REGRESSION WITH QUADRATIC LOSS

Size: px
Start display at page:

Download "REGRESSION WITH QUADRATIC LOSS"

Transcription

1 REGRESSION WITH QUADRATIC LOSS MAXIM RAGINSKY Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X, Y ), where, as before, X is a R d -valued feature vector or iput vector) ad Y is the real-valued respose or output). We assume that the ukow joit distributio P = P Z = P XY of X, Y ) belogs to some class P of probability distributios over R d R. The learig problem, the, is to produce a predictor of Y give X o the basis of a i.i.d. traiig sample Z = Z 1,..., Z ) = X 1, Y 1 ),..., X, Y )) from P. A predictor is just a measurable) fuctio f : R d R, ad we evaluate its performace by the expected quadratic loss Lf) E[Y fx)) 2. As we have see before, the smallest expected loss is achieved by the regressio fuctio f x) = E[Y X = x, i.e., Moreover, for ay other f we have L if f Lf) = Lf ) = E[X E[Y X) 2. Lf) = L + f f 2 L 2 P X ), where f f 2 L 2 P X ) = R d fx) f x) 2 P X dx). Sice we do ot kow P, i geeral we caot hope to lear f, so, as before, istead we aim at fidig a good approximatio to the best predictor i some class F of fuctios f : R d R, i.e., to use the traiig data Z to costruct a predictor f F, such that L f ) L F) if f F Lf) with high probability. We will assume that the margial distributio P X of the feature vector is supported o a closed subset X R d, ad that the joit distributio P of X, Y ) is such that, with probability oe, 1) Y M ad f X) M. for some costat 0 < M <. Thus we ca assume that the traiig samples belog to the set Z = X [ M, M. We will also assume that the class F is a subset of a suitable reproducig kerel Hilbert space RKHS) H K iduced by some Mercer kerel K : X X R. It will be useful to defie 2) C K sup Kx, x); x X we will assume that C K is fiite. The followig simple boud will come i hady: Date: March 28,

2 Lemma 1. For ay fuctio f : X R, defie the sup orm 3) The for ay f H K we have Proof. For ay f H K ad x X, f sup fx). x X f C K f K. fx) = f, K x K f K K x K = f K Kx, x), where the first step is by the reproducig kerel property, while the secod step is by Cauchy Schwarz. Takig the supremum of both sides over X, we get 3). 1. ERM over a ball i RKHS First, we will look at the simplest case: ERM over a ball i H K. Thus, we pick the radius λ > 0 ad take F = F λ = {f H K : f K λ}. The ERM algorithm outputs the predictor 1 f = arg mi L f) arg mi Y i fx i )) 2, where L f) deotes, as usual, the empirical loss i this case, empirical quadratic loss) of f. Theorem 1. With probability at least 1 δ, L f ) L F λ ) + 8M + 2C Kλ) 2 32 log1/δ) 4) + M 2 + C 2 Kλ 2 ) Proof. First let us itroduce some otatio. Let us deote the quadratic loss fuctio y, u) y u) 2 by ly, u), ad for ay f : R d R let l fx, y) ly, fx)) = y fx)) 2 Let l F λ deote the fuctio class {l f : f F λ }. Let f λ deote ay miimizer of Lf) over F λ, i.e., Lf λ ) = L F λ ). As usual, we write 5) L f ) L F λ ) = L f ) L F λ ) = L f ) L f ) + L f ) L f λ ) + L f λ ) Lf λ ) 2 sup L f) Lf) = 2 sup P l f) P l f) = 2 l F λ ), where we have defied the uiform deviatio l F) sup P l f) P l f). f F Next we show that, as a fuctio of the traiig sample Z, gz ) = l F λ ) has bouded differeces. Ideed, for ay 1 i, ay z Z, ad ay z i Z, let z i) deote z with the ith 2

