Tomoki Toda. Augmented Human Communication Laboratory Graduate School of Information Science

Size: px
Start display at page:

Download "Tomoki Toda. Augmented Human Communication Laboratory Graduate School of Information Science"

Transcription

1 Seuetial Data Modelig d class Basics of seuetial data odelig ooki oda Augeted Hua Couicatio Laboratory Graduate School of Iforatio Sciece

2 Basic Aroaches How to efficietly odel joit robability of high diesioal data (i.e. seuetial data) Markov rocess 3 4 Latet variables State sace odel e.g. HMM LDS

3 owards Uderstadig Latet Variables I this class we focus o a iture odel usig a discrete latet variable. We assue that the legth of seuetial data is costat. e.g. if the legth of each data is 5 Data : { } Data : { } each data sale is rereseted as a 5 diesioal vector. We lear how to odel joit robability desity i such a highdiesioal sace usig the iture odel. P( 3 4) 3 4 P ) P( ) P( ) P( ) P( ) (

4 Effectiveess of Miture Model P( X Y ) # of robs: = 0 0 X Y # of robs: = 3 ( ) P ( ) 0.4 P ( ) 0. 4 P ( 3 ) 0. Prob. High P X ) P( Y ) P X ) P( Y ) P X ) P( Y ) ( ( P X ) P X ) P X ) ( ( ( 3 Low ( 3 3 P Y ) P Y ) P( Y 3) ( ( 3

5 Miture Model Gaussia Miture Model

6 he Gaussia Distributio oral distributio or Gaussia distributio ; e / Paraeters Mea : Variace : Stadard d deviatio: Precisio: / Coditios to be satisfied: ; 0 ; d ; - 4

7 Multivariate Gaussia Distributio Gaussia distributio over a D diesioal vector of cotiuous variables Paraeters Mea vector : Covariace atri : Eale of diesioal case: s s s s Use of diagoal covariace atri s 0 0 s Use of full covariace atri s s s s 5

8 Maiu Likelihood Estiatio (MLE) Observatio data set ( observatios of variable ) X Ideedet ad idetically distributed: i.i.d. Data oits draw ideedetly fro the sae distributio Likelihood fuctio X Because the data set X is i.i.d. X is give by. ; Deterie araeters usig a observatio data set by aiiig likelihood fuctio! 6

9 Sufficiet Statistics Log scaled likelihood fuctio: CAB BCA ABC tr tr tr D l l X CAB BCA ABC tr tr tr D l l tr l tr l # of sales : Su of sales : Su of sales : Su of suared sales: 7

10 ML Estiates Deterie odel araeters by aiiig likelihood fuctio t l X arg a l tr l arg a ML estiate of ea vector: 0 X l Sale ea vector 0 X l ML estiate of covariace atri: 0 S l i Sale covariace 8

11 Miture Model Probability desity fuctio (.d.f.) give by argial.d.f. of joit.d.f. over latet variables Latet variables ( of M): M M use st cooet use d cooet use 3 rd cooet 3 3 9

12 Gaussia Miture Model (GMM) Miture of ultile Gaussia distributios M Prior robability of th iture cooet ; 0 M.d.f. of th iture cooet ; 3 0

13 Eale of.d.f. of GMM GMM with iture cooets o diesioal sace st i co. : d i co. : GMM: ;3 ;3 ; ;3 0.3

14 Effectiveess of GMM Caable of odelig iter diesioal correlatio eve if usig diagoal covariace atrices If usig a sigle Gaussia distributio w/ diagoal covariace atri If usig twogaussia distributios w/ diagoal covariace atrices Caable of odelig iter diesioal correlatio!

15 How to Ileet MLE? Log scaled likelihood of a iture odel: l X l l M l ; Because of the logarith of the suatio its derivatives with resect to odel dlaraeters are ot rereseted as liear euatios he gradiet ethods will be ecessary Ca we ush the logarith iside the suatio? 3

16 Eectatio ti Maiiatio (EM) Algorith

17 EM Algorith Iteratively udate lower boud of likelihood fuctio through two stes: Eectatio ste (E ste) Lower boud Maiiatio ste (M ste) Likelihood fuctio Eable closed for l X solutio of ML estiates Guaratee covergece Coverge to local aiu E ste L L L ew old old M ste l X ew old 4

18 Scheatic Iage of EM Algorith L l X Log scaled likelihood fuctio l X ( ) ( ) i i ( i) ( i) L ( ) L i (i) L (i) ( i ) 3. E ste. E ste: deterie lower boud based o curret odel araeters 0. Curret odel araeter set. M ste: udate odel araeters based o the lower boud 5

19 Lower Boud of Likelihood Fuctio Derivatio of lower boud of log scaled likelihood fuctio Log scaled likelihood fuctio: X l l Probability distributio fuctio of latet variables l J i li l Jese s ieuality L Lower boud: Lower boud: l L 6

20 Jese s Ieuality l l subject to 0 Outut of iterolated iut value Iterolated outut value le E l l l l E Iterolated t diut value 7

