APPENDIX Z. USEFUL FORMULAS 1. Appendix Z. Useful Formulas. DRAFT 13:41 June 30, 2006 c J.D Callen, Fundamentals of Plasma Physics

Size: px
Start display at page:

Download "APPENDIX Z. USEFUL FORMULAS 1. Appendix Z. Useful Formulas. DRAFT 13:41 June 30, 2006 c J.D Callen, Fundamentals of Plasma Physics"

Transcription

1 APPENDIX Z. USEFUL FORMULAS 1 Appendix Z Useful Formulas

2 APPENDIX Z. USEFUL FORMULAS 2 Key Vector Relations A B = B A, A B = B A, A A = 0, A B C) = A B) C A B C) = B A C) C A B), bac-cab rule A B) C D) = A C)B D) A D)B C) A B) C D) = C A B D) D A B C) A = A ˆb + A with ˆb B/B A B A/B = ˆb A A B B A)/B 2 = ˆb ˆb A) A =B )A /B)+A /B) B)+ A A = A [ ln B +ˆb )ˆb ]+1/B) ˆb B A ) For A = B f/b 2, ˆb B A )= ˆb f)ˆb ˆb) fg) = g f + f g f 2 f fa) = f A + f A f = 0 fa) = f A + f A A 2 A ft) = f T + f T = A) A) ft) = f T + f T A = 0 B )A C) = C B ) A + A B ) C A B) = A B)+B A)+A ) B +B ) A AB) = B A)+A ) B A B) = B A A B A B) = A B) B A)+B ) A A ) B For the general coordinate x xê x + yê y + zê z and x x 2 + y 2 + z 2, x =3, x = 0, x = I, I = 0, I = 0, A I = A, x = x/ x, 1/ x ) = x/ x 3, 2 1/ x ) = 4πδx), I A = A. For a volume V enclosed by a closed, continuous surface S, V d3 x A = ds A, divergence, Gauss theorem. S For an open surface S bounded by a closed, continuous contour C, S ds A = dl A, Stokes theorem. C

3 APPENDIX Z. USEFUL FORMULAS 3 Explicit Forms Of Vector Differentiation Operators for orthogonal curvilinear coordinates u i, ê i u i / u i, A i ê i A) Cartesian coordinates: u i =x, y, z), d 3 x = dx dy dz, f f = ê x x + ê f y y + ê f z A = A x x + A y y + A z [ Az A = ê x y A y 2 f = 2 f x f y f 2 ] [ Ax + ê y A z x ] [ Ay + ê z x A ] x y Cylindrical coordinates: u i =r, θ, z), d 3 x = rdr 2π dθ 0 0 dz, with r x 2 + y 2, θ arctan y/x), z z, and inverse relations x = r sin θ, y = r cos θ, z = z, f f = ê r r + ê 1 f θ r θ + ê f z A = 1 r r ra r)+ 1 A θ r θ + A z [ 1 A z A = ê r r θ A ] [ θ Ar + ê θ A ] z r [ 1 +ê z r r ra θ) A ] r θ 2 f = 1 r f ) f r r r r 2 θ f 2 Spherical coordinates: u i =r, ϑ, ϕ), d 3 x = r 2 dr π 0 0 dϑ sin ϑ 2π dϕ, 0 with r x 2 + y 2 + z 2, ϑ arctan x 2 + y 2 /r), ϕ arctan y/x), and inverse relations x = r sin ϑ cos ϕ, y = r sin ϑ sin ϕ, z = r cos ϑ, f f = ê r r + ê 1 f ϑ r ϑ + ê 1 f ϕ r sin ϑ ϕ A = 1 r 2 r r2 A r )+ 1 1 A = ê r r sin ϑ [ +ê ϑ 2 f = 1 r 2 r r sin ϑ ϑ sin ϑa ϑ)+ 1 r sin ϑ ] [ ϑ sin ϑa ϕ) A ϑ ϕ 1 A r r sin ϑ ϕ 1 ] [ r r ra 1 ϕ) + ê ϕ r r 2 f ) 1 + r r 2 sin ϑ f ) + sin ϑ ϑ ϑ A ϕ ϕ r ra ϑ) A r ϑ 1 2 f r 2 sin 2 ϑ ϕ 2 ]

4 APPENDIX Z. USEFUL FORMULAS 4 Physical Constants m e electron mass kg, 511 kev m p proton mass kg, 938 MeV m p /m e mass ratio 1836 = 42.85) 2 e elementary charge C = J/eV) c speed of light in vacuum m/s = 1/ µ 0 ɛ 0 µ 0 permeability of vacuum 4π 10 7 N/A 2 ɛ 0 permittivity of vacuum F/m, 4πɛ h Planck constant J s N A Avogadro constant #/mol e/k B Boltzmann constant K/eV Key Plasma Formulas Quantities are in SI mks) units except temperature and energy which are expressed in ev; Z i is the ion charge state; A i m i /m p is the atomic mass number. Frequencies electron plasma ω pe ion gyrofrequency ω ci q i B m i electron collision ν e Lengths electron Debye λ De ion gyroradius ϱ i v Ti ω ci n e e 2 m e ɛ 0 56 n e rad/s, f pe 9 n e Hz Z i B A i rad/s 4 3 π νv Te) n e Z i [T e ev)] 3/2 ɛ0 T e Te ev) n e e2 n e Ti ev) A i Z i B electron collision λ e = v Te [T eev)] 2 ν e n e Z i m 17 ln Λ ) ln Λ 17 m ) m Speeds, Velocities electron thermal v Te 2 T e /m e T e ev) m/s ion thermal v Ti 2 T i /m i T i ev)/a i m/s ion acoustic T e >> T i ) c S Z i T e /m i 10 4 Z i T e ev)/a i m/s Alfvén c A B/ µ 0 ρ m B/ n i A i m/s electron diamagnetic ) T e 1 dn e flow dt e /dx =0) V e ê y = T eev) ê y q e B n e dx BL n m/s electron drift in Bx) average, low β) v de = 2T ) e 1 db ê y = 2 T eev) ê y q e B B dx BL B m/s s 1