3 coordiate replaced by z i. The gz ) gzi) ) 1 sup y i fx i )) 2 y i fx i)) 2 2 sup 4 4 sup x X y M sup y fx) 2 ) M 2 + sup f 2 M 2 + CKλ 2 2), where the last lie is by Lemma 1. Thus, l F λ ) has the bouded differece property with c 1 =... = c = 4M 2 + CK 2 λ2 )/, so McDiarmid s iequality says that, for ay t > 0, ) t 2 ) P l F λ ) E l F λ ) + t exp 8M 2 + CK 2 λ2 ) 2. Therefore, lettig we see that 2 log1/δ) t = 2M 2 + CKλ 2 2 ), l F λ ) E l F λ ) + 2M 2 + C 2 Kλ 2 ) with probability at least 1 δ. Moreover, by symmetrizatio we have 2 log1/δ) 6) E l F λ ) 2ER l F λ Z )), where 7) is the Rademacher average of the radom) set [ R l F λ Z )) = 1 E σ sup σ i l fz i ) l F λ Z ) = {l fz 1 ),..., l fz )) : f F λ } = { Y 1 fx 1 ) 2 ),..., Y fx )) 2 ) : f F λ }. To boud the Rademacher average i 7), we will eed to use the cotractio priciple. To that ed, let us fix ay y [ M, M ad ay u, v [ C K λ, C K λ. The ly, u) ly, v) = y 2 2yu + u 2 ) y 2 2yv + v 2 ) = 2yv u) v 2 u 2 ) = 2 y u v u v 2M + 2C K λ) u v. Hece, by the cotractio priciple we ca write [ R l F λ Z )) 2M + 2C Kλ) 8) E σ sup σ i Y i fx i )). 3

4 Moreover 9) E σ [ [ sup σ i Y i fx i )) E σ σ i Y i + E σ sup σ i fx i ) Yi 2 + R F λ Z )) M + C K λ), where the first step uses the triagle iequality, the secod step uses the result from the previous lecture o the expected absolute value of Rademacher sums, ad the third step uses 1) ad the boud o the Rademacher average over a ball i a RKHS. Combiig 6) through 9) ad overboudig 9) slightly), we coclude that 10) l F λ ) 4M + 2C Kλ) 2 + 2M 2 + C 2 Kλ 2 ) 2 log1/δ) with probability at least 1 δ. Fially, combiig this with 5), we get 4). 2. Regularized least squares i a RKHS The observatio we had made may times by ow is that whe the joit distributio of the iput-output pair X, Y ) X R is ukow, there is o hope i geeral to lear the optimal predictor f from a fiite traiig sample. Thus, restrictig our attetio to some hypothesis space F, which is a proper subset of the class of all measurable fuctios f : X R, is a form of isurace: If we do ot do this, the we ca always fid some fuctio f that attais zero empirical loss, yet performs spectacularly badly o the iputs outside the traiig set. Whe this happes, we say that our leared predictor overfits. O the other had, if our hypothesis space F cosists of well-behaved fuctios, the it is possible to lear a predictor that achieves a graceful balace betwee i-sample data fit ad out-of-sample geeralizatio. The price we pay is the approximatio error L F) L if Lf) if Lf) 0. f F f:x R I the regressio settig, the approximatio error ca be expressed as L F) L = if f F f f 2 P X, where f x) = E[Y X = x is the regressio fuctio the MMSE predictor of Y give X). Whe see from this perspective, the use of a restricted hypothesis space F is a form of regularizatio a way of guarateeig that the leared predictor performs well outside the traiig sample. However, this is ot the oly way to achieve regularizatio. I this sectio, we will aalyze aother way: complexity regularizatio. I a utshell, complexity regularizatio is a modificatio of the ERM scheme that allows us to search over a fairly rich hypothesis space by addig a pealty term. Complexity regularizatio is a very geeral techique with wide applicability. We will look at a particular example of complexity regularizatio over a RKHS ad derive a simple boud o its geeralizatio performace. To set thigs up, let > 0 be a regularizatio parameter. Itroduce the regularized quadratic loss J f) Lf) + f 2 K ad its empirical couterpart J, f) L f) + f 2 K. 4

