-reactive and reactive dense fluids,

More information

Lectures on basic plasma physics: Introduction

Lectures on basic plasma physics: Introduction Lectures on basic plasma physics: Introduction Department of applied physics, Aalto University Compiled: January 13, 2016 Definition of a plasma Layout 1 Definition of a plasma 2 Basic plasma parameters

More information

Analisis para la ecuacion de Boltzmann Soluciones y Approximaciones

Analisis para la ecuacion de Boltzmann Soluciones y Approximaciones Analisis para la ecuacion de Boltzmann Soluciones y Approximaciones Irene M. Gamba Department of Mathematics and ICES The University of Texas at Austin Mar del PLata, Julio 2012 Collaborators: R. Alonso,

More information

Integro-differential equations and Boltzmann

Integro-differential equations and Boltzmann Integro-differential equations and Boltzmann Luis Silvestre University of Chicago Rivière - Fabes symposium Nestor Riviere Nestor Riviere Ariel and Joana Plan for the talks Talk 1 Gentle introduction to

More information

The Equipartition Theorem

The Equipartition Theorem Chapter 8 The Equipartition Theorem Topics Equipartition and kinetic energy. The one-dimensional harmonic oscillator. Degrees of freedom and the equipartition theorem. Rotating particles in thermal equilibrium.

More information

Different types of phase transitions for a simple model of alignment of oriented particles

Different types of phase transitions for a simple model of alignment of oriented particles Different types of phase transitions for a simple model of alignment of oriented particles Amic Frouvelle Université Paris Dauphine Joint work with Jian-Guo Liu (Duke University, USA) and Pierre Degond

More information

Fractional parabolic models arising in flocking. dynamics and fluids. Roman Shvydkoy jointly with Eitan Tadmor. April 18, 2017

Fractional parabolic models arising in flocking. dynamics and fluids. Roman Shvydkoy jointly with Eitan Tadmor. April 18, 2017 Fractional April 18, 2017 Cucker-Smale model (2007) We study macroscopic versions of systems modeling self-organized collective dynamics of agents : ẋ i = v i, v i = λ N φ( x i x j )(v j v i ), N j=1 (x

More information

Time Evolution of Infinite Classical Systems. Oscar E. Lanford III

Time Evolution of Infinite Classical Systems. Oscar E. Lanford III Proceedings of the International Congress of Mathematicians Vancouver, 1974 Time Evolution of Infinite Classical Systems Oscar E. Lanford III I will discuss in this article some recent progress in the

More information

Particles approximation for Vlasov equation with singular interaction

Particles approximation for Vlasov equation with singular interaction Particles approximation for Vlasov equation with singular interaction M. Hauray, in collaboration with P.-E. Jabin. Université d Aix-Marseille GRAVASCO Worshop, IHP, November 2013 M. Hauray (UAM) Particles

More information

The Bernoulli Equation

The Bernoulli Equation The Bernoulli Equation The most used and the most abused equation in fluid mechanics. Newton s Second Law: F = ma In general, most real flows are 3-D, unsteady (x, y, z, t; r,θ, z, t; etc) Let consider

More information

Mean Field Limit for Stochastic Particle Systems

Mean Field Limit for Stochastic Particle Systems Mean Field Limit for Stochastic Particle Systems Pierre-Emmanuel Jabin and Zhenfu Wang Abstract We review some classical and more recent results for the derivation of mean field equations from systems

More information

Math Review Night: Work and the Dot Product

Math Review Night: Work and the Dot Product Math Review Night: Work and the Dot Product Dot Product A scalar quantity Magnitude: A B = A B cosθ The dot product can be positive, zero, or negative Two types of projections: the dot product is the parallel

More information

Thermal Physics. 1) Thermodynamics: Relates heat + work with empirical (observed, not derived) properties of materials (e.g. ideal gas: PV = nrt).

Thermal Physics. 1) Thermodynamics: Relates heat + work with empirical (observed, not derived) properties of materials (e.g. ideal gas: PV = nrt). Thermal Physics 1) Thermodynamics: Relates heat + work with empirical (observed, not derived) properties of materials (e.g. ideal gas: PV = nrt). 2) Statistical Mechanics: Uses models (can be more complicated)

More information

Notes for Expansions/Series and Differential Equations

Notes for Expansions/Series and Differential Equations Notes for Expansions/Series and Differential Equations In the last discussion, we considered perturbation methods for constructing solutions/roots of algebraic equations. Three types of problems were illustrated

More information

CHAPTER 4. Basics of Fluid Dynamics

CHAPTER 4. Basics of Fluid Dynamics CHAPTER 4 Basics of Fluid Dynamics What is a fluid? A fluid is a substance that can flow, has no fixed shape, and offers little resistance to an external stress In a fluid the constituent particles (atoms,

More information

CHAPTER 9. Microscopic Approach: from Boltzmann to Navier-Stokes. In the previous chapter we derived the closed Boltzmann equation:

CHAPTER 9. Microscopic Approach: from Boltzmann to Navier-Stokes. In the previous chapter we derived the closed Boltzmann equation: CHAPTER 9 Microscopic Approach: from Boltzmann to Navier-Stokes In the previous chapter we derived the closed Boltzmann equation: df dt = f +{f,h} = I[f] where I[f] is the collision integral, and we have

More information

Eigenvalues of Robin Laplacians on infinite sectors and application to polygons

Eigenvalues of Robin Laplacians on infinite sectors and application to polygons Eigenvalues of Robin Laplacians on infinite sectors and application to polygons Magda Khalile (joint work with Konstantin Pankrashkin) Université Paris Sud /25 Robin Laplacians on infinite sectors 1 /

More information

Kinetic Transport Theory

Kinetic Transport Theory Lecture notes on Kinetic Transport Theory Christian Schmeiser 1 Preface Kinetic transport equations are mathematical descriptions of the dynamics of large particle ensembles in terms of a phase space (i.e.

More information

Theory of Cosmological Perturbations

Theory of Cosmological Perturbations Theory of Cosmological Perturbations Part III CMB anisotropy 1. Photon propagation equation Definitions Lorentz-invariant distribution function: fp µ, x µ ) Lorentz-invariant volume element on momentum

More information