21 Lower Boud as Fuctioal of Lower boud: l L l l l l l l KL l X L b d l L b d l l dlik lih d l dlik lih d KLdi KL di KL divergece Log scaled likelihood Lower boud = log Lower boud = log scaled likelihood scaled likelihood KL divergece KL divergece 8

22 KL Divergece Discrete variable case: Cotiuous variable case: KL l KL l d l l KL l l Log scaled likelihood of true distributio d Log scaled likelihood of aother distributio Aroiated usig sales radoly geerated fro Differece of log scaled likelihoods KL 0 If = KL 0 9

23 Lower Boud as Fuctio of Lower boud: L l l l l Auiliary fuctio Costat Lower boud Auiliary fuctio 0

24 EM: Maiiatio of Lower Boud Lower boud: fuctioal of ad fuctio of E ste: Maiie lower boud with resect to while fiig : L l X KL M ste: Maiie lower boud with resect to while fiig KL L l L l X * eed to set iitial odel araeters

25 E Ste: Udate Set KL divergece to 0 uder the fied odel araeters old KL 0 old Cl Calculate lt osterior robabilities biliti of lt latet tvariables ibl for each sale old KL 0 old M M k k ; ; old k old k old old L old l X old

26 M Ste: Udate Maiie auiliary fuctio with resect to odel araeters ew L l KL Auiliary fuctio Q ew old M l old l l ; ew L ew l X ew 3

27 Sufficiet Statistics Auiliary fuctio: Q M l l ; ew old M l l M tr For each iture cooet # of sales : Su of sales : Su of suared sales: 4

28 ML Estiates Auiliary fuctio: M old ew l l Q M tr old ew M Q For each iture cooet 0 old ew Q M Miture weights 0 old ew Q Mea vectors 0 old ew Q Covariace 0 atrices 5

29 Eale

30 Eale: EM Algorith for GMM Five -D diesioal sales give as traiig data Iitial odel ; st iture cooet w/ a diagoal covariace atri: 0 0 d iture cooet w/ a diagoal covariace atri: = = 6

31 E Ste. Calculate joit robabilities for idividual iture cooets. Calculate osterior robabilities (i.e. eected # ofsales) (as ; I ) ; e d d d M k k ; k k = = = =

32 Calculatio of Sufficiet Statistics 3. Calculate sufficiet statistics # of sales Su of sales Su of suared sales * * * *

33 M Ste 4. Udate odel araeters Miture M weights Mea vectors Covariace atrices Udate = 3 4 = = = 9

34 Icrease of Likelihood 5. Calculate likelihood ad coare it before ad after udate ; Before udate: After udate: M = = P( ) = = P( ) l l

Hidden Variables, the EM Algorithm, and Mixtures of Gaussians

Hidden Variables, the EM Algorithm, and Mixtures of Gaussians Hidde Variables the EM Algorith ad Mitures of Gaussias Couter Visio Jia-Bi Huag Virgiia Tech May slides fro D. Hoie Adiistrative stuffs Fial roject roosal due Oct 7 (Thursday) Tis for fial roject Set u

More information

APPLIED MULTIVARIATE ANALYSIS

APPLIED MULTIVARIATE ANALYSIS ALIED MULTIVARIATE ANALYSIS FREQUENTLY ASKED QUESTIONS AMIT MITRA & SHARMISHTHA MITRA DEARTMENT OF MATHEMATICS & STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANUR X = X X X [] The variace covariace atrix

More information

Machine Learning. Logistic Regression -- generative verses discriminative classifier. Le Song /15-781, Spring 2008

Machine Learning. Logistic Regression -- generative verses discriminative classifier. Le Song /15-781, Spring 2008 Machie Learig 070/578 Srig 008 Logistic Regressio geerative verses discrimiative classifier Le Sog Lecture 5 Setember 4 0 Based o slides from Eric Xig CMU Readig: Cha. 3..34 CB Geerative vs. Discrimiative

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

Lecture 7: Linear Classification Methods

Lecture 7: Linear Classification Methods Homeork Homeork Lecture 7: Liear lassificatio Methods Fial rojects? Grous Toics Proosal eek 5 Lecture is oster sessio, Jacobs Hall Lobb, sacks Fial reort 5 Jue. What is liear classificatio? lassificatio

More information

Three classification models Discriminant Model: learn the decision boundary directly and apply it to determine the class of each data point

Three classification models Discriminant Model: learn the decision boundary directly and apply it to determine the class of each data point Review of Last Wee Three classificatio models Discrimiat Model: lear the decisio boudary directly ad aly it to determie the class of each data oit Discrimiative Model: lear PY directly Geerative Model:

More information

Some Examples on Gibbs Sampling and Metropolis-Hastings methods

Some Examples on Gibbs Sampling and Metropolis-Hastings methods Soe Exaples o Gibbs Saplig ad Metropolis-Hastigs ethods S420/620 Itroductio to Statistical Theory, Fall 2012 Gibbs Sapler Saple a ultidiesioal probability distributio fro coditioal desities. Suppose d

More information

Hidden Variables, the EM Algorithm, and Mixtures of Gaussians

Hidden Variables, the EM Algorithm, and Mixtures of Gaussians Hidde Variables the EM Algorith ad Mitures of Gaussias Couter Visio Jia-Bi Huag Virgiia Tech May slides fro D. Hoie Adiistrative stuffs Fial roject roosal due soo - eteded to Oct 9 Moday Tis for fial roject

More information

Expectation-Maximization Algorithm.

