# Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion

Save this PDF as:

Size: px
Start display at page:

Download "Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion"

## Transcription

1 Lectures on basic plasma physics: Hamiltonian mechanics of charged particle motion Department of applied physics, Aalto University March 8, 2016

2 Hamiltonian versus Newtonian mechanics Newtonian mechanics: Time evolution is obtained from Newton s second law, the time-evolutions of both position and velocity are computed from the force balance: F = ma = q(e + v B) (1) Hamiltonian mechanics: Time evolution is obtained by computing the Hamiltonian of the system H(P, x, t) in the generalized momentum P and coordinate x and inserting it in the Hamiltonian equations: P = H x, ẋ = H P. (2) Hamiltonian mechanics is particular usefull when the system has more degrees of freedom.

3 Poincare Invariant In periodic motions the action integral I = P dx taken over a period is a constant of motion. Lecture assignment: Prove the Poincare invariant, i.e., show that di dt = 0

4 Poincare Invariant In periodic motions the action integral I = P dx taken over a period is a constant of motion. Lecture assignment: Prove the Poincare invariant, i.e., show that di dt = 0 Solution: di dt = = ( p x t ( H p s + p t p s + H x ) x s x s ( ds = p x s t + p t ) dh ds = ds ds = 0 ) x ds s

5 Adiabatic invariant Adiabatic invariants are first order approximations of the Poincare invariant : If a slow change is made to the system, so that the system is not quite periodic, and the constant of motion does not change it is called a adiabatic invariant. Adiabatic invariances play an important role in plasma physics as they allow us to obtain simple answers in many instances involving complicate motions. There are three adiabatic invariants, each corresponding to a different type of periodic motion in the plasma.

6 The first adiabatic invariant: Magnetic moment Periodic motion: Larmor gyration Guiding-centre frame-of-ref, Gyroangle θ = Ωt, velocity v = u(θ), position r = ρ(θ), momentum P = mv + qa, equation of motion dr dt = v Thus dr = u Ωdθ and expansion of A around R gives I = u [mu + q (ρ ) A] dθ + O(ɛ) Ω = 2πm u2 Ω + 2π q u (ρ )A + O(ɛ) Ω = πm u2 Ω + O(ɛ) = 2π m q µ + O(ɛ) (3) and µ = mu2 2B, the magnetic moment, is an adiabatic invariant

7 Bounce motion and µ Guiding-centre energy in the magnetic field E = 1 2 mv2 + µb Movement towards stronger magnetic field eventually reduces v to zero Reversion of the movement, or bounce point Magnetic mirror was one the first ideas to confine hot plasma

8 Loss cone in a mirror machine Lecture assignment: derive the velocity space condition for the particle trapping in a mirror machine

9 Loss cone in a mirror machine Lecture assignment: derive the velocity space condition for the particle trapping in a mirror machine Solution: E = 1 2 mv mv2 v2 v 2 = E µb 1 (4) for trapped particles E = µb mirror < µb max and the magnetic field B > B min v2 v 2 < B max B min 1 (5)

10 Loss cone in a mirror machine

11 Second adiabatic invariant: Longitudinal particle trapping J = m The guiding-centre trajectory is approximately closed adiabatic invariant is P ds ds is the arc-length along the field line v ds + q (A ˆb)ds = m v ds the contribution from the potential is zero, because no flux through the integration loop Van Allen radiation belts because of invariance of J.

12 Third adiabatic invariant The bounce center of the bounce motion between mirror points drifts in ϕ direction (grad-b and curvature) In mirror machine the configuration is cylindrically symmetric and drift orbit for the bounce center closes a loop J = P ϕ rdϕ = m v ϕ rdϕ + q A ϕ rdϕ = qφ

13 The three types of periodic motion

14 Guiding-centre Lagrangian Charged particle lagrangian L and Hamiltonian H L =(qa + mẋ) ẋ H, (6) H = 1 2 mẋ2 + qφ. (7) Guiding-centre lagrangian and Hamiltonian are derived with Lie perturbation theory. A first order theory gives L gc =(qa + mv ˆb) Ẋ + mµ e ζ H gc, (8) H gc = 1 2 mv2 + µb + qφ (9) with phase-space (X, v, µ, ζ) instead of (x, ẋ)

15 Equations of motion Minimization of the Lagrangian action integral L(q, q, t)dt leads to Euler equations: d L dt q = L q (10) One equation for each phase-space coordinate For a particle this will give the Lorentz force equation (Exercise).