5 Defie the fuctios 11) f arg mi J f) f H K ad 12) f, arg mi J, f). f H K We will refer to 12) as the regularized kerel least squares RKLS) algorithm. Note that the miimizatio i 11) ad 12) takes place i the etire RKHS H K, rather tha a subset, say, a ball. However, the additio of the regularizatio term f 2 K esures that the RKLS algorithm does ot just select ay fuctio f H K that happes to fit the traiig data well istead, it weighs the goodess-of-fit term L f) term agaist the complexity f 2 K, sice a very large value of f 2 K would idicate that f might wiggle aroud a lot ad, therefore, overfit the traiig sample. The regularizatio parameter > 0 cotrols the relative importace of the goodess-of-fit ad the complexity terms. We have the followig basic boud o the geeralizatio performace of RKLS: Theorem 2. With probability at least 1 δ, L f 4M 13), ) L A) + where A) is the regularized approximatio error. Proof. We start with the followig lemma: Lemma C K ) M 2 + C2 K M 2 ) + A)) 2 log2/δ) [ if Lf) + f 2 K L f H K 14) L f, ) L δ f, ) δ f ) + A), where δ f) Lf) L f) for all f. Proof. First, a obvious overboudig gives L f, ) L J f, ) L. The J f, ) = L f, ) + f, 2 K = L f, ) L f, ) + L f, ) + f, 2 K }{{} =J, b f,) = L f, ) L f, ) + J, f, ) J, f ) + J, f ) L f, ) L f, ) + J, f ) = L f, ) L f, ) + L f ) + f 2 K = L f, ) L f, ) + L f ) Lf ) + Lf ) + f 2 K = L f, ) L f, ) + L f ) Lf ) + J f ). 5

6 This gives ad we are doe. L f, ) L L f, ) L f, ) + L f ) Lf ) + J f ) L = L f, ) L f, ) + L f ) Lf [ ) + if Lf) + f 2 K L f H = L f, ) L f, ) + L f ) Lf ) + A), Lemma 2 shows that the excess loss of the regularized empirical loss miimizer f, is bouded from above by the sum of three terms: the deviatio δ f, ) L f, ) L f, ) of f, itself, the egative) deviatio δ f ) L f ) Lf ) of the best regularized predictor f, ad the approximatio error A). To prove Theorem 2, we will eed to obtai high-probability bouds o the two deviatio terms. To that ed, we eed a lemma: Lemma 3. The fuctios f ad f, satisfy the bouds 15) f A) C K. ad 16) respectively. f, K M with probability oe Proof. To prove 15), we use the fact that A) = Lf ) L + f 2 K f 2 K, which gives f K A)/. From this ad from 3) we obtai 15). For 16), we use the fact that f, miimizes J, f) over all f. I particular, J, f, ) = L f, ) + f, 2 K J, 0) = 1 Y 2 i M 2 w.p. 1, where the last step follows from 1). Rearragig ad usig the fact that L f) 0 for all f, we get 16). Now we are ready to boud δ f, ). For ay R 0, let F R = {f H K : f K R} deote the zero-cetered ball of radius R i the RKHS H K. The Lemma 3 says that f, F M/ with probability oe. Therefore, with probability oe we have δ f, ) = δ f, ) 1 { f, F b M/ } δ f, ) 1 { f, F b M/ } sup δ f) 1 f F { f, F b M/ } M/ }{{} l F M/ ) l F M/ ). 6

7 Cosequetly, we ca carry out the same aalysis as i the proof of Theorem 1. First of all, the fuctio gz ) = l F M/ ) has bouded differeces with ) c 1 =... = c 4 M 2 + sup f 2 4M 2 ) 1 + C2 K f F M/ where the last step uses 16) ad Lemma 1. Therefore, with probability at least 1 δ/2, ) 2 δ f 4M 1 + 2C K ), ) l F M/ ) + 2M C2 K 2 log2/δ) 17), where the secod step follows from 10) with δ replaced by δ/2 ad with λ = M/. It remais to boud δ f ). This is, actually, much easier, sice we are dealig with a sigle data-idepedet fuctio. I particular, ote that we ca write δ f ) = 1 Y i f X i )) 2 E [ Y f X)) 2 = 1 U i, where U i Y i f X i )) 2 E [ Y f X)) 2, 1 i, are i.i.d. radom variables with EU i = 0 ad U i sup sup y f x) ) 2 2M 2 + f 2 ) 2 M 2 + C2 K A) ) y [ M,M x X with probability oe, where we have used 1) ad 15). We ca therefore use Hoeffdig s iequality to write, for ay t 0, P δ f ) t ) ) ) 1 t 2 = P U i t exp 8 M 2 + CK 2 A)/) 2 This implies that 18) δ f ) 2 M 2 + C2 K A) ) 2 log2/δ) with probability at least 1 δ/2. Combiig 17) ad 18) with 14), we get 13). 7