Expectation-Maximization Algorithm. Expectatio-Maximizatio Algorithm. Petr Pošík Czech Techical Uiversity i Prague Faculty of Electrical Egieerig Dept. of Cyberetics MLE 2 Likelihood.........................................................................................................

More information

Statistics and Data Analysis in MATLAB Kendrick Kay, February 28, Lecture 4: Model fitting

Statistics and Data Analysis in MATLAB Kendrick Kay, February 28, Lecture 4: Model fitting Statistics ad Data Aalysis i MATLAB Kedrick Kay, kedrick.kay@wustl.edu February 28, 2014 Lecture 4: Model fittig 1. The basics - Suppose that we have a set of data ad suppose that we have selected the

More information

Week 10 Spring Lecture 19. Estimation of Large Covariance Matrices: Upper bound Observe. is contained in the following parameter space,

Week 10 Spring Lecture 19. Estimation of Large Covariance Matrices: Upper bound Observe. is contained in the following parameter space, Week 0 Sprig 009 Lecture 9. stiatio of Large Covariace Matrices: Upper boud Observe ; ; : : : ; i.i.d. fro a p-variate Gaussia distributio, N (; pp ). We assue that the covariace atrix pp = ( ij ) i;jp

More information

Outline. CSCI-567: Machine Learning (Spring 2019) Outline. Prof. Victor Adamchik. Mar. 26, 2019

Outline. CSCI-567: Machine Learning (Spring 2019) Outline. Prof. Victor Adamchik. Mar. 26, 2019 Outlie CSCI-567: Machie Learig Sprig 209 Gaussia mixture models Prof. Victor Adamchik 2 Desity estimatio U of Souther Califoria Mar. 26, 209 3 Naive Bayes Revisited March 26, 209 / 57 March 26, 209 2 /

More information

Elementary manipulations of probabilities

Elementary manipulations of probabilities Elemetary maipulatios of probabilities Set probability of multi-valued r.v. {=Odd} = +3+5 = /6+/6+/6 = ½ X X,, X i j X i j Multi-variat distributio: Joit probability: X true true X X,, X X i j i j X X

More information

Recursive Updating Fixed Parameter

Recursive Updating Fixed Parameter Recursive Udatig Fixed Parameter So far we ve cosidered the sceario where we collect a buch of data ad the use that (ad the rior PDF) to comute the coditioal PDF from which we ca the get the MAP, or ay

More information

Chapter 12 EM algorithms The Expectation-Maximization (EM) algorithm is a maximum likelihood method for models that have hidden variables eg. Gaussian

Chapter 12 EM algorithms The Expectation-Maximization (EM) algorithm is a maximum likelihood method for models that have hidden variables eg. Gaussian Chapter 2 EM algorithms The Expectatio-Maximizatio (EM) algorithm is a maximum likelihood method for models that have hidde variables eg. Gaussia Mixture Models (GMMs), Liear Dyamic Systems (LDSs) ad Hidde

More information

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors ECONOMETRIC THEORY MODULE XIII Lecture - 34 Asymptotic Theory ad Stochastic Regressors Dr. Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Asymptotic theory The asymptotic

More information

ECE534, Spring 2018: Final Exam

ECE534, Spring 2018: Final Exam ECE534, Srig 2018: Fial Exam Problem 1 Let X N (0, 1) ad Y N (0, 1) be ideedet radom variables. variables V = X + Y ad W = X 2Y. Defie the radom (a) Are V, W joitly Gaussia? Justify your aswer. (b) Comute

More information

Factor Analysis. Lecture 10: Factor Analysis and Principal Component Analysis. Sam Roweis

Factor Analysis. Lecture 10: Factor Analysis and Principal Component Analysis. Sam Roweis Lecture 10: Factor Aalysis ad Pricipal Compoet Aalysis Sam Roweis February 9, 2004 Whe we assume that the subspace is liear ad that the uderlyig latet variable has a Gaussia distributio we get a model

More information

Mixture models (cont d)

Mixture models (cont d) 6.867 Machie learig, lecture 5 (Jaakkola) Lecture topics: Differet types of ixture odels (cot d) Estiatig ixtures: the EM algorith Mixture odels (cot d) Basic ixture odel Mixture odels try to capture ad

More information

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator Ecoomics 24B Relatio to Method of Momets ad Maximum Likelihood OLSE as a Maximum Likelihood Estimator Uder Assumptio 5 we have speci ed the distributio of the error, so we ca estimate the model parameters

More information

Statistics for Applications Fall Problem Set 7

Statistics for Applications Fall Problem Set 7 18.650. Statistics for Applicatios Fall 016. Proble Set 7 Due Friday, Oct. 8 at 1 oo Proble 1 QQ-plots Recall that the Laplace distributio with paraeter λ > 0 is the cotiuous probaλ bility easure with

More information

Birth-Death Processes. Outline. EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Relationship Among Stochastic Processes.