5 APPENDIX Z. USEFUL FORMULAS 5 Drift, flow velocities for ϱ << 1, ω<<ω c ) perpendicular to B : particle drift velocities plasma species flow velocities v F = F B/qB 2 general force V F = F B/qB 2 v E = E B/B 2 E B V E = E B/B 2 v µ = B µ B/qB 2 µ grad-b µ mv 2/2B v κ = B mv 2 κ/qb2 curvature κ ˆb )ˆb = R C /RC 2 diamagnetic V = B p/nqb 2 v p = B mdv d /dt)/qb 2 polarization V p = B mdv/dt)/qb 2 friction V η = R B/nqB 2 viscosity V π = B π)/nqb 2 v d = v E + v µ + v κ + v p total V = V E + V + V p + V η + V π Diffusivities no magnetic field ν e λ 2 e vte/ν 2 e [T 5/2 ) eev)] 17 m 2 /s n e Z i ln Λ magnetic field η/µ 0 m e ν e /n e e 2 )/µ 0 = ν e c/ω pe ) ) 2 ) Z i ln Λ m 2 /s [T e ev)] 3/2 17 classical ν e ϱ 2 e = β e η/µ 0 ) n e Z i B 2 [T e ev)] 1/2 Dimensionless ) ln Λ m 2 /s 17 number of electrons in Debye cube n e λ 3 De [T e ev)] 3/2 / n e ) λ D Coulomb logarithm ln Λ ln max { b cl min,bqm min } b cl min = Z i/12πn e λ 2 De ) Z i /T e ev) m b qm min = h/4πm ev) /[T e ev)] 1/2 m plasma to magnetic pressure β Lundquist number S a2 /η/µ 0 ) L /c A P B 2 /2µ 0 = n e T e + n i T i B 2 /2µ ne B 2 )[ T e ev) + n i n e T i ev) a2 B [T e ev)] 3/2 L Z i ni A i ) 17 ln Λ ]

6 APPENDIX Z. USEFUL FORMULAS 6 Fundamental Equations of Physics Mechanics m a mdv/dt = F, v dx/dt Newton s second law F = q E + v B) Lorentz force H = p qa 2 /2m + qφ, p = mv + qa Hamiltonian, energy dp/dt = H/ q, dq/dt = H/ p Hamilton s equations Electrodynamics E = ρ q /ɛ 0 Gauss s law E = B/ t Faraday s law B = 0 no magnetic monopoles B = µ 0 J + ɛ 0 E/ t) Ampere s law, µ 0 ɛ 0 =1/c 2 0 = ρ q / t + J charge continuity equation E = φ A/ t, B = A potential representations Plasma Physics Plasma kinetic equation PKE) for distribution function f f s x, v,t): f/ t + v f/ x +q/m)e + v B) f/ v = C{f}. Density, flow moments and charge, current densities: n s d 3 vf s, V s d 3 v v f s /n s, ρ q s n sq s, J s n sq s V s. Gibb s A: adiabatic) distribution of plasma species with temperature T: ) 3/2 f A = n m 0 2πT e H/T ; n A x,t)=n 0 e qφ/t, Boltzmann relation. Maxwellian M: collisional equilibrium) distribution v T 2T/m): ) 3/2 f M = n m 2πT exp m v 2 ) /v 2 2T = ne v 2 T π 3/2 vt 3, v v V. Species fluid moment equations density, momentum, energy): n/ t + nv =0, nt d 3 v mv 2 /3) f, mn dv/dt) =nq E + V B) p π + R, d/dt / t + V, 3/2)n dt/dt)+p V = q π : V + Q, p nt. Magnetohydrodynamics plasma fluid description, isotropic pressure and isentropic responses for plasma species, ρ m s n sm s, V s n sm s V s /ρ m ): ρ m / t + ρ m V =0, E + V B = ηj, P s p s, ρ m dv/dt) =J B P, d ln P/ρm) Γ /dt =Γ 1) ηj 2 /P 0.