Regression with quadratic loss

Regression with quadratic loss Regressio with quadratic loss Maxim Ragisky October 13, 2015 Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X,Y, where, as before,

More information

1 Review and Overview

1 Review and Overview CS9T/STATS3: Statistical Learig Theory Lecturer: Tegyu Ma Lecture #6 Scribe: Jay Whag ad Patrick Cho October 0, 08 Review ad Overview Recall i the last lecture that for ay family of scalar fuctios F, we

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract I this lecture we derive risk bouds for kerel methods. We will start by showig that Soft Margi kerel SVM correspods to miimizig

More information

Optimally Sparse SVMs

Optimally Sparse SVMs A. Proof of Lemma 3. We here prove a lower boud o the umber of support vectors to achieve geeralizatio bouds of the form which we cosider. Importatly, this result holds ot oly for liear classifiers, but

More information

Binary classification, Part 1

Binary classification, Part 1 Biary classificatio, Part 1 Maxim Ragisky September 25, 2014 The problem of biary classificatio ca be stated as follows. We have a radom couple Z = (X,Y ), where X R d is called the feature vector ad Y

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week 2 Lecture: Cocept Check Exercises Starred problems are optioal. Excess Risk Decompositio 1. Let X = Y = {1, 2,..., 10}, A = {1,..., 10, 11} ad suppose the data distributio

More information

Empirical Process Theory and Oracle Inequalities

Empirical Process Theory and Oracle Inequalities Stat 928: Statistical Learig Theory Lecture: 10 Empirical Process Theory ad Oracle Iequalities Istructor: Sham Kakade 1 Risk vs Risk See Lecture 0 for a discussio o termiology. 2 The Uio Boud / Boferoi

More information

Lecture 15: Learning Theory: Concentration Inequalities

Lecture 15: Learning Theory: Concentration Inequalities STAT 425: Itroductio to Noparametric Statistics Witer 208 Lecture 5: Learig Theory: Cocetratio Iequalities Istructor: Ye-Chi Che 5. Itroductio Recall that i the lecture o classificatio, we have see that

More information

18.657: Mathematics of Machine Learning

18.657: Mathematics of Machine Learning 8.657: Mathematics of Machie Learig Lecturer: Philippe Rigollet Lecture 0 Scribe: Ade Forrow Oct. 3, 05 Recall the followig defiitios from last time: Defiitio: A fuctio K : X X R is called a positive symmetric

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

Rademacher Complexity

Rademacher Complexity EECS 598: Statistical Learig Theory, Witer 204 Topic 0 Rademacher Complexity Lecturer: Clayto Scott Scribe: Ya Deg, Kevi Moo Disclaimer: These otes have ot bee subjected to the usual scrutiy reserved for

More information

Machine Learning Theory (CS 6783)

Machine Learning Theory (CS 6783) Machie Learig Theory (CS 6783) Lecture 2 : Learig Frameworks, Examples Settig up learig problems. X : istace space or iput space Examples: Computer Visio: Raw M N image vectorized X = 0, 255 M N, SIFT

More information

A survey on penalized empirical risk minimization Sara A. van de Geer

A survey on penalized empirical risk minimization Sara A. van de Geer A survey o pealized empirical risk miimizatio Sara A. va de Geer We address the questio how to choose the pealty i empirical risk miimizatio. Roughly speakig, this pealty should be a good boud for the

More information

Intro to Learning Theory

Intro to Learning Theory Lecture 1, October 18, 2016 Itro to Learig Theory Ruth Urer 1 Machie Learig ad Learig Theory Comig soo 2 Formal Framework 21 Basic otios I our formal model for machie learig, the istaces to be classified