16 Summary Single particle motion: In space and Magnetic fusion, the particle path is governed by the magnetic field The fast gyrating motion can be averaged to reveal guiding-center motion. Collisions can be interpreted as transformations from one orbit to another Adiabatic invariants Help to categorize different time scales in the particle motion Make it possible to develop (Hamiltonian) theories for, e.g, guiding-center dynamics and bounce-center dynamics. These theories are out of the scope of this course.

### Single Particle Motion

Single Particle Motion C ontents Uniform E and B E = - guiding centers Definition of guiding center E gravitation Non Uniform B 'grad B' drift, B B Curvature drift Grad -B drift, B B invariance of µ. Magnetic

### Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Benjamin Hornberger 1/26/1 Phy 55, Classical Electrodynamics, Prof. Goldhaber Lecture notes from Oct. 26, 21 Lecture held by Prof. Weisberger

### cos 6 λ m sin 2 λ m Mirror Point latitude Equatorial Pitch Angle Figure 5.1: Mirror point latitude as function of equatorial pitch angle.

Chapter 5 The Inner Magnetosphere 5.1 Trapped Particles The motion of trapped particles in the inner magnetosphere is a combination of gyro motion, bounce motion, and gradient and curvature drifts. In

### CHARGED PARTICLE MOTION IN CONSTANT AND UNIFORM ELECTROMAGNETIC FIELDS

CHARGED PARTICLE MOTION IN CONSTANT AND UNIFORM ELECTROMAGNETIC FIELDS In this and in the following two chapters we investigate the motion of charged particles in the presence of electric and magnetic

### Toroidal confinement devices

Toroidal confinement devices Dr Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 24 th January 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 20) Last time... Power

### The Particle-Field Hamiltonian

The Particle-Field Hamiltonian For a fundamental understanding of the interaction of a particle with the electromagnetic field we need to know the total energy of the system consisting of particle and

### Geometric Gyrokinetic Theory and its Applications to Large-Scale Simulations of Magnetized Plasmas

Geometric Gyrokinetic Theory and its Applications to Large-Scale Simulations of Magnetized Plasmas Hong Qin Princeton Plasma Physics Laboratory, Princeton University CEA-EDF-INRIA School -- Numerical models

### Space Physics. An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres. May-Britt Kallenrode. Springer

May-Britt Kallenrode Space Physics An Introduction to Plasmas and Particles in the Heliosphere and Magnetospheres With 170 Figures, 9 Tables, Numerous Exercises and Problems Springer Contents 1. Introduction

### Curves in the configuration space Q or in the velocity phase space Ω satisfying the Euler-Lagrange (EL) equations,

Physics 6010, Fall 2010 Hamiltonian Formalism: Hamilton s equations. Conservation laws. Reduction. Poisson Brackets. Relevant Sections in Text: 8.1 8.3, 9.5 The Hamiltonian Formalism We now return to formal

### M2A2 Problem Sheet 3 - Hamiltonian Mechanics

MA Problem Sheet 3 - Hamiltonian Mechanics. The particle in a cone. A particle slides under gravity, inside a smooth circular cone with a vertical axis, z = k x + y. Write down its Lagrangian in a) Cartesian,

### Modelling of Frequency Sweeping with the HAGIS code

Modelling of Frequency Sweeping with the HAGIS code S.D.Pinches 1 H.L.Berk 2, S.E.Sharapov 3, M.Gryaznavich 3 1 Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Garching, Germany 2 Institute