Single Particle Motion

Single Particle Motion Single Particle Motion C ontents Uniform E and B E = - guiding centers Definition of guiding center E gravitation Non Uniform B 'grad B' drift, B B Curvature drift Grad -B drift, B B invariance of µ. Magnetic

More information

14. Energy transport.

14. Energy transport. Phys780: Plasma Physics Lecture 14. Energy transport. 1 14. Energy transport. Chapman-Enskog theory. ([8], p.51-75) We derive macroscopic properties of plasma by calculating moments of the kinetic equation

More information

12. MHD Approximation.

12. MHD Approximation. Phys780: Plasma Physics Lecture 12. MHD approximation. 1 12. MHD Approximation. ([3], p. 169-183) The kinetic equation for the distribution function f( v, r, t) provides the most complete and universal

More information

Preliminary Examination - Day 1 Thursday, August 10, 2017

Preliminary Examination - Day 1 Thursday, August 10, 2017 UNL - Department of Physics and Astronomy Preliminary Examination - Day Thursday, August, 7 This test covers the topics of Quantum Mechanics (Topic ) and Electrodynamics (Topic ). Each topic has 4 A questions

More information

Chapter 3. Coulomb collisions

Chapter 3. Coulomb collisions Chapter 3 Coulomb collisions Coulomb collisions are long-range scattering events between charged particles due to the mutual exchange of the Coulomb force. Where do they occur, and why they are of interest?

More information

ρ c (2.1) = 0 (2.3) B = 0. (2.4) E + B

ρ c (2.1) = 0 (2.3) B = 0. (2.4) E + B Chapter 2 Basic Plasma Properties 2.1 First Principles 2.1.1 Maxwell s Equations In general magnetic and electric fields are determined by Maxwell s equations, corresponding boundary conditions and the

More information

Preliminary Examination - Day 1 Thursday, May 10, 2018

Preliminary Examination - Day 1 Thursday, May 10, 2018 UNL - Department of Physics and Astronomy Preliminary Examination - Day Thursday, May, 28 This test covers the topics of Classical Mechanics (Topic ) and Electrodynamics (Topic 2). Each topic has 4 A questions

More information

[variable] = units (or dimension) of variable.

[variable] = units (or dimension) of variable. Dimensional Analysis Zoe Wyatt wyatt.zoe@gmail.com with help from Emanuel Malek Understanding units usually makes physics much easier to understand. It also gives a good method of checking if an answer

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9 MATH 32B-2 (8W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Multiple Integrals 3 2 Vector Fields 9 3 Line and Surface Integrals 5 4 The Classical Integral Theorems 9 MATH 32B-2 (8W)

More information

Waves in plasma. Denis Gialis

Waves in plasma. Denis Gialis Waves in plasma Denis Gialis This is a short introduction on waves in a non-relativistic plasma. We will consider a plasma of electrons and protons which is fully ionized, nonrelativistic and homogeneous.

More information

Plasma Descriptions I: Kinetic, Two-Fluid

Plasma Descriptions I: Kinetic, Two-Fluid CHAPTER 5. PLASMA DESCRIPTIONS I: KINETIC, TWO-FLUID 1 Chapter 5 Plasma Descriptions I: Kinetic, Two-Fluid Descriptions of plasmas are obtained from extensions of the kinetic theory of gases and the hydrodynamics

More information

Lectures on basic plasma physics: Introduction

Lectures on basic plasma physics: Introduction Lectures on basic plasma physics: Introduction Department of applied physics, Aalto University Compiled: January 13, 2016 Definition of a plasma Layout 1 Definition of a plasma 2 Basic plasma parameters

More information

Fundamental Constants

Fundamental Constants Fundamental Constants Atomic Mass Unit u 1.660 540 2 10 10 27 kg 931.434 32 28 MeV c 2 Avogadro s number N A 6.022 136 7 36 10 23 (g mol) 1 Bohr magneton μ B 9.274 015 4(31) 10-24 J/T Bohr radius a 0 0.529

More information

Plasmas as fluids. S.M.Lea. January 2007

Plasmas as fluids. S.M.Lea. January 2007 Plasmas as fluids S.M.Lea January 2007 So far we have considered a plasma as a set of non intereacting particles, each following its own path in the electric and magnetic fields. Now we want to consider

More information

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2912 PHYSICS 2B (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2912 PHYSICS 2B (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN CC0936 THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 91 PHYSICS B (ADVANCED SEMESTER, 015 TIME ALLOWED: 3 HOURS ALL QUESTIONS HAVE THE VALUE SHOWN INSTRUCTIONS: This paper consists

More information

Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion

Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion Department of applied physics, Aalto University March 8, 2016 Hamiltonian versus Newtonian mechanics Newtonian mechanics:

More information

Part VIII. Interaction with Solids

Part VIII. Interaction with Solids I with Part VIII I with Solids 214 / 273 vs. long pulse is I with Traditional i physics (ICF ns lasers): heating and creation of long scale-length plasmas Laser reflected at critical density surface Fast

More information

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015 Multiple Integrals and Vector Calculus (Oxford Physics) Ramin Golestanian Synopsis and Problem Sets; Hilary 215 The outline of the material, which will be covered in 14 lectures, is as follows: 1. Introduction

More information

Fluid equations, magnetohydrodynamics

Fluid equations, magnetohydrodynamics Fluid equations, magnetohydrodynamics Multi-fluid theory Equation of state Single-fluid theory Generalised Ohm s law Magnetic tension and plasma beta Stationarity and equilibria Validity of magnetohydrodynamics