Birth-Death Processes. Outline. EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Relationship Among Stochastic Processes. EEC 686/785 Modelig & Perforace Evaluatio of Couter Systes Lecture Webig Zhao Deartet of Electrical ad Couter Egieerig Clevelad State Uiversity webig@ieee.org based o Dr. Raj jai s lecture otes Relatioshi

More information

We have also learned that, thanks to the Central Limit Theorem and the Law of Large Numbers,

We have also learned that, thanks to the Central Limit Theorem and the Law of Large Numbers, Cofidece Itervals III What we kow so far: We have see how to set cofidece itervals for the ea, or expected value, of a oral probability distributio, both whe the variace is kow (usig the stadard oral,

More information

Clustering. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar.

Clustering. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar. Clusterig CM226: Machie Learig for Bioiformatics. Fall 216 Sriram Sakararama Ackowledgmets: Fei Sha, Ameet Talwalkar Clusterig 1 / 42 Admiistratio HW 1 due o Moday. Email/post o CCLE if you have questios.

More information

Maximum Likelihood Estimation and Complexity Regularization

Maximum Likelihood Estimation and Complexity Regularization ECE90 Sprig 004 Statistical Regularizatio ad Learig Theory Lecture: 4 Maximum Likelihood Estimatio ad Complexity Regularizatio Lecturer: Rob Nowak Scribe: Pam Limpiti Review : Maximum Likelihood Estimatio

More information

Probabilistic Unsupervised Learning

Probabilistic Unsupervised Learning Statistical Data Miig ad Machie Learig Hilary Term 2016 Dio Sejdiovic Departmet of Statistics Oxford Slides ad other materials available at: http://www.stats.ox.ac.u/~sejdiov/sdmml Probabilistic Methods

More information

Axis Aligned Ellipsoid

Axis Aligned Ellipsoid Machie Learig for Data Sciece CS 4786) Lecture 6,7 & 8: Ellipsoidal Clusterig, Gaussia Mixture Models ad Geeral Mixture Models The text i black outlies high level ideas. The text i blue provides simple

More information

Unsupervised Learning 2001

Unsupervised Learning 2001 Usupervised Learig 2001 Lecture 3: The EM Algorithm Zoubi Ghahramai zoubi@gatsby.ucl.ac.uk Carl Edward Rasmusse edward@gatsby.ucl.ac.uk Gatsby Computatioal Neurosciece Uit MSc Itelliget Systems, Computer

More information

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample. Statistical Iferece (Chapter 10) Statistical iferece = lear about a populatio based o the iformatio provided by a sample. Populatio: The set of all values of a radom variable X of iterest. Characterized

More information

Estimation Theory Chapter 3

Estimation Theory Chapter 3 stimatio Theory Chater 3 Likelihood Fuctio Higher deedece of data PDF o ukow arameter results i higher estimatio accuracy amle : If ˆ If large, W, Choose  P  small,  W POOR GOOD i Oly data samle Data

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

ECE 901 Lecture 4: Estimation of Lipschitz smooth functions

ECE 901 Lecture 4: Estimation of Lipschitz smooth functions ECE 9 Lecture 4: Estiatio of Lipschitz sooth fuctios R. Nowak 5/7/29 Cosider the followig settig. Let Y f (X) + W, where X is a rado variable (r.v.) o X [, ], W is a r.v. o Y R, idepedet of X ad satisfyig

More information

Large Sample Theory. Convergence. Central Limit Theorems Asymptotic Distribution Delta Method. Convergence in Probability Convergence in Distribution

Large Sample Theory. Convergence. Central Limit Theorems Asymptotic Distribution Delta Method. Convergence in Probability Convergence in Distribution Large Sample Theory Covergece Covergece i Probability Covergece i Distributio Cetral Limit Theorems Asymptotic Distributio Delta Method Covergece i Probability A sequece of radom scalars {z } = (z 1,z,

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Chapter 9 Maximum Likelihood Estimatio 9.1 The Likelihood Fuctio The maximum likelihood estimator is the most widely used estimatio method. This chapter discusses the most importat cocepts behid maximum

More information

ECE 901 Lecture 13: Maximum Likelihood Estimation

ECE 901 Lecture 13: Maximum Likelihood Estimation ECE 90 Lecture 3: Maximum Likelihood Estimatio R. Nowak 5/7/009 The focus of this lecture is to cosider aother approach to learig based o maximum likelihood estimatio. Ulike earlier approaches cosidered

More information

Outline. L7: Probability Basics. Probability. Probability Theory. Bayes Law for Diagnosis. Which Hypothesis To Prefer? p(a,b) = p(b A) " p(a)

Outline. L7: Probability Basics. Probability. Probability Theory. Bayes Law for Diagnosis. Which Hypothesis To Prefer? p(a,b) = p(b A)  p(a) Outlie L7: Probability Basics CS 344R/393R: Robotics Bejami Kuipers. Bayes Law 2. Probability distributios 3. Decisios uder ucertaity Probability For a propositio A, the probability p(a is your degree