### PROBLEM SET. Heliophysics Summer School. July, 2013

PROBLEM SET Heliophysics Summer School July, 2013 Problem Set for Shocks and Particle Acceleration There is probably only time to attempt one or two of these questions. In the tutorial session discussion

### 2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasma physics Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas Transverse waves

### Lagrangian and Hamiltonian Mechanics (Symon Chapter Nine)

Lagrangian and Hamiltonian Mechanics (Symon Chapter Nine Physics A301 Spring 2005 Contents 1 Lagrangian Mechanics 3 1.1 Derivation of the Lagrange Equations...................... 3 1.1.1 Newton s Second

Numerical Models for NNP Confinement Dr. Martin Droba Darmstadt 11.2.2008 Contents l NNP (Non-neutral Plasma) l Motivation l High current ring l Codes l Diocotron Instabillity and Diagnostic l Toroidal

### Relativistic Dynamics

Chapter 4 Relativistic Dynamics The most important example of a relativistic particle moving in a potential is a charged particle, say an electron, moving in an electromagnetic field, which might be that

### F1.9AB2 1. r 2 θ2 + sin 2 α. and. p θ = mr 2 θ. p2 θ. (d) In light of the information in part (c) above, we can express the Hamiltonian in the form

F1.9AB2 1 Question 1 (20 Marks) A cone of semi-angle α has its axis vertical and vertex downwards, as in Figure 1 (overleaf). A point mass m slides without friction on the inside of the cone under the

### Physics 11b Lecture #10

Physics 11b Lecture #10 Magnetic Fields S&J Chapter 29 What We Did Last Time Electromotive forces (emfs) atteries are made of an emf and an internal resistance Resistor arithmetic R = R + R + R + + R series

### Orbital Motion in Schwarzschild Geometry

Physics 4 Lecture 29 Orbital Motion in Schwarzschild Geometry Lecture 29 Physics 4 Classical Mechanics II November 9th, 2007 We have seen, through the study of the weak field solutions of Einstein s equation

### Lecture Notes for PHY 405 Classical Mechanics

Lecture Notes for PHY 405 Classical Mechanics From Thorton & Marion s Classical Mechanics Prepared by Dr. Joseph M. Hahn Saint Mary s University Department of Astronomy & Physics September 1, 2005 Chapter

### = 0. = q i., q i = E

Summary of the Above Newton s second law: d 2 r dt 2 = Φ( r) Complicated vector arithmetic & coordinate system dependence Lagrangian Formalism: L q i d dt ( L q i ) = 0 n second-order differential equations

### Rotational & Rigid-Body Mechanics. Lectures 3+4

Rotational & Rigid-Body Mechanics Lectures 3+4 Rotational Motion So far: point objects moving through a trajectory. Next: moving actual dimensional objects and rotating them. 2 Circular Motion - Definitions

### Physical Processes in Astrophysics

Physical Processes in Astrophysics Huirong Yan Uni Potsdam & Desy Email: hyan@mail.desy.de 1 Reference Books: Plasma Physics for Astrophysics, Russell M. Kulsrud (2005) The Physics of Astrophysics, Frank

### The Correct Derivation of Magnetism from Electrostatics Based on Covariant Formulation of Coulomb's Law

The Correct Derivation of Magnetism from Electrostatics Based on Covariant Formulation of Coulomb's Law Mueiz Gafer KamalEldeen An Independent Researcher mueizphysics@gmail.com Abstract It is shown, by

### Relativistic Mechanics

Physics 411 Lecture 9 Relativistic Mechanics Lecture 9 Physics 411 Classical Mechanics II September 17th, 2007 We have developed some tensor language to describe familiar physics we reviewed orbital motion

### Physics 5153 Classical Mechanics. Canonical Transformations-1

1 Introduction Physics 5153 Classical Mechanics Canonical Transformations The choice of generalized coordinates used to describe a physical system is completely arbitrary, but the Lagrangian is invariant

