Week 10 Spring Lecture 19. Estimation of Large Covariance Matrices: Upper bound Observe. is contained in the following parameter space,

Size: px
Start display at page:

Download "Week 10 Spring Lecture 19. Estimation of Large Covariance Matrices: Upper bound Observe. is contained in the following parameter space,"

Transcription

1 Week 0 Sprig 009 Lecture 9. stiatio of Large Covariace Matrices: Upper boud Observe ; ; : : : ; i.i.d. fro a p-variate Gaussia distributio, N (; pp ). We assue that the covariace atrix pp = ( ij ) i;jp is cotaied i the foowig paraeter space, : jij j M ji jj (+) for a k (; "; M) = () ad ax () =" Theore Uder the assuptio (0), we have og p if ^ C og p + + C : () + + This theore tes us that there is a estiator ^ to obtai the rate. I the ext ecture we wi show this rate ca ot be iproved. This resut iproves the rate og p + i Theore i Bicke ad Levia (008a). Whe = = ad p = e p, their rate is 6, whie the rate i Theore 5 is. The key reaso for such a iproveet is that we reaized atrix estiatio is fudaetay di eret fro vector estiatio! stiatio Procedure: De e ad for a itegers = (~ ij I f i < + ; j < + g) pp S () = p = p ad. We estiate by ^ = k S (k) S (k). (3) We wi set k + for the operator or ad (+) for the robeius or. Techicay it is reativey easier to study this risk upper of the taperig estiator uder the operator or tha the usua badig estiator. Lea We have ^ = (w ij ~ ij ) pp where w ij = k f(k ji jj) + (k ji jj) + g.

2 Note that 8 < whe ji jj k w ij = k f(k ji jj) + (k ji jj) + g = (0; ) whe k < ji jj < k : 0 otherwise. Now we estabish the risk upper boud for the estiator i equatio (3) uder the operator or. We show that the variace part, ad the bias part, thus which ipies by settig ^ ^ C k + og p (4) Ck (5) k + og p C C + k, og p + + k = +. (6) Let C be a geeric costat which ay vary fro pace to pace. We prove the risk upper boud (5) for the bias part rst. It is we kow that the to or of a syetric atrix A = (a ij ) pp is the bouded by its to or, i.e., p kak ax ja ij j. i=;:::;p j= We boud the operator or of the bias part ^ ~ ij = ij, we have by its to or. Sice ^ = ((w ij ) ij ) pp where w ij [0; ] ad is exacty whe ji ^ 4 ax i=;:::;p j:ji jj>k jj k, the 3 j ij j5 M k. Now we estabish (4) which is reativey copicated. The key idea i the proof is to write the whoe atrix as a average of atrices which are su of a arge uber of sa disjoit bock atrices, ad for each sa bock atrix the cassica rado atrix theory ca be appied. The foowig ea shows

3 that the operator or of the rado atrix is cotroed by the axiu of operator ors of p uber of k k rado atrices. Let = (~ ij I f i < + ; j < + g) pp. De e N () = ax. p + Lea 3 Let be de ed as i (3). The 3N () : or each sa rado atrix with = k, we cotro its operator or as foows. Lea 4 There is a costat > 0 such that o P N () > x p5 exp x (7) for a 0 < x < ad p. With Leas 3 ad 4 we are ow ready to show the variace boud (4). By Lea 3 we have h i 9 N (k) = 9 N (k) I N (k) x + I N (k) > x 9 x + I N (k) > x. N (k) Note that kk, which is bouded by a costat, ad. The Cauchy Schwarz iequaity the ipies C x + + C I N (k) > x r r C "x 4 + x# + C P N (k) >. q og p+ Set x = 4. The x is bouded by as!. ro Lea 4 we obtai og p + C + p p5 p 8 e 8 = og p + C : (8) Now we give proofs of auxiiary eas. Proof of Lea : It is easy to see kw ij = # f : fi; jg f; : : : ; + k gg # f : (i; j) f; : : : ; + k gg = (k ji jj) + (k ji jj) + ; 3

4 which takes vaue i [0; k]. Ceary fro the above, kw ij = k for ji jj k. Proof of Lea 3: Without oss of geeraity we assue that p ca be divided by. Set () Sice () j+ S () S () = S (). By (3) = () j+ j < p= : (9) are diagoa bocks of their su over j < p=, we have S () ax () j+ ax () : p 0j < p= This ad (3) ipy the cocusio, sice (k) certai atrix (k) with p k +. ad (k) are a sub-bocks of Proof of Lea 4 : or ay syetric atrix A, we have v T Av u T Au v T Av = (u v) T A (u + v) ku vk kak ku + vk u T Au Let S = be a = et of the uit sphere S i the ucidea distace i R. We have kak u T Au us us = u T Au + kak 3 = u T Au + 3 us 4 kak = which ipies kak 4 us u T Au. Sice we are aowed to pack Card S = = bas of radius =4 ito a + =4 ba i R, voue copariso yieds i.e., Card S = (=4) Card S = (5=4) ; 5. Thus there exist v ; v ; : : : ; v 5 S such that kak 4 j5 v T j Av j ; for a syetric A. This oe step approxiatio arguet is siiar to the proof of Propositio 4. (ii) i hag ad Huag (008). Let ; : : : ; be i.i.d. p-vectors with ( ) ( ) T =. Uder the Gaussia (sub-gaussia) assuptio there exists > 0 such that P v T ( i i )( i i ) T v > x e x= for a x > 0 ad kvk = which ipies tv T ( i i )( i i ) T v < for a t < = ad kvk =, the there exists > 0 such that ( P v T ( i i )( i i ) T ) v > x e x = i= 4