More information

Basics of Inference. Lecture 21: Bayesian Inference. Review - Example - Defective Parts, cont. Review - Example - Defective Parts

Basics of Inference. Lecture 21: Bayesian Inference. Review - Example - Defective Parts, cont. Review - Example - Defective Parts Basics of Iferece Lecture 21: Sta230 / Mth230 Coli Rudel Aril 16, 2014 U util this oit i the class you have almost exclusively bee reseted with roblems where we are usig a robability model where the model

More information

Mixtures of Gaussians and the EM Algorithm

Mixtures of Gaussians and the EM Algorithm Mixtures of Gaussias ad the EM Algorithm CSE 6363 Machie Learig Vassilis Athitsos Computer Sciece ad Egieerig Departmet Uiversity of Texas at Arligto 1 Gaussias A popular way to estimate probability desity

More information

Dimensionality Reduction vs. Clustering

Dimensionality Reduction vs. Clustering Dimesioality Reductio vs. Clusterig Lecture 9: Cotiuous Latet Variable Models Sam Roweis Traiig such factor models (e.g. FA, PCA, ICA) is called dimesioality reductio. You ca thik of this as (o)liear regressio

More information

Lecture 13: Maximum Likelihood Estimation

Lecture 13: Maximum Likelihood Estimation ECE90 Sprig 007 Statistical Learig Theory Istructor: R. Nowak Lecture 3: Maximum Likelihood Estimatio Summary of Lecture I the last lecture we derived a risk (MSE) boud for regressio problems; i.e., select

More information

Appendix to: Hypothesis Testing for Multiple Mean and Correlation Curves with Functional Data

Appendix to: Hypothesis Testing for Multiple Mean and Correlation Curves with Functional Data Appedix to: Hypothesis Testig for Multiple Mea ad Correlatio Curves with Fuctioal Data Ao Yua 1, Hog-Bi Fag 1, Haiou Li 1, Coli O. Wu, Mig T. Ta 1, 1 Departmet of Biostatistics, Bioiformatics ad Biomathematics,

More information

Probability, Random Variables and Random Processes

Probability, Random Variables and Random Processes Appedix A robability, Radom Variables ad Radom rocesses I this appedix basic cocepts from probability, radom processes ad sigal theory are reviewed.. robability ad Radom Variables robability Space Ω F

More information

day month year documentname/initials 1

day month year documentname/initials 1 ECE47-57 Patter Recogitio Lecture 0 Noaraetric Desity Estiatio -earest-eighbor (NN) Hairog Qi, Gozalez Faily Professor Electrical Egieerig ad Couter Sciece Uiversity of Teessee, Koxville htt://www.eecs.ut.edu/faculty/qi

More information

of the matrix is =-85, so it is not positive definite. Thus, the first

of the matrix is =-85, so it is not positive definite. Thus, the first BOSTON COLLEGE Departmet of Ecoomics EC771: Ecoometrics Sprig 4 Prof. Baum, Ms. Uysal Solutio Key for Problem Set 1 1. Are the followig quadratic forms positive for all values of x? (a) y = x 1 8x 1 x

More information

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance Hypothesis Testig Empirically evaluatig accuracy of hypotheses: importat activity i ML. Three questios: Give observed accuracy over a sample set, how well does this estimate apply over additioal samples?

More information

Logit regression Logit regression

Logit regression Logit regression Logit regressio Logit regressio models the probability of Y= as the cumulative stadard logistic distributio fuctio, evaluated at z = β 0 + β X: Pr(Y = X) = F(β 0 + β X) F is the cumulative logistic distributio

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

ENGI 4421 Confidence Intervals (Two Samples) Page 12-01

ENGI 4421 Confidence Intervals (Two Samples) Page 12-01 ENGI 44 Cofidece Itervals (Two Samples) Page -0 Two Sample Cofidece Iterval for a Differece i Populatio Meas [Navidi sectios 5.4-5.7; Devore chapter 9] From the cetral limit theorem, we kow that, for sufficietly

More information

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization ECE 90 Lecture 4: Maximum Likelihood Estimatio ad Complexity Regularizatio R Nowak 5/7/009 Review : Maximum Likelihood Estimatio We have iid observatios draw from a ukow distributio Y i iid p θ, i,, where

More information

Lecture Stat Maximum Likelihood Estimation

Lecture Stat Maximum Likelihood Estimation Lecture Stat 461-561 Maximum Likelihood Estimatio A.D. Jauary 2008 A.D. () Jauary 2008 1 / 63 Maximum Likelihood Estimatio Ivariace Cosistecy E ciecy Nuisace Parameters A.D. () Jauary 2008 2 / 63 Parametric

More information

Online Learning & Game Theory

Online Learning & Game Theory Olie Learig & Gae Theory A quick overview with recet results Viaey Perchet Laboratoire Probabilités et Modèles Aléatoires Uiv. Paris-Diderot Jourées MAS 2014 27 Août 2014 Startig Exaples Startig Exaples

More information

ECE534, Spring 2018: Solutions for Problem Set #2

ECE534, Spring 2018: Solutions for Problem Set #2 ECE534, Srig 08: s for roblem Set #. Rademacher Radom Variables ad Symmetrizatio a) Let X be a Rademacher radom variable, i.e., X = ±) = /. Show that E e λx e λ /. E e λx = e λ + e λ = + k= k=0 λ k k k!