### The Principle of Least Action

The Principle of Least Action In their never-ending search for general principles, from which various laws of Physics could be derived, physicists, and most notably theoretical physicists, have often made

### 221A Lecture Notes Electromagnetic Couplings

221A Lecture Notes Electromagnetic Couplings 1 Classical Mechanics The coupling of the electromagnetic field with a charged point particle of charge e is given by a term in the action (MKSA system) S int

### Suggested solutions, FYS 500 Classical Mechanics and Field Theory 2015 fall

UNIVERSITETET I STAVANGER Institutt for matematikk og naturvitenskap Suggested solutions, FYS 500 Classical Mecanics and Field Teory 015 fall Set 1 for 16/17. November 015 Problem 68: Te Lagrangian for

### Magnetic Fields. or I in the filed. ! F = q! E. ! F = q! v! B. q! v. Charge q as source. Current I as source. Gauss s Law. Ampere s Law.

Magnetic Fields Charge q as source Gauss s Law Electric field E F = q E Faraday s Law Ampere-Maxwell Law Current I as source Magnetic field B Ampere s Law F = q v B Force on q in the field Force on q v

### Lecture 9 - Rotational Dynamics

Lecture 9 - Rotational Dynamics A Puzzle... Angular momentum is a 3D vector, and changing its direction produces a torque τ = dl. An important application in our daily lives is that bicycles don t fall

### Stellarators. Dr Ben Dudson. 6 th February Department of Physics, University of York Heslington, York YO10 5DD, UK

Stellarators Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 6 th February 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 23) Previously... Toroidal devices

### The central force problem

1 The central force problem Moment. Das Moment des Eindrucks, den ein Mann auf das gemeine Volk macht, ist ein Produkt aus dem Wert des Rocks in den Titel. Georg Christoph Lichtenberg We start by dealing

### 4.1 Important Notes on Notation

Chapter 4. Lagrangian Dynamics (Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7) 4.1 Important Notes on Notation In this chapter, unless otherwise stated, the

### Various lecture notes for

Various lecture notes for 18311. R. R. Rosales (MIT, Math. Dept., 2-337) April 12, 2013 Abstract Notes, both complete and/or incomplete, for MIT s 18.311 (Principles of Applied Mathematics). These notes

### Classical Field Theory

April 13, 2010 Field Theory : Introduction A classical field theory is a physical theory that describes the study of how one or more physical fields interact with matter. The word classical is used in

### BACKGROUND IN SYMPLECTIC GEOMETRY

BACKGROUND IN SYMPLECTIC GEOMETRY NILAY KUMAR Today I want to introduce some of the symplectic structure underlying classical mechanics. The key idea is actually quite old and in its various formulations

### Models for Global Plasma Dynamics

Models for Global Plasma Dynamics F.L. Waelbroeck Institute for Fusion Studies, The University of Texas at Austin International ITER Summer School June 2010 Outline 1 Models for Long-Wavelength Plasma

### Lectures on basic plasma physics: Kinetic approach

Lectures on basic plasma physics: Kinetic approach Department of applied physics, Aalto University April 30, 2014 Motivation Layout 1 Motivation 2 Boltzmann equation (a nasty bastard) 3 Vlasov equation

### 28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod)

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) θ + ω 2 sin θ = 0. Indicate the stable equilibrium points as well as the unstable equilibrium points.

### Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Part 3 3.4 Differential Algebraic Systems 3.5 Integration of Differential Equations 1 Outline 3.4 Differential Algebraic Systems 3.4.1 Constrained Dynamics 3.4.2 First and Second

### G : Statistical Mechanics

G25.2651: Statistical Mechanics Notes for Lecture 1 Defining statistical mechanics: Statistical Mechanics provies the connection between microscopic motion of individual atoms of matter and macroscopically

### Transformations. 1 The Lorentz Transformation. 2 Velocity Transformation

Transformations 1 The Lorentz Transformation In the last lecture we obtained the relativistic transformations for space/time between inertial frames. These transformations follow mainly from the postulate