5 for a 0 < x < ad kvk =. (See, e.g., Chapter i Sauis ad Statuevicius (99).) Thus we have o P ax > x P > x p + p + p5 Pfjvj T ( v j; p5 exp x =. )v j j > xg Reark: The proof here works for sub-gaussia assuptio which is sighty ore geera tha Gaussia. 5

6 Lecture 9. stiatio of Large Covariace Matrices: Lower boud (I) Observe ; ; : : : ; i.i.d. fro a p-variate Gaussia distributio, N (; pp ). We assue that the covariace atrix pp = ( ij ) i;jp is cotaied i the foowig paraeter space, o (; "; M) = : j ij j M ji jj (+) for i 6= j ad ax () =". (0) I additio we assue that p e. I this ecture we wi see this assuptio is ecessary to estiate pp cosistety uder the operator or. Theore 5 Uder the assuptio (0), we have if c og p + + c ^ : () I this ecture we wi show if ^ c og p by usig Le Ca s ethod. Next tie we wi appy Assouad s ea to prove the other part of the ower boud if c +. ^ We wi appy Le Ca s ethod to derive a ower boud for iiax risk. Let be a observatio fro a distributio i the coectio fp ; = ; ; : : : ; p gg. Le Ca s ethod, which is based o a two-poit testig arguet, gives a ower boud for the axiu estiatio risk over the paraeter set. More specificay, et L be the oss fuctio. De e r ( 0 ; ) = if t [L (t; 0 ) + L (t; )] ad r i = if p r ( 0 ; ), ad deote P = p P p = P. Lea 6 Let T be a estiator of based o a observatio fro a distributio i the coectio fp ; = ; ; : : : ; p gg, the L (T; ) r i P0 ^ P or q p, et be a diagoa covariace atrix with = og p +, ii = for i 6=, ad et 0 be the idetity atrix. Let = ; ; : : : ; p T N (0; ), ad deote the joit desity of ; : : : ; by f, p with p = ax fp; exp (=)g, which ca be writte as foows Y f = x i Y j x i i;jp;j6= i 6

7 where, = or, is the desity of N 0;. Let = for 0 p ad the oss fuctio L be the squared operator or. It is easy to see d ( 0 ; ) = og p for a p. The the ower boud (??) foows iediatey if there is a costat c > 0 such that P0 ^ P c. () Sice R R q 0 ^ q d = jq0 Jese s iequaity ipies q j d for ay two desities q 0 ad q, ad the q 0 q jq 0 q j d = d q (q0 q ) d = q Hece R q 0 ^ q d q q 0 q d : R q 0 q d =. To estabish equatio (), it thus su ces to show that R p P p = f =f0 d! 0, i.e., p p = f d + p 6=j We ow cacuate R f f j d. or 6= j it is easy to see f f j d = 0. Whe = j; we have Thus f d = p p = p p Y i f f j d! 0. (3) exp x i h ( ) i = = og p =. p f! = d = p = = exp = + dx i f d p og p og p og og p for 0 < <, where the ast step foows fro the iequaity og ( x) x for 0 < x < =. = p p! 0 (4) 7

ECE 901 Lecture 4: Estimation of Lipschitz smooth functions

ECE 901 Lecture 4: Estimation of Lipschitz smooth functions ECE 9 Lecture 4: Estiatio of Lipschitz sooth fuctios R. Nowak 5/7/29 Cosider the followig settig. Let Y f (X) + W, where X is a rado variable (r.v.) o X [, ], W is a r.v. o Y R, idepedet of X ad satisfyig

More information

APPLIED MULTIVARIATE ANALYSIS

APPLIED MULTIVARIATE ANALYSIS ALIED MULTIVARIATE ANALYSIS FREQUENTLY ASKED QUESTIONS AMIT MITRA & SHARMISHTHA MITRA DEARTMENT OF MATHEMATICS & STATISTICS INDIAN INSTITUTE OF TECHNOLOGY KANUR X = X X X [] The variace covariace atrix

More information

A PROBABILITY PROBLEM

A PROBABILITY PROBLEM A PROBABILITY PROBLEM A big superarket chai has the followig policy: For every Euros you sped per buy, you ear oe poit (suppose, e.g., that = 3; i this case, if you sped 8.45 Euros, you get two poits,