More information

Equilibrium and transport in Tokamaks

Equilibrium and transport in Tokamaks Equilibrium and transport in Tokamaks Jacques Blum Laboratoire J.-A. Dieudonné, Université de Nice Sophia-Antipolis Parc Valrose 06108 Nice Cedex 02, France jblum@unice.fr 08 septembre 2008 Jacques Blum

More information

xkcd.com It IS about physics. It ALL is.

xkcd.com It IS about physics. It ALL is. xkcd.com It IS about physics. It ALL is. Introduction to Space Plasmas The Plasma State What is a plasma? Basic plasma properties: Qualitative & Quantitative Examples of plasmas Single particle motion

More information

Study of Coulomb collisions and magneto-ionic propagation effects on ISR measurements at Jicamarca

Study of Coulomb collisions and magneto-ionic propagation effects on ISR measurements at Jicamarca Study of Coulomb collisions and magneto-ionic propagation effects on ISR measurements at Jicamarca Marco A. Milla Jicamarca Radio Observatory JIREP Program Jicamarca ISR measurements perp. to B Incoherent

More information

Kinetic, Fluid & MHD Theories

Kinetic, Fluid & MHD Theories Lecture 2 Kinetic, Fluid & MHD Theories The Vlasov equations are introduced as a starting point for both kinetic theory and fluid theory in a plasma. The equations of fluid theory are derived by taking

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 23 March 2001 with E. A. Spiegel

More information

Introduction to Vector Calculus (29) SOLVED EXAMPLES. (d) B. C A. (f) a unit vector perpendicular to both B. = ˆ 2k = = 8 = = 8

Introduction to Vector Calculus (29) SOLVED EXAMPLES. (d) B. C A. (f) a unit vector perpendicular to both B. = ˆ 2k = = 8 = = 8 Introduction to Vector Calculus (9) SOLVED EXAMPLES Q. If vector A i ˆ ˆj k, ˆ B i ˆ ˆj, C i ˆ 3j ˆ kˆ (a) A B (e) A B C (g) Solution: (b) A B (c) A. B C (d) B. C A then find (f) a unit vector perpendicular

More information

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University Plasma Astrophysics Chapter 1: Basic Concepts of Plasma Yosuke Mizuno Institute of Astronomy National Tsing-Hua University What is a Plasma? A plasma is a quasi-neutral gas consisting of positive and negative

More information

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018 Quiz 4 (Discussion ession) Phys 1302W.400 pring 2018 This group quiz consists of one problem that, together with the individual problems on Friday, will determine your grade for quiz 4. For the group problem,

More information

Preliminary Examination - Day 1 Thursday, August 9, 2018

Preliminary Examination - Day 1 Thursday, August 9, 2018 UNL - Department of Physics and Astronomy Preliminary Examination - Day Thursday, August 9, 8 This test covers the topics of Thermodynamics and Statistical Mechanics (Topic ) and Quantum Mechanics (Topic

More information

Introduction to Electromagnetic Theory

Introduction to Electromagnetic Theory Introduction to Electromagnetic Theory Lecture topics Laws of magnetism and electricity Meaning of Maxwell s equations Solution of Maxwell s equations Electromagnetic radiation: wave model James Clerk

More information

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2912 PHYSICS 2B (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2912 PHYSICS 2B (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN CC0936 THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 91 PHYSICS B (ADVANCED) SEMESTER, 014 TIME ALLOWED: 3 HOURS ALL QUESTIONS HAVE THE VALUE SHOWN INSTRUCTIONS: This paper consists

More information

Transport coefficients in plasmas spanning weak to strong correlation

Transport coefficients in plasmas spanning weak to strong correlation Transport coefficients in plasmas spanning weak to strong correlation Scott D. Baalrud 1,2 and Jerome Daligault 1 1 Theoretical Division, Los Alamos National Laboratory 2 Department of Physics and Astronomy,

More information

EUF. Joint Entrance Examination for Postgraduate Courses in Physics

EUF. Joint Entrance Examination for Postgraduate Courses in Physics EUF Joint Entrance Examination for Postgraduate Courses in Physics For the second semester of 06 April 06, 06 Part Instructions Do not write your name on the test. It should be identified only by your

More information

Chapter 10. Past exam papers

Chapter 10. Past exam papers Chapter 10 Past exam papers 184 Plasma Physics C17 1993: Final Examination Attempt four questions. All six are of equal value. The best four marks will be considered, but candidates are discouraged from

More information

(a) What is the direction of the magnetic field at point P (i.e., into or out of the page), and why?