### Faraday Transport in a Curved Space-Time

Commun. math. Phys. 38, 103 110 (1974) by Springer-Verlag 1974 Faraday Transport in a Curved Space-Time J. Madore Laboratoire de Physique Theorique, Institut Henri Poincare, Paris, France Received October

### Gravitational waves from compact objects inspiralling into massive black holes

Gravitational waves from compact objects inspiralling into massive black holes Éanna Flanagan, Cornell University American Physical Society Meeting Tampa, Florida, 16 April 2005 Outline Extreme mass-ratio

### Physics 2514 Lecture 26

Physics 2514 Lecture 26 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/12 Review We have defined the following using Newton s second law of motion ( F net = d p

### Controlling chaotic transport in Hamiltonian systems

Controlling chaotic transport in Hamiltonian systems Guido Ciraolo Facoltà di Ingegneria, Università di Firenze via S. Marta, I-50129 Firenze, Italy Cristel Chandre, Ricardo Lima, Michel Vittot CPT-CNRS,

### qb 3 B ( B) r 3 e r = 3 B r e r B = B/ r e r = 3 B ER 3 E r 4

Magnetospheric Physics - Homework solution, /8/14 18 Gradient and curvature drift (a) A single proton has a parallel and perpendicular energy of 1 kev. Compute (B B) /B 3 and determine the instantaneous

### particle p = m v F ext = d P = M d v cm dt

Lecture 11: Momentum and Collisions; Introduction to Rotation 1 REVIEW: (Chapter 8) LINEAR MOMENTUM and COLLISIONS The first new physical quantity introduced in Chapter 8 is Linear Momentum Linear Momentum

### 7. The gyroscope. 7.1 Introduction. 7.2 Theory. a) The gyroscope

K 7. The gyroscope 7.1 Introduction This experiment concerns a special type of motion of a gyroscope, called precession. From the angular frequency of the precession, the moment of inertia of the spinning

### Control of chaos in Hamiltonian systems

Control of chaos in Hamiltonian systems G. Ciraolo, C. Chandre, R. Lima, M. Vittot Centre de Physique Théorique CNRS, Marseille M. Pettini Osservatorio Astrofisico di Arcetri, Università di Firenze Ph.

### Lorentz Transformations

Lorentz Transformations 1 The Lorentz Transformation In the last lecture the relativistic transformations for space/time between inertial frames was obtained. These transformations esentially follow from

### Phys 7221 Homework # 8

Phys 71 Homework # 8 Gabriela González November 15, 6 Derivation 5-6: Torque free symmetric top In a torque free, symmetric top, with I x = I y = I, the angular velocity vector ω in body coordinates with

### Lecture Notes on Classical Mechanics for Physics 106ab. Sunil Golwala. Revision Date: January 15, 2007

Lecture Notes on Classical Mechanics for Physics 106ab Sunil Golwala Revision Date: January 15, 007 Introduction These notes were written during the Fall, 004, and Winter, 005, terms. They are indeed lecture

### Dynamics of Relativistic Particles and EM Fields

October 7, 2008 1 1 J.D.Jackson, Classical Electrodynamics, 3rd Edition, Chapter 12 Lagrangian Hamiltonian for a Relativistic Charged Particle The equations of motion [ d p dt = e E + u ] c B de dt = e

### Appendix C: Magnetic Coordinate Definitions and Nomenclature

Appendix C: Magnetic Coordinate Definitions and Nomenclature This appendix presents definitions of various magnetic coordinates. The intent is not only to collect the definitions in one place, but also

### Fundamentals of Plasma Physics

Fundamentals of Plasma Physics Definition of Plasma: A gas with an ionized fraction (n i + + e ). Depending on density, E and B fields, there can be many regimes. Collisions and the Mean Free Path (mfp)

### Theory of Electromagnetic Fields

Theory of Electromagnetic Fields Andrzej Wolski University of Liverpool, and the Cockcroft Institute, UK Abstract We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to