More information

Lecture 3: August 31

Lecture 3: August 31 36-705: Itermediate Statistics Fall 018 Lecturer: Siva Balakrisha Lecture 3: August 31 This lecture will be mostly a summary of other useful expoetial tail bouds We will ot prove ay of these i lecture,

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract We will itroduce the otio of reproducig kerels ad associated Reproducig Kerel Hilbert Spaces (RKHS). We will cosider couple

More information

18.657: Mathematics of Machine Learning

18.657: Mathematics of Machine Learning 8.657: Mathematics of Machie Learig Lecturer: Philippe Rigollet Lecture 4 Scribe: Cheg Mao Sep., 05 I this lecture, we cotiue to discuss the effect of oise o the rate of the excess risk E(h) = R(h) R(h

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

1 Review and Overview

1 Review and Overview DRAFT a fial versio will be posted shortly CS229T/STATS231: Statistical Learig Theory Lecturer: Tegyu Ma Lecture #3 Scribe: Migda Qiao October 1, 2013 1 Review ad Overview I the first half of this course,

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization

ECE 901 Lecture 14: Maximum Likelihood Estimation and Complexity Regularization ECE 90 Lecture 4: Maximum Likelihood Estimatio ad Complexity Regularizatio R Nowak 5/7/009 Review : Maximum Likelihood Estimatio We have iid observatios draw from a ukow distributio Y i iid p θ, i,, where

More information

Maximum Likelihood Estimation and Complexity Regularization

Maximum Likelihood Estimation and Complexity Regularization ECE90 Sprig 004 Statistical Regularizatio ad Learig Theory Lecture: 4 Maximum Likelihood Estimatio ad Complexity Regularizatio Lecturer: Rob Nowak Scribe: Pam Limpiti Review : Maximum Likelihood Estimatio

More information

Supplementary Material for Fast Stochastic AUC Maximization with O(1/n)-Convergence Rate

Supplementary Material for Fast Stochastic AUC Maximization with O(1/n)-Convergence Rate Supplemetary Material for Fast Stochastic AUC Maximizatio with O/-Covergece Rate Migrui Liu Xiaoxua Zhag Zaiyi Che Xiaoyu Wag 3 iabao Yag echical Lemmas ized versio of Hoeffdig s iequality, ote that We

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Lecture 7: October 18, 2017

Lecture 7: October 18, 2017 Iformatio ad Codig Theory Autum 207 Lecturer: Madhur Tulsiai Lecture 7: October 8, 207 Biary hypothesis testig I this lecture, we apply the tools developed i the past few lectures to uderstad the problem

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab Sectio 12 Tests of idepedece ad homogeeity I this lecture we will cosider a situatio whe our observatios are classified by two differet features ad we would like to test if these features are idepedet

More information

lim za n n = z lim a n n.

lim za n n = z lim a n n. Lecture 6 Sequeces ad Series Defiitio 1 By a sequece i a set A, we mea a mappig f : N A. It is customary to deote a sequece f by {s } where, s := f(). A sequece {z } of (complex) umbers is said to be coverget

More information

Linear Regression Demystified

Linear Regression Demystified Liear Regressio Demystified Liear regressio is a importat subject i statistics. I elemetary statistics courses, formulae related to liear regressio are ofte stated without derivatio. This ote iteds to

More information

Lecture 11 and 12: Basic estimation theory

Lecture 11 and 12: Basic estimation theory Lecture ad 2: Basic estimatio theory Sprig 202 - EE 94 Networked estimatio ad cotrol Prof. Kha March 2 202 I. MAXIMUM-LIKELIHOOD ESTIMATORS The maximum likelihood priciple is deceptively simple. Louis

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 3

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 3 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture 3 Tolstikhi Ilya Abstract I this lecture we will prove the VC-boud, which provides a high-probability excess risk boud for the ERM algorithm whe

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = =

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = = Review Problems ICME ad MS&E Refresher Course September 9, 0 Warm-up problems. For the followig matrices A = 0 B = C = AB = 0 fid all powers A,A 3,(which is A times A),... ad B,B 3,... ad C,C 3,... Solutio:

More information

Glivenko-Cantelli Classes

Glivenko-Cantelli Classes CS28B/Stat24B (Sprig 2008 Statistical Learig Theory Lecture: 4 Gliveko-Catelli Classes Lecturer: Peter Bartlett Scribe: Michelle Besi Itroductio This lecture will cover Gliveko-Catelli (GC classes ad itroduce

More information

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance

Hypothesis Testing. Evaluation of Performance of Learned h. Issues. Trade-off Between Bias and Variance Hypothesis Testig Empirically evaluatig accuracy of hypotheses: importat activity i ML. Three questios: Give observed accuracy over a sample set, how well does this estimate apply over additioal samples?