More information

Computational Issues Related to Sequential Monte Carlo Filter and Smoother

Computational Issues Related to Sequential Monte Carlo Filter and Smoother Coutatioal Issues Related to Sequetial Mote Carlo Filter ad Soother Geshiro Kitagawa Orgaizatio Iforatio ad Systes Istitute Statistical Orgaizatio NUS-UTokyo Worksho o Quatitative Fiace Seteber 6, Iforatio

More information

INDEPENDENCE AND UNCORRELATION

INDEPENDENCE AND UNCORRELATION Julio L Peixoto - Setember 999 INDEPENDENCE AND UNCORRELATION (Some radom commets motivated b class discussio) Statistical Ideedece Radom variables,, are said to be (statisticall) ideedet if kowlede about

More information

Probabilistic Unsupervised Learning

Probabilistic Unsupervised Learning HT2015: SC4 Statistical Data Miig ad Machie Learig Dio Sejdiovic Departmet of Statistics Oxford http://www.stats.ox.ac.u/~sejdiov/sdmml.html Probabilistic Methods Algorithmic approach: Data Probabilistic

More information

Central Limit Theorem using Characteristic functions

Central Limit Theorem using Characteristic functions Cetral Limit Theorem usig Characteristic fuctios RogXi Guo MAT 477 Jauary 20, 2014 RogXi Guo (2014 Cetral Limit Theorem usig Characteristic fuctios Jauary 20, 2014 1 / 15 Itroductio study a radom variable

More information

3/8/2016. Contents in latter part PATTERN RECOGNITION AND MACHINE LEARNING. Dynamical Systems. Dynamical Systems. Linear Dynamical Systems

3/8/2016. Contents in latter part PATTERN RECOGNITION AND MACHINE LEARNING. Dynamical Systems. Dynamical Systems. Linear Dynamical Systems Cotets i latter part PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 13: SEQUENTIAL DATA Liear Dyamical Systems What is differet from HMM? Kalma filter Its stregth ad limitatio Particle Filter Its simple

More information

Confidence Intervals

Confidence Intervals Cofidece Itervals Berli Che Deartmet of Comuter Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Referece: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chater 5 & Teachig Material Itroductio

More information

Questions and Answers on Maximum Likelihood

Questions and Answers on Maximum Likelihood Questios ad Aswers o Maximum Likelihood L. Magee Fall, 2008 1. Give: a observatio-specific log likelihood fuctio l i (θ) = l f(y i x i, θ) the log likelihood fuctio l(θ y, X) = l i(θ) a data set (x i,

More information

Verification of continuous predictands

Verification of continuous predictands barbara.casati@ec.gc.ca Verificatio of cotiuous predictads Barbara Casati 9 Ja 007 Exploratory ethods: joit distributio Scatter-plot: plot of observatio versus forecast values Perfect forecast obs, poits

More information

Module 1 Fundamentals in statistics

Module 1 Fundamentals in statistics Normal Distributio Repeated observatios that differ because of experimetal error ofte vary about some cetral value i a roughly symmetrical distributio i which small deviatios occur much more frequetly

More information

Pattern Classification

Pattern Classification Patter Classificatio All materials i these slides were tae from Patter Classificatio (d ed) by R. O. Duda, P. E. Hart ad D. G. Stor, Joh Wiley & Sos, 000 with the permissio of the authors ad the publisher

More information

Algorithms for Clustering

Algorithms for Clustering CR2: Statistical Learig & Applicatios Algorithms for Clusterig Lecturer: J. Salmo Scribe: A. Alcolei Settig: give a data set X R p where is the umber of observatio ad p is the umber of features, we wat

More information

Mathematical Statistics - MS

Mathematical Statistics - MS Paper Specific Istructios. The examiatio is of hours duratio. There are a total of 60 questios carryig 00 marks. The etire paper is divided ito three sectios, A, B ad C. All sectios are compulsory. Questios

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

Open book and notes. 120 minutes. Cover page and six pages of exam. No calculators.