### Accelerated Observers

Accelerated Observers In the last few lectures, we ve been discussing the implications that the postulates of special relativity have on the physics of our universe. We ve seen how to compute proper times

### Ideal Magnetohydrodynamics (MHD)

Ideal Magnetohydrodynamics (MHD) Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 1, 2016 These lecture notes are largely based on Lectures in Magnetohydrodynamics

### Classical Electrodynamics

Classical Electrodynamics Third Edition John David Jackson Professor Emeritus of Physics, University of California, Berkeley JOHN WILEY & SONS, INC. Contents Introduction and Survey 1 I.1 Maxwell Equations

### Equations of Motion of Systems with Internal Angular Momentum -II

Equations of Motion of ystems with Internal Angular Momentum -II Manuel M. Dorado Dorado CCiRTA, ENITA, L..A., Pol. Ind. Miguel TresYuste, Cantos12, Oeste, 28037 s/n Madrid, pain Abstract Using the Euler

### List of Comprehensive Exams Topics

List of Comprehensive Exams Topics Mechanics 1. Basic Mechanics Newton s laws and conservation laws, the virial theorem 2. The Lagrangian and Hamiltonian Formalism The Lagrange formalism and the principle

### Magnetic Materials. The inductor Φ B = LI (Q = CV) = L I = N Φ. Power = VI = LI. Energy = Power dt = LIdI = 1 LI 2 = 1 NΦ B capacitor CV 2

Magnetic Materials The inductor Φ B = LI (Q = CV) Φ B 1 B = L I E = (CGS) t t c t EdS = 1 ( BdS )= 1 Φ V EMF = N Φ B = L I t t c t B c t I V Φ B magnetic flux density V = L (recall I = C for the capacitor)

### Conservation of Angular Momentum

Physics 101 Section 3 March 3 rd : Ch. 10 Announcements: Monday s Review Posted (in Plummer s section (4) Today start Ch. 10. Next Quiz will be next week Test# (Ch. 7-9) will be at 6 PM, March 3, Lockett-6

### Space Charge Mi-ga-on

Space Charge Mi-ga-on Massimo.Ferrario@LNF.INFN.IT Hamburg June nd 016 OUTLINE The rms emicance concept rms envelope equa-on Space charge forces Space charge induced emicance oscilla-ons Matching condi-ons

### Dynamics of beams. Modes and waves. D. Clouteau. September 16, Department of Mechanical and Civil Engineering Ecole Centrale Paris, France

Dynamics of and waves Department of Mechanical and Civil Engineering Ecole Centrale Paris, France September 16, 2008 Outline 1 2 Pre-stressed Bernoulli-Euler in moving frames Kinematical assumption Resultant

### General Relativity and Cosmology. The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang

General Relativity and Cosmology The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang The End of Absolute Space (AS) Special Relativity (SR) abolished AS only for the special

### 1. Griffiths Suppose two spin-1/2 particles are known to be in the singlet configuration.

Physics 443 HW #7 Due March 12, 2008 1. Griffiths 4.50. Suppose two spin-1/2 particles are known to be in the singlet configuration. ( 00 = 1 2 ( + 1 2 1 2 1 2 +1 2 ) Let S a (1) be the component of the

### An introduction to Birkhoff normal form

An introduction to Birkhoff normal form Dario Bambusi Dipartimento di Matematica, Universitá di Milano via Saldini 50, 0133 Milano (Italy) 19.11.14 1 Introduction The aim of this note is to present an

### SOLAR MHD Lecture 2 Plan

SOLAR MHD Lecture Plan Magnetostatic Equilibrium ü Structure of Magnetic Flux Tubes ü Force-free fields Waves in a homogenous magnetized medium ü Linearized wave equation ü Alfvén wave ü Magnetoacoustic

### L(q, q) = m 2 q2 V (q) 2 m + V (q)

Lecture 7 Phase Space, Part 1 MATH-GA 71.1 Mechanics 1 Phase portraits 1.1 One dimensional system Consider the generic one dimensional case of a point mass m described by a generalized coordinate q and

### Penning Traps. Contents. Plasma Physics Penning Traps AJW August 16, Introduction. Clasical picture. Radiation Damping.