More information

An Extension of Panjer s Recursion

An Extension of Panjer s Recursion 1 A Extesio of Paer s Recursio Kaus Th. Hess, Aett Liewad ad Kaus D. Schidt Lehrstuh für Versicherugsatheatik Techische Uiversität Dresde Abstract Sudt ad Jewe have show that a odegeerate cai uber distributio

More information

Lecture 10: Bounded Linear Operators and Orthogonality in Hilbert Spaces

Lecture 10: Bounded Linear Operators and Orthogonality in Hilbert Spaces Lecture : Bouded Liear Operators ad Orthogoality i Hilbert Spaces 34 Bouded Liear Operator Let ( X, ), ( Y, ) i i be ored liear vector spaces ad { } X Y The, T is said to be bouded if a real uber c such

More information

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise First Year Quatitative Comp Exam Sprig, 2012 Istructio: There are three parts. Aswer every questio i every part. Questio I-1 Part I - 203A A radom variable X is distributed with the margial desity: >

More information

Probability Theory. Exercise Sheet 4. ETH Zurich HS 2017

Probability Theory. Exercise Sheet 4. ETH Zurich HS 2017 ETH Zurich HS 2017 D-MATH, D-PHYS Prof. A.-S. Szita Coordiator Yili Wag Probability Theory Exercise Sheet 4 Exercise 4.1 Let X ) N be a sequece of i.i.d. rado variables i a probability space Ω, A, P ).

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

Bertrand s postulate Chapter 2

Bertrand s postulate Chapter 2 Bertrad s postulate Chapter We have see that the sequece of prie ubers, 3, 5, 7,... is ifiite. To see that the size of its gaps is ot bouded, let N := 3 5 p deote the product of all prie ubers that are

More information

Lecture 6 Ecient estimators. Rao-Cramer bound.

Lecture 6 Ecient estimators. Rao-Cramer bound. Lecture 6 Eciet estimators. Rao-Cramer boud. 1 MSE ad Suciecy Let X (X 1,..., X) be a radom sample from distributio f θ. Let θ ˆ δ(x) be a estimator of θ. Let T (X) be a suciet statistic for θ. As we have

More information

Exponential Families and Bayesian Inference

Exponential Families and Bayesian Inference Computer Visio Expoetial Families ad Bayesia Iferece Lecture Expoetial Families A expoetial family of distributios is a d-parameter family f(x; havig the followig form: f(x; = h(xe g(t T (x B(, (. where

More information

Stanford Statistics 311/Electrical Engineering 377

Stanford Statistics 311/Electrical Engineering 377 I. Uiversal predictio ad codig a. Gae: sequecex ofdata, adwattopredict(orcode)aswellasifwekew distributio of data b. Two versios: probabilistic ad adversarial. I either case, let p ad q be desities or

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Aalysis ad Statistical Methods Statistics 651 http://www.stat.tau.edu/~suhasii/teachig.htl Suhasii Subba Rao Exaple The itroge cotet of three differet clover plats is give below. 3DOK1 3DOK5 3DOK7

More information

Ma/CS 6a Class 22: Power Series

Ma/CS 6a Class 22: Power Series Ma/CS 6a Class 22: Power Series By Ada Sheffer Power Series Mooial: ax i. Polyoial: a 0 + a 1 x + a 2 x 2 + + a x. Power series: A x = a 0 + a 1 x + a 2 x 2 + Also called foral power series, because we

More information

Lecture 11 and 12: Basic estimation theory

Lecture 11 and 12: Basic estimation theory Lecture ad 2: Basic estimatio theory Sprig 202 - EE 94 Networked estimatio ad cotrol Prof. Kha March 2 202 I. MAXIMUM-LIKELIHOOD ESTIMATORS The maximum likelihood priciple is deceptively simple. Louis

More information

Lecture 12: September 27

Lecture 12: September 27 36-705: Itermediate Statistics Fall 207 Lecturer: Siva Balakrisha Lecture 2: September 27 Today we will discuss sufficiecy i more detail ad the begi to discuss some geeral strategies for costructig estimators.

More information

f(1), and so, if f is continuous, f(x) = f(1)x.

f(1), and so, if f is continuous, f(x) = f(1)x. 2.2.35: Let f be a additive fuctio. i Clearly fx = fx ad therefore f x = fx for all Z+ ad x R. Hece, for ay, Z +, f = f, ad so, if f is cotiuous, fx = fx. ii Suppose that f is bouded o soe o-epty ope set.