Open book and notes. 120 minutes. Cover page and six pages of exam. No calculators. IE 330 Seat # Ope book ad otes 120 miutes Cover page ad six pages of exam No calculators Score Fial Exam (example) Schmeiser Ope book ad otes No calculator 120 miutes 1 True or false (for each, 2 poits

More information

Pattern Classification

Pattern Classification Patter Classificatio All materials i these slides were tae from Patter Classificatio (d ed) by R. O. Duda, P. E. Hart ad D. G. Stor, Joh Wiley & Sos, 000 with the permissio of the authors ad the publisher

More information

Probability and Statistics

Probability and Statistics ICME Refresher Course: robability ad Statistics Staford Uiversity robability ad Statistics Luyag Che September 20, 2016 1 Basic robability Theory 11 robability Spaces A probability space is a triple (Ω,

More information

CS321. Numerical Analysis and Computing

CS321. Numerical Analysis and Computing CS Numerical Aalysis ad Computig Lecture Locatig Roots o Equatios Proessor Ju Zhag Departmet o Computer Sciece Uiversity o Ketucky Leigto KY 456-6 September 8 5 What is the Root May physical system ca

More information

THE KALMAN FILTER RAUL ROJAS

THE KALMAN FILTER RAUL ROJAS THE KALMAN FILTER RAUL ROJAS Abstract. This paper provides a getle itroductio to the Kalma filter, a umerical method that ca be used for sesor fusio or for calculatio of trajectories. First, we cosider

More information

σ 2 ) Consider a discrete-time random walk x t =u 1 + +u t with i.i.d. N(0,σ 2 ) increments u t. Exercise: Show that UL N(0, 3

σ 2 ) Consider a discrete-time random walk x t =u 1 + +u t with i.i.d. N(0,σ 2 ) increments u t. Exercise: Show that UL N(0, 3 Cosider a discrete-time radom walk x t =u + +u t with i.i.d. N(,σ ) icremets u t. Exercise: Show that UL ( x) = 3 x t L σ N(, 3 ). Exercise: Show that U (i) x t ~N(,tσ ), (ii) s

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week 2 Lecture: Cocept Check Exercises Starred problems are optioal. Excess Risk Decompositio 1. Let X = Y = {1, 2,..., 10}, A = {1,..., 10, 11} ad suppose the data distributio

More information

Contents Two Sample t Tests Two Sample t Tests

Contents Two Sample t Tests Two Sample t Tests Cotets 3.5.3 Two Saple t Tests................................... 3.5.3 Two Saple t Tests Setup: Two Saples We ow focus o a sceario where we have two idepedet saples fro possibly differet populatios. Our

More information

Stat 139 Homework 7 Solutions, Fall 2015

Stat 139 Homework 7 Solutions, Fall 2015 Stat 139 Homework 7 Solutios, Fall 2015 Problem 1. I class we leared that the classical simple liear regressio model assumes the followig distributio of resposes: Y i = β 0 + β 1 X i + ɛ i, i = 1,...,,

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables

Lecture 01: the Central Limit Theorem. 1 Central Limit Theorem for i.i.d. random variables CSCI-B609: A Theorist s Toolkit, Fall 06 Aug 3 Lecture 0: the Cetral Limit Theorem Lecturer: Yua Zhou Scribe: Yua Xie & Yua Zhou Cetral Limit Theorem for iid radom variables Let us say that we wat to aalyze

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Itroductio to Probability ad Statistics Lecture 23: Cotiuous radom variables- Iequalities, CLT Puramrita Sarkar Departmet of Statistics ad Data Sciece The Uiversity of Texas at Austi www.cs.cmu.edu/

More information

A Note on the W-S Lower Bound of the MEE Estimation

A Note on the W-S Lower Bound of the MEE Estimation troy 014, 16, 814-84; doi:10.3390/e1600814 Article OPN ACCSS etroy ISSN 1099-4300 www.di.co/joural/etroy A Note o the W-S Lower Boud of the M stiatio Badog Che 1, *, Guagi Wag 1, Naig Zheg 1 ad Jose C.

More information

18.S096: Homework Problem Set 1 (revised)

18.S096: Homework Problem Set 1 (revised) 8.S096: Homework Problem Set (revised) Topics i Mathematics of Data Sciece (Fall 05) Afoso S. Badeira Due o October 6, 05 Exteded to: October 8, 05 This homework problem set is due o October 6, at the

More information

BHW #13 1/ Cooper. ENGR 323 Probabilistic Analysis Beautiful Homework # 13

BHW #13 1/ Cooper. ENGR 323 Probabilistic Analysis Beautiful Homework # 13 BHW # /5 ENGR Probabilistic Aalysis Beautiful Homework # Three differet roads feed ito a particular freeway etrace. Suppose that durig a fixed time period, the umber of cars comig from each road oto the

More information

Classification with linear models

Classification with linear models Lecture 8 Classificatio with liear models Milos Hauskrecht milos@cs.pitt.edu 539 Seott Square Geerative approach to classificatio Idea:. Represet ad lear the distributio, ). Use it to defie probabilistic

More information

Statistical Inference Based on Extremum Estimators

Statistical Inference Based on Extremum Estimators T. Rotheberg Fall, 2007 Statistical Iferece Based o Extremum Estimators Itroductio Suppose 0, the true value of a p-dimesioal parameter, is kow to lie i some subset S R p : Ofte we choose to estimate 0

More information

15-780: Graduate Artificial Intelligence. Density estimation

15-780: Graduate Artificial Intelligence. Density estimation 5-780: Graduate Artificial Itelligece Desity estimatio Coditioal Probability Tables (CPT) But where do we get them? P(B)=.05 B P(E)=. E P(A B,E) )=.95 P(A B, E) =.85 P(A B,E) )=.5 P(A B, E) =.05 A P(J

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Patter Recogitio Classificatio: No-Parametric Modelig Hamid R. Rabiee Jafar Muhammadi Sprig 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Ageda Parametric Modelig No-Parametric Modelig

More information

Ratio of Two Random Variables: A Note on the Existence of its Moments

Ratio of Two Random Variables: A Note on the Existence of its Moments Metodološki zvezki, Vol. 3, o., 6, -7 Ratio of wo Rado Variables: A ote o the Existece of its Moets Ato Cedilik, Kataria Košel, ad Adre Bleec 3 Abstract o eable correct statistical iferece, the kowledge

More information

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)].