(a) What is the direction of the magnetic field at point P (i.e., into or out of the page), and why? Physics 9 Fall 2010 Midterm 2 s For the midterm, you may use one sheet of notes with whatever you want to put on it, front and back Please sit every other seat, and please don t cheat! If something isn

More information

PHYSICS OF HOT DENSE PLASMAS

PHYSICS OF HOT DENSE PLASMAS Chapter 6 PHYSICS OF HOT DENSE PLASMAS 10 26 10 24 Solar Center Electron density (e/cm 3 ) 10 22 10 20 10 18 10 16 10 14 10 12 High pressure arcs Chromosphere Discharge plasmas Solar interior Nd (nω) laserproduced

More information

Mathematical Notes for E&M Gradient, Divergence, and Curl

Mathematical Notes for E&M Gradient, Divergence, and Curl Mathematical Notes for E&M Gradient, Divergence, and Curl In these notes I explain the differential operators gradient, divergence, and curl (also known as rotor), the relations between them, the integral

More information

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main 1 FOUNDATION STUDIES EXAMINATIONS June 2015 PHYSICS Semester One February Main Time allowed 2 hours for writing 10 minutes for reading This paper consists of 6 questions printed on 10 pages. PLEASE CHECK

More information

Magnetic Materials. The inductor Φ B = LI (Q = CV) = L I = N Φ. Power = VI = LI. Energy = Power dt = LIdI = 1 LI 2 = 1 NΦ B capacitor CV 2

Magnetic Materials. The inductor Φ B = LI (Q = CV) = L I = N Φ. Power = VI = LI. Energy = Power dt = LIdI = 1 LI 2 = 1 NΦ B capacitor CV 2 Magnetic Materials The inductor Φ B = LI (Q = CV) Φ B 1 B = L I E = (CGS) t t c t EdS = 1 ( BdS )= 1 Φ V EMF = N Φ B = L I t t c t B c t I V Φ B magnetic flux density V = L (recall I = C for the capacitor)

More information

Fokker-Planck collision operator

Fokker-Planck collision operator DRAFT 1 Fokker-Planck collision operator Felix I. Parra Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK (This version is of 16 April 18) 1. Introduction In these

More information

ELE3310: Basic ElectroMagnetic Theory

ELE3310: Basic ElectroMagnetic Theory A summary for the final examination EE Department The Chinese University of Hong Kong November 2008 Outline Mathematics 1 Mathematics Vectors and products Differential operators Integrals 2 Integral expressions

More information

CHARGED PARTICLE MOTION IN CONSTANT AND UNIFORM ELECTROMAGNETIC FIELDS

CHARGED PARTICLE MOTION IN CONSTANT AND UNIFORM ELECTROMAGNETIC FIELDS CHARGED PARTICLE MOTION IN CONSTANT AND UNIFORM ELECTROMAGNETIC FIELDS In this and in the following two chapters we investigate the motion of charged particles in the presence of electric and magnetic

More information

Multiple Integrals and Vector Calculus: Synopsis

Multiple Integrals and Vector Calculus: Synopsis Multiple Integrals and Vector Calculus: Synopsis Hilary Term 28: 14 lectures. Steve Rawlings. 1. Vectors - recap of basic principles. Things which are (and are not) vectors. Differentiation and integration

More information

Solutions to PS 2 Physics 201

Solutions to PS 2 Physics 201 Solutions to PS Physics 1 1. ke dq E = i (1) r = i = i k eλ = i k eλ = i k eλ k e λ xdx () (x x) (x x )dx (x x ) + x dx () (x x ) x ln + x x + x x (4) x + x ln + x (5) x + x To find the field for x, we

More information

Rate of change of velocity. a=dv/dt. Acceleration is a vector quantity.

Rate of change of velocity. a=dv/dt. Acceleration is a vector quantity. 9.7 CENTRIFUGATION The centrifuge is a widely used instrument in clinical laboratories for the separation of components. Various quantities are used for the description and the calculation of the separation

More information

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3332 Electromagnetic II Chapter 9 Maxwell s Equations Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2013 1 Review Electrostatics and Magnetostatics Electrostatic Fields

More information

Ch 1. Review of classical physics

Ch 1. Review of classical physics Ch 1. Review of classical physics Mechanics Kinetic energy of a particle of mass m moving with velocity v is given by K = ( ½)mv² P = m v is the momentum Then K = P²/2m F = dp/dt Conservation laws are:

More information

Mathematical Concepts & Notation

Mathematical Concepts & Notation Mathematical Concepts & Notation Appendix A: Notation x, δx: a small change in x t : the partial derivative with respect to t holding the other variables fixed d : the time derivative of a quantity that

More information

Lecture notes for ELECTRODYNAMICS.

Lecture notes for ELECTRODYNAMICS. Lecture notes for 640-343 ELECTRODYNAMICS. 1 Summary of Electrostatics 1.1 Coulomb s Law Force between two point charges F 12 = 1 4πɛ 0 Q 1 Q 2ˆr 12 r 1 r 2 2 (1.1.1) 1.2 Electric Field For a charge distribution:

More information

2nd Year Electromagnetism 2012:.Exam Practice

2nd Year Electromagnetism 2012:.Exam Practice 2nd Year Electromagnetism 2012:.Exam Practice These are sample questions of the type of question that will be set in the exam. They haven t been checked the way exam questions are checked so there may

More information

Hamiltonian and Non-Hamiltonian Reductions of Charged Particle Dynamics: Diffusion and Self-Organization

Hamiltonian and Non-Hamiltonian Reductions of Charged Particle Dynamics: Diffusion and Self-Organization NNP2017 11 th July 2017 Lawrence University Hamiltonian and Non-Hamiltonian Reductions of Charged Particle Dynamics: Diffusion and Self-Organization N. Sato and Z. Yoshida Graduate School of Frontier Sciences

More information

EELE 3331 Electromagnetic I Chapter 3. Vector Calculus. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3331 Electromagnetic I Chapter 3. Vector Calculus. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3331 Electromagnetic I Chapter 3 Vector Calculus Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2012 1 Differential Length, Area, and Volume This chapter deals with integration

More information

MCQs E M WAVES. Physics Without Fear.