More information

Tomoki Toda. Augmented Human Communication Laboratory Graduate School of Information Science

Tomoki Toda. Augmented Human Communication Laboratory Graduate School of Information Science Seuetial Data Modelig d class Basics of seuetial data odelig ooki oda Augeted Hua Couicatio Laboratory Graduate School of Iforatio Sciece Basic Aroaches How to efficietly odel joit robability of high diesioal

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

Supplementary Material

Supplementary Material Suppleetary Material Wezhuo Ya a0096049@us.edu.s Departet of Mechaical Eieeri, Natioal Uiversity of Siapore, Siapore 117576 Hua Xu pexuh@us.edu.s Departet of Mechaical Eieeri, Natioal Uiversity of Siapore,

More information

REGRESSION WITH QUADRATIC LOSS

REGRESSION WITH QUADRATIC LOSS REGRESSION WITH QUADRATIC LOSS MAXIM RAGINSKY Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X, Y ), where, as before, X is a R d

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

Maximum Likelihood Estimation and Complexity Regularization

Maximum Likelihood Estimation and Complexity Regularization ECE90 Sprig 004 Statistical Regularizatio ad Learig Theory Lecture: 4 Maximum Likelihood Estimatio ad Complexity Regularizatio Lecturer: Rob Nowak Scribe: Pam Limpiti Review : Maximum Likelihood Estimatio

More information

Jacobi symbols. p 1. Note: The Jacobi symbol does not necessarily distinguish between quadratic residues and nonresidues. That is, we could have ( a

Jacobi symbols. p 1. Note: The Jacobi symbol does not necessarily distinguish between quadratic residues and nonresidues. That is, we could have ( a Jacobi sybols efiitio Let be a odd positive iteger If 1, the Jacobi sybol : Z C is the costat fuctio 1 1 If > 1, it has a decopositio ( as ) a product of (ot ecessarily distict) pries p 1 p r The Jacobi

More information

April 1980 TR/96. Extrapolation techniques for first order hyperbolic partial differential equations. E.H. Twizell

April 1980 TR/96. Extrapolation techniques for first order hyperbolic partial differential equations. E.H. Twizell TR/96 Apri 980 Extrapoatio techiques for first order hyperboic partia differetia equatios. E.H. Twize W96086 (0) 0. Abstract A uifor grid of step size h is superiposed o the space variabe x i the first

More information

Largest Entries of Sample Correlation Matrices from Equi-correlated Normal Populations

Largest Entries of Sample Correlation Matrices from Equi-correlated Normal Populations Largest Etries of Saple Correlatio Matrices fro Equi-correlated Noral Populatios Jiaqig Fa ad Tiefeg Jiag Priceto Uiversity ad Uiversity of Miesota Abstract The paper studies the liitig distributio of

More information

Lecture Outline. 2 Separating Hyperplanes. 3 Banach Mazur Distance An Algorithmist s Toolkit October 22, 2009

Lecture Outline. 2 Separating Hyperplanes. 3 Banach Mazur Distance An Algorithmist s Toolkit October 22, 2009 18.409 A Algorithist s Toolkit October, 009 Lecture 1 Lecturer: Joatha Keler Scribes: Alex Levi (009) 1 Outlie Today we ll go over soe of the details fro last class ad ake precise ay details that were

More information

GENERATING FUNCTIONS

GENERATING FUNCTIONS GENERATING FUNCTIONS XI CHEN. Exapes Questio.. Toss a coi ties ad fid the probabiity of gettig exacty k heads. Represet H by x ad T by x 0 ad a sequece, say, HTHHT by (x (x 0 (x (x (x 0. We see that a

More information

Chapter 2. Asymptotic Notation

Chapter 2. Asymptotic Notation Asyptotic Notatio 3 Chapter Asyptotic Notatio Goal : To siplify the aalysis of ruig tie by gettig rid of details which ay be affected by specific ipleetatio ad hardware. [1] The Big Oh (O-Notatio) : It

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 20

ECE Spring Prof. David R. Jackson ECE Dept. Notes 20 ECE 6341 Sprig 016 Prof. David R. Jackso ECE Dept. Notes 0 1 Spherical Wave Fuctios Cosider solvig ψ + k ψ = 0 i spherical coordiates z φ θ r y x Spherical Wave Fuctios (cot.) I spherical coordiates we

More information

Lecture 13: Maximum Likelihood Estimation

Lecture 13: Maximum Likelihood Estimation ECE90 Sprig 007 Statistical Learig Theory Istructor: R. Nowak Lecture 3: Maximum Likelihood Estimatio Summary of Lecture I the last lecture we derived a risk (MSE) boud for regressio problems; i.e., select

More information

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1. Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

More information

10/ Statistical Machine Learning Homework #1 Solutions

10/ Statistical Machine Learning Homework #1 Solutions Caregie Mello Uiversity Departet of Statistics & Data Sciece 0/36-70 Statistical Macie Learig Hoework # Solutios Proble [40 pts.] DUE: February, 08 Let X,..., X P were X i [0, ] ad P as desity p. Let p

More information

We have also learned that, thanks to the Central Limit Theorem and the Law of Large Numbers,

We have also learned that, thanks to the Central Limit Theorem and the Law of Large Numbers, Cofidece Itervals III What we kow so far: We have see how to set cofidece itervals for the ea, or expected value, of a oral probability distributio, both whe the variace is kow (usig the stadard oral,

More information

Stat 200 -Testing Summary Page 1

Stat 200 -Testing Summary Page 1 Stat 00 -Testig Summary Page 1 Mathematicias are like Frechme; whatever you say to them, they traslate it ito their ow laguage ad forthwith it is somethig etirely differet Goethe 1 Large Sample Cofidece

More information

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors ECONOMETRIC THEORY MODULE XIII Lecture - 34 Asymptotic Theory ad Stochastic Regressors Dr. Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Asymptotic theory The asymptotic

More information

arxiv: v1 [math.st] 12 Dec 2018

arxiv: v1 [math.st] 12 Dec 2018 DIVERGENCE MEASURES ESTIMATION AND ITS ASYMPTOTIC NORMALITY THEORY : DISCRETE CASE arxiv:181.04795v1 [ath.st] 1 Dec 018 Abstract. 1) BA AMADOU DIADIÉ AND 1,,4) LO GANE SAMB 1. Itroductio 1.1. Motivatios.