Penning Traps Contents Introduction Clasical picture Radiation Damping Number density B and E fields used to increase time that an electron remains within a discharge: Penning, 936. Can now trap a particle

### where the index 2 indicates the particle species (electrons and different ion species if present). With

hapter 3 Magnetohydrodynamics luid equations are probably the most widely used equations for the description of inhomogeneous plasmas. While the phase fluid which is governed by the Boltzmann equation

### SPECIAL RELATIVITY AND ELECTROMAGNETISM

SPECIAL RELATIVITY AND ELECTROMAGNETISM MATH 460, SECTION 500 The following problems (composed by Professor P.B. Yasskin) will lead you through the construction of the theory of electromagnetism in special

### L. Wang, SLAC. Thanks Joseph Calvey, Gerry Dugan, Bob Macek, Mark Palmer, Mauro Pivi for helpful discussions and providing valuable data

Trapping of Electron Cloud in CESRTA/ILC Quadrupole and Sextupole Magnets L. Wang, SLAC Ecloud 1 Cornell, Otc 8-1, 1 Acknowledgements Thanks Joseph Calvey, Gerry Dugan, Bob Macek, Mark Palmer, Mauro Pivi

### Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.-J. Zheng Institute for Fusion Studies University of Texas at Austin 12th US-EU Transport Task Force Annual

### Averaging II: Adiabatic Invariance for Integrable Systems (argued via the Averaging Principle)

Averaging II: Adiabatic Invariance for Integrable Systems (argued via the Averaging Principle In classical mechanics an adiabatic invariant is defined as follows[1]. Consider the Hamiltonian system with

### Energy and Forces in DFT

Energy and Forces in DFT Total Energy as a function of nuclear positions {R} E tot ({R}) = E DF T ({R}) + E II ({R}) (1) where E DF T ({R}) = DFT energy calculated for the ground-state density charge-density

### arxiv:physics/ v1 [physics.class-ph] 3 Apr 2000

Dirac monopole with Feynman brackets Alain Bérard arxiv:physics/0004008v1 [physicsclass-ph] 3 Apr 2000 LPLI-Institut de Physique, 1 blvd DArago, F-57070 Metz, France Y Grandati LPLI-Institut de Physique,

### Symmetries 2 - Rotations in Space

Symmetries 2 - Rotations in Space This symmetry is about the isotropy of space, i.e. space is the same in all orientations. Thus, if we continuously rotated an entire system in space, we expect the system

### February 18, In the parallel RLC circuit shown, R = Ω, L = mh and C = µf. The source has V 0. = 20.0 V and f = Hz.

Physics Qualifying Examination Part I 7- Minute Questions February 18, 2012 1. In the parallel RLC circuit shown, R = 800.0 Ω, L = 160.0 mh and C = 0.0600 µf. The source has V 0 = 20.0 V and f = 2400.0

Advanced mechanics Physics 302 Instructor: Dr. Alexey Belyanin http://faculty.physics.tamu.edu/belyanin/ Office: MIST 426 Office Phone: (979) 845-7785 Email: belyanin@tamu.edu Office Hours: any time when

### FEYNMAN SIMPLIFIED 1A: PROBLEM SET ANSWERS

FEYNMAN SIMPLIFIED 1A: PROBLEM SET ANSWERS EVERYONE S GUIDE TO THE FEYNMAN LECTURES ON PHYSICS BY ROBERT L. PICCIONI, PH.D. This Book This ebook contains problems to help readers of Feynman Simplified:

### SMR/ Summer College on Plasma Physics. 30 July - 24 August, Introduction to Magnetic Island Theory.

SMR/1856-1 2007 Summer College on Plasma Physics 30 July - 24 August, 2007 Introduction to Magnetic Island Theory. R. Fitzpatrick Inst. for Fusion Studies University of Texas at Austin USA Introduction

### UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT. PART I Qualifying Examination. August 20, 2013, 5:00 p.m. to 8:00 p.m.