MCQs E M WAVES. Physics Without Fear. MCQs E M WAVES Physics Without Fear Electromagnetic Waves At A Glance Ampere s law B. dl = μ 0 I relates magnetic fields due to current sources. Maxwell argued that this law is incomplete as it does not

More information

DO NOT BEGIN THIS TEST UNTIL INSTRUCTED TO START

DO NOT BEGIN THIS TEST UNTIL INSTRUCTED TO START Math 265 Student name: KEY Final Exam Fall 23 Instructor & Section: This test is closed book and closed notes. A (graphing) calculator is allowed for this test but cannot also be a communication device

More information

Graduate Written Examination Fall 2014 Part I

Graduate Written Examination Fall 2014 Part I Graduate Written Examination Fall 2014 Part I University of Minnesota School of Physics and Astronomy Aug. 19, 2014 Examination Instructions Part 1 of this exam consists of 10 problems of equal weight.

More information

Candidacy Exam Department of Physics February 6, 2010 Part I

Candidacy Exam Department of Physics February 6, 2010 Part I Candidacy Exam Department of Physics February 6, 2010 Part I Instructions: ˆ The following problems are intended to probe your understanding of basic physical principles. When answering each question,

More information

Kinetic theory of ions in the magnetic presheath

Kinetic theory of ions in the magnetic presheath Kinetic theory of ions in the magnetic presheath Alessandro Geraldini 1,2, Felix I. Parra 1,2, Fulvio Militello 2 1. Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, Oxford

More information

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main

FOUNDATION STUDIES EXAMINATIONS June PHYSICS Semester One February Main 1 FOUNDATION STUDIES EXAMINATIONS June 2013 PHYSICS Semester One February Main Time allowed 2 hours for writing 10 minutes for reading This paper consists of 4 questions printed on 10 pages. PLEASE CHECK

More information

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge. MP204, Important Equations page 1 Below is a list of important equations that we meet in our study of Electromagnetism in the MP204 module. For your exam, you are expected to understand all of these, and

More information

Solid State Physics FREE ELECTRON MODEL. Lecture 17. A.H. Harker. Physics and Astronomy UCL

Solid State Physics FREE ELECTRON MODEL. Lecture 17. A.H. Harker. Physics and Astronomy UCL Solid State Physics FREE ELECTRON MODEL Lecture 17 A.H. Harker Physics and Astronomy UCL Magnetic Effects 6.7 Plasma Oscillations The picture of a free electron gas and a positive charge background offers

More information

Motion of Charged Particles in Fields

Motion of Charged Particles in Fields Chapter Motion of Charged Particles in Fields Plasmas are complicated because motions of electrons and ions are determined by the electric and magnetic fields but also change the fields by the currents

More information

MAGNETOHYDRODYNAMICS

MAGNETOHYDRODYNAMICS Chapter 6 MAGNETOHYDRODYNAMICS 6.1 Introduction Magnetohydrodynamics is a branch of plasma physics dealing with dc or low frequency effects in fully ionized magnetized plasma. In this chapter we will study

More information

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the 1.(8pts) Find F ds where F = x + ye z + ze y, y + xe z + ze x, z and where T is the T surface in the pictures. (The two pictures are two views of the same surface.) The boundary of T is the unit circle

More information

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector /8 Polarization / Wave Vector Assume the following three magnetic fields of homogeneous, plane waves H (t) H A cos (ωt kz) e x H A sin (ωt kz) e y () H 2 (t) H A cos (ωt kz) e x + H A sin (ωt kz) e y (2)

More information

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt Jim Lambers MAT 28 ummer emester 212-1 Practice Final Exam olution 1. Evaluate the line integral xy dx + e y dy + xz dz, where is given by r(t) t 4, t 2, t, t 1. olution From r (t) 4t, 2t, t 2, we obtain

More information

Graduate Written Examination Spring 2014 Part I Thursday, January 16th, :00am to 1:00pm

Graduate Written Examination Spring 2014 Part I Thursday, January 16th, :00am to 1:00pm Graduate Written Examination Spring 2014 Part I Thursday, January 16th, 2014 9:00am to 1:00pm University of Minnesota School of Physics and Astronomy Examination Instructions Part 1 of this exam consists

More information

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/ Physics GRE: Electromagnetism G. J. Loges University of Rochester Dept. of Physics & stronomy xkcd.com/567/ c Gregory Loges, 206 Contents Electrostatics 2 Magnetostatics 2 3 Method of Images 3 4 Lorentz

More information

Integration is the reverse of the process of differentiation. In the usual notation. k dx = kx + c. kx dx = 1 2 kx2 + c.