More information

Lecture 23: Minimal sufficiency

Lecture 23: Minimal sufficiency Lecture 23: Miimal sufficiecy Maximal reductio without loss of iformatio There are may sufficiet statistics for a give problem. I fact, X (the whole data set) is sufficiet. If T is a sufficiet statistic

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Statistics and Data Analysis in MATLAB Kendrick Kay, February 28, Lecture 4: Model fitting

Statistics and Data Analysis in MATLAB Kendrick Kay, February 28, Lecture 4: Model fitting Statistics ad Data Aalysis i MATLAB Kedrick Kay, kedrick.kay@wustl.edu February 28, 2014 Lecture 4: Model fittig 1. The basics - Suppose that we have a set of data ad suppose that we have selected the

More information

Mixture models (cont d)

Mixture models (cont d) 6.867 Machie learig, lecture 5 (Jaakkola) Lecture topics: Differet types of ixture odels (cot d) Estiatig ixtures: the EM algorith Mixture odels (cot d) Basic ixture odel Mixture odels try to capture ad

More information

Some remarks on the paper Some elementary inequalities of G. Bennett

Some remarks on the paper Some elementary inequalities of G. Bennett Soe rears o the paper Soe eleetary iequalities of G. Beett Dag Ah Tua ad Luu Quag Bay Vieta Natioal Uiversity - Haoi Uiversity of Sciece Abstract We give soe couterexaples ad soe rears of soe of the corollaries

More information

Inverse Matrix. A meaning that matrix B is an inverse of matrix A.

Inverse Matrix. A meaning that matrix B is an inverse of matrix A. Iverse Matrix Two square matrices A ad B of dimesios are called iverses to oe aother if the followig holds, AB BA I (11) The otio is dual but we ofte write 1 B A meaig that matrix B is a iverse of matrix

More information

A string of not-so-obvious statements about correlation in the data. (This refers to the mechanical calculation of correlation in the data.

A string of not-so-obvious statements about correlation in the data. (This refers to the mechanical calculation of correlation in the data. STAT-UB.003 NOTES for Wedesday 0.MAY.0 We will use the file JulieApartet.tw. We ll give the regressio of Price o SqFt, show residual versus fitted plot, save residuals ad fitted. Give plot of (Resid, Price,

More information

ECE 901 Lecture 13: Maximum Likelihood Estimation

ECE 901 Lecture 13: Maximum Likelihood Estimation ECE 90 Lecture 3: Maximum Likelihood Estimatio R. Nowak 5/7/009 The focus of this lecture is to cosider aother approach to learig based o maximum likelihood estimatio. Ulike earlier approaches cosidered

More information

Contents Two Sample t Tests Two Sample t Tests

Contents Two Sample t Tests Two Sample t Tests Cotets 3.5.3 Two Saple t Tests................................... 3.5.3 Two Saple t Tests Setup: Two Saples We ow focus o a sceario where we have two idepedet saples fro possibly differet populatios. Our

More information

Supplementary Material on Testing for changes in Kendall s tau

Supplementary Material on Testing for changes in Kendall s tau Suppemetary Materia o Testig for chages i Keda s tau Herod Dehig Uiversity of Bochum Daie Voge Uiversity of Aberdee Marti Weder Uiversity of Greifswad Domiik Wied Uiversity of Cooge Abstract This documet

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

Star Saturation Number of Random Graphs

Star Saturation Number of Random Graphs Star Saturatio Number of Radom Graphs A. Mohammadia B. Tayfeh-Rezaie Schoo of Mathematics, Istitute for Research i Fudameta Scieces IPM, P.O. Box 19395-5746, Tehra, Ira ai m@ipm.ir tayfeh-r@ipm.ir Abstract

More information

The Hypergeometric Coupon Collection Problem and its Dual

The Hypergeometric Coupon Collection Problem and its Dual Joural of Idustrial ad Systes Egieerig Vol., o., pp -7 Sprig 7 The Hypergeoetric Coupo Collectio Proble ad its Dual Sheldo M. Ross Epstei Departet of Idustrial ad Systes Egieerig, Uiversity of Souther