More information

Linear Support Vector Machines

Linear Support Vector Machines Liear Support Vector Machies David S. Roseberg The Support Vector Machie For a liear support vector machie (SVM), we use the hypothesis space of affie fuctios F = { f(x) = w T x + b w R d, b R } ad evaluate

More information

Ada Boost, Risk Bounds, Concentration Inequalities. 1 AdaBoost and Estimates of Conditional Probabilities

Ada Boost, Risk Bounds, Concentration Inequalities. 1 AdaBoost and Estimates of Conditional Probabilities CS8B/Stat4B Sprig 008) Statistical Learig Theory Lecture: Ada Boost, Risk Bouds, Cocetratio Iequalities Lecturer: Peter Bartlett Scribe: Subhrasu Maji AdaBoost ad Estimates of Coditioal Probabilities We

More information

2 Banach spaces and Hilbert spaces

2 Banach spaces and Hilbert spaces 2 Baach spaces ad Hilbert spaces Tryig to do aalysis i the ratioal umbers is difficult for example cosider the set {x Q : x 2 2}. This set is o-empty ad bouded above but does ot have a least upper boud

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 22 CS 70 Discrete Mathematics for CS Sprig 2007 Luca Trevisa Lecture 22 Aother Importat Distributio The Geometric Distributio Questio: A biased coi with Heads probability p is tossed repeatedly util the first

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Self-normalized deviation inequalities with application to t-statistic

Self-normalized deviation inequalities with application to t-statistic Self-ormalized deviatio iequalities with applicatio to t-statistic Xiequa Fa Ceter for Applied Mathematics, Tiaji Uiversity, 30007 Tiaji, Chia Abstract Let ξ i i 1 be a sequece of idepedet ad symmetric

More information

Machine Learning Theory (CS 6783)

Machine Learning Theory (CS 6783) Machie Learig Theory (CS 6783) Lecture 3 : Olie Learig, miimax value, sequetial Rademacher complexity Recap: Miimax Theorem We shall use the celebrated miimax theorem as a key tool to boud the miimax rate

More information

Section 14. Simple linear regression.

Section 14. Simple linear regression. Sectio 14 Simple liear regressio. Let us look at the cigarette dataset from [1] (available to dowload from joural s website) ad []. The cigarette dataset cotais measuremets of tar, icotie, weight ad carbo

More information

A Proof of Birkhoff s Ergodic Theorem

A Proof of Birkhoff s Ergodic Theorem A Proof of Birkhoff s Ergodic Theorem Joseph Hora September 2, 205 Itroductio I Fall 203, I was learig the basics of ergodic theory, ad I came across this theorem. Oe of my supervisors, Athoy Quas, showed

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion .87 Machie learig: lecture Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu Topics The learig problem hypothesis class, estimatio algorithm loss ad estimatio criterio samplig, empirical ad epected losses

More information

Supplementary Material for Fast Stochastic AUC Maximization with O(1/n)-Convergence Rate

Supplementary Material for Fast Stochastic AUC Maximization with O(1/n)-Convergence Rate Supplemetary Material for Fast Stochastic AUC Maximizatio with O/-Covergece Rate Migrui Liu Xiaoxua Zhag Zaiyi Che Xiaoyu Wag 3 iabao Yag echical Lemmas ized versio of Hoeffdig s iequality, ote that We

More information

Lecture 10 October Minimaxity and least favorable prior sequences

Lecture 10 October Minimaxity and least favorable prior sequences STATS 300A: Theory of Statistics Fall 205 Lecture 0 October 22 Lecturer: Lester Mackey Scribe: Brya He, Rahul Makhijai Warig: These otes may cotai factual ad/or typographic errors. 0. Miimaxity ad least