Integration is the reverse of the process of differentiation. In the usual notation. k dx = kx + c. kx dx = 1 2 kx2 + c. PHYS122 - Electricity and Magnetism Integration Reminder Integration is the reverse of the process of differentiation. In the usual notation f (x)dx = f(x) + constant The derivative of the RHS gives you

More information

Ideal Magnetohydrodynamics (MHD)

Ideal Magnetohydrodynamics (MHD) Ideal Magnetohydrodynamics (MHD) Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 1, 2016 These lecture notes are largely based on Lectures in Magnetohydrodynamics

More information

Physics 208, Spring 2016 Exam #3

Physics 208, Spring 2016 Exam #3 Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You

More information

Number of pages in the question paper : 05 Number of questions in the question paper : 48 Modeling Transport Phenomena of Micro-particles Note: Follow the notations used in the lectures. Symbols have their

More information

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction) Kinematics (special case) a = constant 1D motion 2D projectile Uniform circular Dynamics gravity, tension, elastic, normal, friction Motion with a = constant Newton s Laws F = m a F 12 = F 21 Time & Position

More information

Resistive MHD, reconnection and resistive tearing modes

Resistive MHD, reconnection and resistive tearing modes DRAFT 1 Resistive MHD, reconnection and resistive tearing modes Felix I. Parra Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK (This version is of 6 May 18 1. Introduction

More information

Basic concepts in Magnetism; Units

Basic concepts in Magnetism; Units Basic concepts in Magnetism; Units J. M. D. Coey School of Physics and CRANN, Trinity College Dublin Ireland. 1. SI Units 2. cgs units 3. Conversions 4. Dimensions Comments and corrections please: jcoey@tcd.ie

More information

Heating and current drive: Radio Frequency

Heating and current drive: Radio Frequency Heating and current drive: Radio Frequency Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 13 th February 2012 Dr Ben Dudson Magnetic Confinement Fusion (1 of 26)

More information

Qualifying Exam for Ph.D. Candidacy Department of Physics October 11, 2014 Part I

Qualifying Exam for Ph.D. Candidacy Department of Physics October 11, 2014 Part I Qualifying Exam for Ph.D. Candidacy Department of Physics October 11, 214 Part I Instructions: The following problems are intended to probe your understanding of basic physical principles. When answering

More information

Vector field and Inductance. P.Ravindran, PHY041: Electricity & Magnetism 19 February 2013: Vector Field, Inductance.

Vector field and Inductance. P.Ravindran, PHY041: Electricity & Magnetism 19 February 2013: Vector Field, Inductance. Vector field and Inductance Earth s Magnetic Field Earth s field looks similar to what we d expect if 11.5 there were a giant bar magnet imbedded inside it, but the dipole axis of this magnet is offset

More information

Relativistic magnetohydrodynamics. Abstract

Relativistic magnetohydrodynamics. Abstract Relativistic magnetohydrodynamics R. D. Hazeltine and S. M. Mahajan Institute for Fusion Studies, The University of Texas, Austin, Texas 78712 (October 19, 2000) Abstract The lowest-order description of

More information

Electrostatics. Chapter Maxwell s Equations

Electrostatics. Chapter Maxwell s Equations Chapter 1 Electrostatics 1.1 Maxwell s Equations Electromagnetic behavior can be described using a set of four fundamental relations known as Maxwell s Equations. Note that these equations are observed,

More information

Solution Set Eight. 1 Problem #1: Toroidal Electromagnet with Gap Problem #4: Self-Inductance of a Long Solenoid. 9

Solution Set Eight. 1 Problem #1: Toroidal Electromagnet with Gap Problem #4: Self-Inductance of a Long Solenoid. 9 : Solution Set Eight Northwestern University, Electrodynamics I Wednesday, March 9, 6 Contents Problem #: Toroidal Electromagnet with Gap. Problem #: Electromagnetic Momentum. 3 3 Problem #3: Type I Superconductor.

More information

MATHEMATICAL PRELIMINARIES

MATHEMATICAL PRELIMINARIES CHAPTER 1 MATHEMATICAL PRELIMINARIES Treatment of electrokinetic transport phenomena requires understanding of fluid mechanics, colloidal phenomena, and the interaction of charged particles, surfaces,

More information

Preliminary Examination - Day 2 May 16, 2014

Preliminary Examination - Day 2 May 16, 2014 UNL - Department of Physics and Astronomy Preliminary Examination - Day May 6, 04 This test covers the topics of Thermodynamics and Statistical Mechanics (Topic ) and Mechanics (Topic ) Each topic has

More information

Relevant Electrostatics and Magnetostatics (Old and New)

Relevant Electrostatics and Magnetostatics (Old and New) Unit 1 Relevant Electrostatics and Magnetostatics (Old and New) The whole of classical electrodynamics is encompassed by a set of coupled partial differential equations (at least in one form) bearing the

More information

Chapter 27 Sources of Magnetic Field

Chapter 27 Sources of Magnetic Field Chapter 27 Sources of Magnetic Field In this chapter we investigate the sources of magnetic of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents). Ampere s Law

More information

Where k = 1. The electric field produced by a point charge is given by

Where k = 1. The electric field produced by a point charge is given by Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

More information

lim = F F = F x x + F y y + F z

lim = F F = F x x + F y y + F z Physics 361 Summary of Results from Lecture Physics 361 Derivatives of Scalar and Vector Fields The gradient of a scalar field f( r) is given by g = f. coordinates f g = ê x x + ê f y y + ê f z z Expressed