More information

THE GREATEST ORDER OF THE DIVISOR FUNCTION WITH INCREASING DIMENSION

THE GREATEST ORDER OF THE DIVISOR FUNCTION WITH INCREASING DIMENSION MATHEMATICA MONTISNIGRI Vol XXVIII (013) 17-5 THE GREATEST ORDER OF THE DIVISOR FUNCTION WITH INCREASING DIMENSION GLEB V. FEDOROV * * Mechaics ad Matheatics Faculty Moscow State Uiversity Moscow, Russia

More information

IIT JAM Mathematical Statistics (MS) 2006 SECTION A

IIT JAM Mathematical Statistics (MS) 2006 SECTION A IIT JAM Mathematical Statistics (MS) 6 SECTION A. If a > for ad lim a / L >, the which of the followig series is ot coverget? (a) (b) (c) (d) (d) = = a = a = a a + / a lim a a / + = lim a / a / + = lim

More information

Regression with quadratic loss

Regression with quadratic loss Regressio with quadratic loss Maxim Ragisky October 13, 2015 Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X,Y, where, as before,

More information

x !1! + 1!2!

x !1! + 1!2! 4 Euler-Maclauri Suatio Forula 4. Beroulli Nuber & Beroulli Polyoial 4.. Defiitio of Beroulli Nuber Beroulli ubers B (,,3,) are defied as coefficiets of the followig equatio. x e x - B x! 4.. Expreesio

More information

The Probabilities of Large Deviations for the Chi-square and Log-likelihood Ratio Statistics Sherzod Mirakhmedov

The Probabilities of Large Deviations for the Chi-square and Log-likelihood Ratio Statistics Sherzod Mirakhmedov The Probabiities of Large Deiatios for the Chi-square a Log-ieihoo Ratio Statistics Sherzo Miraheo Istitute of Matheatics. atioa Uiersity of Uzbeista 005 Tashet Duro yui st. 9 e-ai: shiraheo@yahoo.co Abstract.

More information

Ratio of Two Random Variables: A Note on the Existence of its Moments

Ratio of Two Random Variables: A Note on the Existence of its Moments Metodološki zvezki, Vol. 3, o., 6, -7 Ratio of wo Rado Variables: A ote o the Existece of its Moets Ato Cedilik, Kataria Košel, ad Adre Bleec 3 Abstract o eable correct statistical iferece, the kowledge

More information

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization ECE 90 Lecture 4: Maximum Likelihood Estimatio ad Complexity Regularizatio R Nowak 5/7/009 Review : Maximum Likelihood Estimatio We have iid observatios draw from a ukow distributio Y i iid p θ, i,, where

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

Optimal Estimator for a Sample Set with Response Error. Ed Stanek

Optimal Estimator for a Sample Set with Response Error. Ed Stanek Optial Estiator for a Saple Set wit Respose Error Ed Staek Itroductio We develop a optial estiator siilar to te FP estiator wit respose error tat was cosidered i c08ed63doc Te first 6 pages of tis docuet

More information

Available online at J. Math. Comput. Sci. 4 (2014), No. 3, ISSN:

Available online at   J. Math. Comput. Sci. 4 (2014), No. 3, ISSN: Available olie at http://scik.org J. Math. Coput. Sci. (1, No. 3, 9-5 ISSN: 197-537 ON SYMMETRICAL FUNCTIONS WITH BOUNDED BOUNDARY ROTATION FUAD. S. M. AL SARARI 1,, S. LATHA 1 Departet of Studies i Matheatics,

More information

AN EFFICIENT ESTIMATION METHOD FOR THE PARETO DISTRIBUTION

AN EFFICIENT ESTIMATION METHOD FOR THE PARETO DISTRIBUTION Joural of Statistics: Advaces i Theory ad Applicatios Volue 3, Nuber, 00, Pages 6-78 AN EFFICIENT ESTIMATION METHOD FOR THE PARETO DISTRIBUTION Departet of Matheatics Brock Uiversity St. Catharies, Otario

More information

Zeros of Polynomials

Zeros of Polynomials Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree

More information

Estimation of the Mean and the ACVF

Estimation of the Mean and the ACVF Chapter 5 Estimatio of the Mea ad the ACVF A statioary process {X t } is characterized by its mea ad its autocovariace fuctio γ ), ad so by the autocorrelatio fuctio ρ ) I this chapter we preset the estimators

More information

Define a Markov chain on {1,..., 6} with transition probability matrix P =

Define a Markov chain on {1,..., 6} with transition probability matrix P = Pla Group Work 0. The title says it all Next Tie: MCMC ad Geeral-state Markov Chais Midter Exa: Tuesday 8 March i class Hoework 4 due Thursday Uless otherwise oted, let X be a irreducible, aperiodic Markov

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables

Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables Some Basic Probability Cocepts 2. Experimets, Outcomes ad Radom Variables A radom variable is a variable whose value is ukow util it is observed. The value of a radom variable results from a experimet;

More information

Lecture 19. sup y 1,..., yn B d n

Lecture 19. sup y 1,..., yn B d n STAT 06A: Polyomials of adom Variables Lecture date: Nov Lecture 19 Grothedieck s Iequality Scribe: Be Hough The scribes are based o a guest lecture by ya O Doell. I this lecture we prove Grothedieck s