UNIVERSITY OF MISSOURI-COLUMBIA PHYSICS DEPARTMENT PART I Qualifying Examination August 20, 2013, 5:00 p.m. to 8:00 p.m. Instructions: The only material you are allowed in the examination room is a writing

### Lecturer: Bengt E W Nilsson

9 3 19 Lecturer: Bengt E W Nilsson Last time: Relativistic physics in any dimension. Light-cone coordinates, light-cone stuff. Extra dimensions compact extra dimensions (here we talked about fundamental

### Exam 2 Solutions. = /10 = / = /m 3, where the factor of

PHY049 Fall 007 Prof. Yasu Takano Prof. Paul Avery Oct. 17, 007 Exam Solutions 1. (WebAssign 6.6) A current of 1.5 A flows in a copper wire with radius 1.5 mm. If the current is uniform, what is the electron

### Relativistic Kinematics

Chapter 3 Relativistic Kinematics Recall that we briefly discussed Galilean boosts, transformation going from one inertial frame to another one, the first moving with an infinitesimal velocity δv with

### Hilbert Sixth Problem

Academia Sinica, Taiwan Stanford University Newton Institute, September 28, 2010 : Mathematical Treatment of the Axioms of Physics. The investigations on the foundations of geometry suggest the problem:

### Quantum Mechanics in Three Dimensions

Physics 342 Lecture 21 Quantum Mechanics in Three Dimensions Lecture 21 Physics 342 Quantum Mechanics I Monday, March 22nd, 21 We are used to the temporal separation that gives, for example, the timeindependent

### Figure-8 Storage RingF8SRNon Neutral Plasma Confinement in Curvilinear Guiding Fields

Figure-8 Storage Ring F8SR Non Neutral Plasma Confinement in Curvilinear Guiding Fields Joschka F. Wagner Institute of Applied Physics (IAP) Workgroup Prof. Ulrich Ratzinger Non Neutral Plasma-Group (NNP)

### KINETIC DESCRIPTION OF MAGNETIZED TECHNOLOGICAL PLASMAS

KINETIC DESCRIPTION OF MAGNETIZED TECHNOLOGICAL PLASMAS Ralf Peter Brinkmann, Dennis Krüger Fakultät für Elektrotechnik und Informationstechnik Lehrstuhl für Theoretische Elektrotechnik Magnetized low

### Analyses on the Ionization Instability of Non-Equilibrium Seeded Plasma in an MHD Generator

Plasma Science and Technology, Vol.18, No.6, Jun. 2016 Analyses on the Ionization Instability of Non-Equilibrium Seeded Plasma in an MHD Generator Le Chi KIEN Ho Chi Minh City University of Technology

### Physics 598ACC Accelerators: Theory and Applications

hysics 598ACC Accelerators: Theory and Instructors: Fred Mills, Deborah Errede Lecture 3: Equations of Motion in Accelerator Coordinates 1 Summary A. Curvilinear (Frenet-Serret) coordinate system B. The

### Circular motion. Aug. 22, 2017

Circular motion Aug. 22, 2017 Until now, we have been observers to Newtonian physics through inertial reference frames. From our discussion of Newton s laws, these are frames which obey Newton s first

### E = φ 1 A The dynamics of a particle with mass m and charge q is determined by the Hamiltonian

Lecture 9 Relevant sections in text: 2.6 Charged particle in an electromagnetic field We now turn to another extremely important example of quantum dynamics. Let us describe a non-relativistic particle

### Ph.D. QUALIFYING EXAMINATION PART A. Tuesday, January 3, 2012, 1:00 5:00 P.M.

PhD QUALIFYING EXAMINATION PART A Tuesday, January 3, 212, 1: 5: PM Work each problem on a separate sheet(s) of paper and put your identifying number on each page Do not use your name Each problem has