More information

COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969

COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969 COMMONWEALTH OF AUSTRALIA Copyright Regulations 1969 Warning - Do not remove this notice This material has been reproduced and communicated to you by or on behalf of the University of New South Wales pursuant

More information

MHD Linear Stability Analysis Using a Full Wave Code

MHD Linear Stability Analysis Using a Full Wave Code US-Japan JIFT Workshop on Progress of Extended MHD Models NIFS, Toki,Japan 2007/03/27 MHD Linear Stability Analysis Using a Full Wave Code T. Akutsu and A. Fukuyama Department of Nuclear Engineering, Kyoto

More information

Charged particle motion in external fields

Charged particle motion in external fields Chapter 2 Charged particle motion in external fields A (fully ionized) plasma contains a very large number of particles. In general, their motion can only be studied statistically, taking appropriate averages.

More information

Preliminary Examination - Day 2 August 15, 2014

Preliminary Examination - Day 2 August 15, 2014 UNL - Department of Physics and Astronomy Preliminary Examination - Day 2 August 15, 2014 This test covers the topics of Thermodynamics and Statistical Mechanics (Topic 1) and Mechanics (Topic 2). Each

More information

8. (6) Consider the circuit here with resistors R A, R B and R C. Rank the

8. (6) Consider the circuit here with resistors R A, R B and R C. Rank the General Physics II Exam 2 - Chs. 18B 21 - Circuits, Magnetism, EM Induction - Oct. 3, 2013 Name Rec. Instr. Rec. Time For full credit, make your work clear. Show formulas used, essential steps, and results

More information

Advanced Placement. Chemistry. Integrated Rates

Advanced Placement. Chemistry. Integrated Rates Advanced Placement Chemistry Integrated Rates 204 47.90 9.22 78.49 (26) 50.94 92.9 80.95 (262) 52.00 93.94 83.85 (263) 54.938 (98) 86.2 (262) 55.85 0. 90.2 (265) 58.93 02.9 92.2 (266) H Li Na K Rb Cs Fr

More information

Appendix 1: List of symbols

Appendix 1: List of symbols Appendix 1: List of symbols Symbol Description MKS Units a Acceleration m/s 2 a 0 Bohr radius m A Area m 2 A* Richardson constant m/s A C Collector area m 2 A E Emitter area m 2 b Bimolecular recombination

More information

Simple examples of MHD equilibria

Simple examples of MHD equilibria Department of Physics Seminar. grade: Nuclear engineering Simple examples of MHD equilibria Author: Ingrid Vavtar Mentor: prof. ddr. Tomaž Gyergyek Ljubljana, 017 Summary: In this seminar paper I will

More information

FLUID MODELS OF MAGNETIZED PLASMAS or BEYOND MHD or PLASMA PHYSICS IN 100 MINUTES!

FLUID MODELS OF MAGNETIZED PLASMAS or BEYOND MHD or PLASMA PHYSICS IN 100 MINUTES! FLUID MODELS OF MAGNETIZED PLASMAS or BEYOND MHD or PLASMA PHYSICS IN 100 MINUTES! Dalton D. Schnack April 18, 2006 1 Introduction You are now all experts in MHD. As you know, ideal MHD describes the dynamics

More information

Macroscopic plasma description

Macroscopic plasma description Macroscopic plasma description Macroscopic plasma theories are fluid theories at different levels single fluid (magnetohydrodynamics MHD) two-fluid (multifluid, separate equations for electron and ion

More information

FOUNDATION STUDIES EXAMINATIONS November PHYSICS Semester Two February Main

FOUNDATION STUDIES EXAMINATIONS November PHYSICS Semester Two February Main FOUNDATION STUDIES EXAMINATIONS November 203 PHYSICS Semester Two February Main Time allowed 2 hours for writing 0 minutes for reading This paper consists of 5 questions printed on 0 pages. PLEASE CHECK

More information

Physics Will Farmer. May 5, Physics 1120 Contents 2

Physics Will Farmer. May 5, Physics 1120 Contents 2 Physics 1120 Will Farmer May 5, 2013 Contents Physics 1120 Contents 2 1 Charges 3 1.1 Terms................................................... 3 1.2 Electric Charge..............................................

More information

Figure 1.1: Ionization and Recombination

Figure 1.1: Ionization and Recombination Chapter 1 Introduction 1.1 What is a Plasma? 1.1.1 An ionized gas A plasma is a gas in which an important fraction of the atoms is ionized, so that the electrons and ions are separately free. When does

More information

Magnetic Materials. 1. Magnetization 2. Potential and field of a magnetized object

Magnetic Materials. 1. Magnetization 2. Potential and field of a magnetized object Magnetic Materials 1. Magnetization 2. Potential and field of a magnetized object 3. H-field 4. Susceptibility and permeability 5. Boundary conditions 6. Magnetic field energy and magnetic pressure 1 Magnetic

More information

FOUNDATION STUDIES EXAMINATIONS September 2009

FOUNDATION STUDIES EXAMINATIONS September 2009 1 FOUNDATION STUDIES EXAINATIONS September 2009 PHYSICS First Paper July Fast Track Time allowed 1.5 hour for writing 10 minutes for reading This paper consists of 4 questions printed on 7 pages. PLEASE

More information