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)]. Probability 2 - Notes 0 Some Useful Iequalities. Lemma. If X is a radom variable ad g(x 0 for all x i the support of f X, the P(g(X E[g(X]. Proof. (cotiuous case P(g(X Corollaries x:g(x f X (xdx x:g(x

More information

MA Advanced Econometrics: Properties of Least Squares Estimators

MA Advanced Econometrics: Properties of Least Squares Estimators MA Advaced Ecoometrics: Properties of Least Squares Estimators Karl Whela School of Ecoomics, UCD February 5, 20 Karl Whela UCD Least Squares Estimators February 5, 20 / 5 Part I Least Squares: Some Fiite-Sample

More information

S. A. ALIEV, Y. I. YELEYKO, Y. V. ZHERNOVYI. STEADY-STATE DISTRIBUTIONS FOR CERTAIN MODIFICATIONS OF THE M/M/1/m QUEUEING SYSTEM

S. A. ALIEV, Y. I. YELEYKO, Y. V. ZHERNOVYI. STEADY-STATE DISTRIBUTIONS FOR CERTAIN MODIFICATIONS OF THE M/M/1/m QUEUEING SYSTEM Trasactios of Azerbaija Natioal Acadey of Scieces, Series of Physical-Techical ad Matheatical Scieces: Iforatics ad Cotrol Probles 009 Vol XXIX, 6 P 50-58 S A ALIEV, Y I YELEYKO, Y V ZHERNOVYI STEADY-STATE

More information

2. The volume of the solid of revolution generated by revolving the area bounded by the

2. The volume of the solid of revolution generated by revolving the area bounded by the IIT JAM Mathematical Statistics (MS) Solved Paper. A eigevector of the matrix M= ( ) is (a) ( ) (b) ( ) (c) ( ) (d) ( ) Solutio: (a) Eigevalue of M = ( ) is. x So, let x = ( y) be the eigevector. z (M

More information

Probability and MLE.

Probability and MLE. 10-701 Probability ad MLE http://www.cs.cmu.edu/~pradeepr/701 (brief) itro to probability Basic otatios Radom variable - referrig to a elemet / evet whose status is ukow: A = it will rai tomorrow Domai

More information

Hidden Variables, the EM Algorithm, and Mixtures of Gaussians

Hidden Variables, the EM Algorithm, and Mixtures of Gaussians 02/22/11 Hidde Variables, the EM Algorithm, ad Mitures of Gaussias Comuter Visio CS 143, Brow James Hays May slides from Derek Hoiem Today s Class Eamles of Missig Data Problems Detectig outliers Backgroud

More information

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15 17. Joit distributios of extreme order statistics Lehma 5.1; Ferguso 15 I Example 10., we derived the asymptotic distributio of the maximum from a radom sample from a uiform distributio. We did this usig

More information

TMA4245 Statistics. Corrected 30 May and 4 June Norwegian University of Science and Technology Department of Mathematical Sciences.

TMA4245 Statistics. Corrected 30 May and 4 June Norwegian University of Science and Technology Department of Mathematical Sciences. Norwegia Uiversity of Sciece ad Techology Departmet of Mathematical Scieces Corrected 3 May ad 4 Jue Solutios TMA445 Statistics Saturday 6 May 9: 3: Problem Sow desity a The probability is.9.5 6x x dx

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

Binomial Distribution

Binomial Distribution 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible

More information

John H. J. Einmahl Tilburg University, NL. Juan Juan Cai Tilburg University, NL

John H. J. Einmahl Tilburg University, NL. Juan Juan Cai Tilburg University, NL Estimatio of the margial exected shortfall Laures de Haa, Poitiers, 202 Estimatio of the margial exected shortfall Jua Jua Cai Tilburg iversity, NL Laures de Haa Erasmus iversity Rotterdam, NL iversity

More information

Study the bias (due to the nite dimensional approximation) and variance of the estimators

Study the bias (due to the nite dimensional approximation) and variance of the estimators 2 Series Methods 2. Geeral Approach A model has parameters (; ) where is ite-dimesioal ad is oparametric. (Sometimes, there is o :) We will focus o regressio. The fuctio is approximated by a series a ite

More information

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam. Probability ad Statistics FS 07 Secod Sessio Exam 09.0.08 Time Limit: 80 Miutes Name: Studet ID: This exam cotais 9 pages (icludig this cover page) ad 0 questios. A Formulae sheet is provided with the

More information