More information

5.1 Review of Singular Value Decomposition (SVD)

5.1 Review of Singular Value Decomposition (SVD) MGMT 69000: Topics i High-dimesioal Data Aalysis Falll 06 Lecture 5: Spectral Clusterig: Overview (cotd) ad Aalysis Lecturer: Jiamig Xu Scribe: Adarsh Barik, Taotao He, September 3, 06 Outlie Review of

More information

x 2 x x x x x + x x +2 x

x 2 x x x x x + x x +2 x Math 5440: Notes o particle radom walk Aaro Fogelso September 6, 005 Derivatio of the diusio equatio: Imagie that there is a distributio of particles spread alog the x-axis ad that the particles udergo

More information

Queueing Theory II. Summary. M/M/1 Output process Networks of Queue Method of Stages. General Distributions

Queueing Theory II. Summary. M/M/1 Output process Networks of Queue Method of Stages. General Distributions Queueig Theory II Suary M/M/1 Output process Networks of Queue Method of Stages Erlag Distributio Hyperexpoetial Distributio Geeral Distributios Ebedded Markov Chais 1 M/M/1 Output Process Burke s Theore:

More information

Lecture 19. Curve fitting I. 1 Introduction. 2 Fitting a constant to measured data

Lecture 19. Curve fitting I. 1 Introduction. 2 Fitting a constant to measured data Lecture 9 Curve fittig I Itroductio Suppose we are preseted with eight poits of easured data (x i, y j ). As show i Fig. o the left, we could represet the uderlyig fuctio of which these data are saples

More information

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam. Probability ad Statistics FS 07 Secod Sessio Exam 09.0.08 Time Limit: 80 Miutes Name: Studet ID: This exam cotais 9 pages (icludig this cover page) ad 0 questios. A Formulae sheet is provided with the

More information

A Central Limit Theorem for Belief Functions

A Central Limit Theorem for Belief Functions A Cetral Limit Theorem for Belief Fuctios Larry G. Estei Kyougwo Seo November 7, 2. CLT for Belief Fuctios The urose of this Note is to rove a form of CLT (Theorem.4) that is used i Estei ad Seo (2). More

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

Stat 543 Exam 3 Spring 2016

Stat 543 Exam 3 Spring 2016 Stat 543 Exam 3 Sprig 06 I have either give or received uauthorized assistace o this exam. Name Siged Date Name Prited This exam cosists of parts. Do at east 8 of them. I wi score aswers at 0 poits apiece

More information

Complex Analysis Spring 2001 Homework I Solution

Complex Analysis Spring 2001 Homework I Solution Complex Aalysis Sprig 2001 Homework I Solutio 1. Coway, Chapter 1, sectio 3, problem 3. Describe the set of poits satisfyig the equatio z a z + a = 2c, where c > 0 ad a R. To begi, we see from the triagle

More information

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator Ecoomics 24B Relatio to Method of Momets ad Maximum Likelihood OLSE as a Maximum Likelihood Estimator Uder Assumptio 5 we have speci ed the distributio of the error, so we ca estimate the model parameters

More information

CHAPTER 6 RESISTANCE FACTOR FOR THE DESIGN OF COMPOSITE SLABS

CHAPTER 6 RESISTANCE FACTOR FOR THE DESIGN OF COMPOSITE SLABS CHAPTER 6 RESISTANCE FACTOR FOR THE DESIGN OF COMPOSITE SLABS 6.1. Geeral Probability-based desig criteria i the for of load ad resistace factor desig (LRFD) are ow applied for ost costructio aterials.

More information

Learning Theory for Conditional Risk Minimization: Supplementary Material

Learning Theory for Conditional Risk Minimization: Supplementary Material Learig Theory for Coditioal Risk Miiizatio: Suppleetary Material Alexader Zii IST Austria azii@istacat Christoph H Lapter IST Austria chl@istacat Proofs Proof of Theore After the applicatio of (6) ad (8)

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Chapter 12 EM algorithms The Expectation-Maximization (EM) algorithm is a maximum likelihood method for models that have hidden variables eg. Gaussian

Chapter 12 EM algorithms The Expectation-Maximization (EM) algorithm is a maximum likelihood method for models that have hidden variables eg. Gaussian Chapter 2 EM algorithms The Expectatio-Maximizatio (EM) algorithm is a maximum likelihood method for models that have hidde variables eg. Gaussia Mixture Models (GMMs), Liear Dyamic Systems (LDSs) ad Hidde

More information

The Poisson Process *

The Poisson Process * OpeStax-CNX module: m11255 1 The Poisso Process * Do Johso This work is produced by OpeStax-CNX ad licesed uder the Creative Commos Attributio Licese 1.0 Some sigals have o waveform. Cosider the measuremet

More information

Math 4707 Spring 2018 (Darij Grinberg): midterm 2 page 1. Math 4707 Spring 2018 (Darij Grinberg): midterm 2 with solutions [preliminary version]

Math 4707 Spring 2018 (Darij Grinberg): midterm 2 page 1. Math 4707 Spring 2018 (Darij Grinberg): midterm 2 with solutions [preliminary version] Math 4707 Sprig 08 Darij Griberg: idter page Math 4707 Sprig 08 Darij Griberg: idter with solutios [preliiary versio] Cotets 0.. Coutig first-eve tuples......................... 3 0.. Coutig legal paths

More information

Lecture 10 October Minimaxity and least favorable prior sequences

Lecture 10 October Minimaxity and least favorable prior sequences STATS 300A: Theory of Statistics Fall 205 Lecture 0 October 22 Lecturer: Lester Mackey Scribe: Brya He, Rahul Makhijai Warig: These otes may cotai factual ad/or typographic errors. 0. Miimaxity ad least

More information

Lecture 7: October 18, 2017

Lecture 7: October 18, 2017 Iformatio ad Codig Theory Autum 207 Lecturer: Madhur Tulsiai Lecture 7: October 8, 207 Biary hypothesis testig I this lecture, we apply the tools developed i the past few lectures to uderstad the problem

More information

Lecture 8: October 20, Applications of SVD: least squares approximation

Lecture 8: October 20, Applications of SVD: least squares approximation Mathematical Toolkit Autum 2016 Lecturer: Madhur Tulsiai Lecture 8: October 20, 2016 1 Applicatios of SVD: least squares approximatio We discuss aother applicatio of sigular value decompositio (SVD) of

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

Matrix Algebra 2.2 THE INVERSE OF A MATRIX Pearson Education, Inc.

Matrix Algebra 2.2 THE INVERSE OF A MATRIX Pearson Education, Inc. 2 Matrix Algebra 2.2 THE INVERSE OF A MATRIX MATRIX OPERATIONS A matrix A is said to be ivertible if there is a matrix C such that CA = I ad AC = I where, the idetity matrix. I = I I this case, C is a

More information

Matrix Representation of Data in Experiment

Matrix Representation of Data in Experiment Matrix Represetatio of Data i Experimet Cosider a very simple model for resposes y ij : y ij i ij, i 1,; j 1,,..., (ote that for simplicity we are assumig the two () groups are of equal sample size ) Y

More information

Element sampling: Part 2

Element sampling: Part 2 Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

More information

Direction: This test is worth 150 points. You are required to complete this test within 55 minutes.

Direction: This test is worth 150 points. You are required to complete this test within 55 minutes. Term Test 3 (Part A) November 1, 004 Name Math 6 Studet Number Directio: This test is worth 10 poits. You are required to complete this test withi miutes. I order to receive full credit, aswer each problem

More information

Limit Theorems. Convergence in Probability. Let X be the number of heads observed in n tosses. Then, E[X] = np and Var[X] = np(1-p).

Limit Theorems. Convergence in Probability. Let X be the number of heads observed in n tosses. Then, E[X] = np and Var[X] = np(1-p). Limit Theorems Covergece i Probability Let X be the umber of heads observed i tosses. The, E[X] = p ad Var[X] = p(-p). L O This P x p NM QP P x p should be close to uity for large if our ituitio is correct.

More information

18.S34 (FALL, 2007) GREATEST INTEGER PROBLEMS. n + n + 1 = 4n + 2.

18.S34 (FALL, 2007) GREATEST INTEGER PROBLEMS. n + n + 1 = 4n + 2. 18.S34 (FALL, 007) GREATEST INTEGER PROBLEMS Note: We use the otatio x for the greatest iteger x, eve if the origial source used the older otatio [x]. 1. (48P) If is a positive iteger, prove that + + 1

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

18.01 Calculus Jason Starr Fall 2005

18.01 Calculus Jason Starr Fall 2005 Lecture 18. October 5, 005 Homework. Problem Set 5 Part I: (c). Practice Problems. Course Reader: 3G 1, 3G, 3G 4, 3G 5. 1. Approximatig Riema itegrals. Ofte, there is o simpler expressio for the atiderivative

More information

BOUNDS ON SOME VAN DER WAERDEN NUMBERS. Tom Brown Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6

BOUNDS ON SOME VAN DER WAERDEN NUMBERS. Tom Brown Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6 BOUNDS ON SOME VAN DER WAERDEN NUMBERS To Brow Departet of Matheatics, Sio Fraser Uiversity, Buraby, BC V5A S6 Bruce M Lada Departet of Matheatics, Uiversity of West Georgia, Carrollto, GA 308 Aaro Robertso

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22 CS 70 Discrete Mathematics for CS Sprig 2007 Luca Trevisa Lecture 22 Aother Importat Distributio The Geometric Distributio Questio: A biased coi with Heads probability p is tossed repeatedly util the first

More information

Al Lehnen Madison Area Technical College 10/5/2014

Al Lehnen Madison Area Technical College 10/5/2014 The Correlatio of Two Rado Variables Page Preliiary: The Cauchy-Schwarz-Buyakovsky Iequality For ay two sequeces of real ubers { a } ad = { b } =, the followig iequality is always true. Furtherore, equality

More information