More information

Learnability with Rademacher Complexities

Learnability with Rademacher Complexities Learability with Rademacher Complexities Daiel Khashabi Fall 203 Last Update: September 26, 206 Itroductio Our goal i study of passive ervised learig is to fid a hypothesis h based o a set of examples

More information

Agnostic Learning and Concentration Inequalities

Agnostic Learning and Concentration Inequalities ECE901 Sprig 2004 Statistical Regularizatio ad Learig Theory Lecture: 7 Agostic Learig ad Cocetratio Iequalities Lecturer: Rob Nowak Scribe: Aravid Kailas 1 Itroductio 1.1 Motivatio I the last lecture

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/5.070J Fall 203 Lecture 3 9//203 Large deviatios Theory. Cramér s Theorem Cotet.. Cramér s Theorem. 2. Rate fuctio ad properties. 3. Chage of measure techique.

More information

Monte Carlo Integration

Monte Carlo Integration Mote Carlo Itegratio I these otes we first review basic umerical itegratio methods (usig Riema approximatio ad the trapezoidal rule) ad their limitatios for evaluatig multidimesioal itegrals. Next we itroduce

More information

Lecture 14: Graph Entropy

Lecture 14: Graph Entropy 15-859: Iformatio Theory ad Applicatios i TCS Sprig 2013 Lecture 14: Graph Etropy March 19, 2013 Lecturer: Mahdi Cheraghchi Scribe: Euiwoog Lee 1 Recap Bergma s boud o the permaet Shearer s Lemma Number

More information

Fall 2013 MTH431/531 Real analysis Section Notes

Fall 2013 MTH431/531 Real analysis Section Notes Fall 013 MTH431/531 Real aalysis Sectio 8.1-8. Notes Yi Su 013.11.1 1. Defiitio of uiform covergece. We look at a sequece of fuctios f (x) ad study the coverget property. Notice we have two parameters

More information

Frequentist Inference

Frequentist Inference Frequetist Iferece The topics of the ext three sectios are useful applicatios of the Cetral Limit Theorem. Without kowig aythig about the uderlyig distributio of a sequece of radom variables {X i }, for

More information

Lecture 11: Decision Trees

Lecture 11: Decision Trees ECE9 Sprig 7 Statistical Learig Theory Istructor: R. Nowak Lecture : Decisio Trees Miimum Complexity Pealized Fuctio Recall the basic results of the last lectures: let X ad Y deote the iput ad output spaces

More information

Lecture 6 Simple alternatives and the Neyman-Pearson lemma

Lecture 6 Simple alternatives and the Neyman-Pearson lemma STATS 00: Itroductio to Statistical Iferece Autum 06 Lecture 6 Simple alteratives ad the Neyma-Pearso lemma Last lecture, we discussed a umber of ways to costruct test statistics for testig a simple ull

More information

Information-based Feature Selection

Information-based Feature Selection Iformatio-based Feature Selectio Farza Faria, Abbas Kazeroui, Afshi Babveyh Email: {faria,abbask,afshib}@staford.edu 1 Itroductio Feature selectio is a topic of great iterest i applicatios dealig with

More information

Algebra of Least Squares

Algebra of Least Squares October 19, 2018 Algebra of Least Squares Geometry of Least Squares Recall that out data is like a table [Y X] where Y collects observatios o the depedet variable Y ad X collects observatios o the k-dimesioal

More information

Sieve Estimators: Consistency and Rates of Convergence

Sieve Estimators: Consistency and Rates of Convergence EECS 598: Statistical Learig Theory, Witer 2014 Topic 6 Sieve Estimators: Cosistecy ad Rates of Covergece Lecturer: Clayto Scott Scribe: Julia Katz-Samuels, Brado Oselio, Pi-Yu Che Disclaimer: These otes

More information

NYU Center for Data Science: DS-GA 1003 Machine Learning and Computational Statistics (Spring 2018)

NYU Center for Data Science: DS-GA 1003 Machine Learning and Computational Statistics (Spring 2018) NYU Ceter for Data Sciece: DS-GA 003 Machie Learig ad Computatioal Statistics (Sprig 208) Brett Berstei, David Roseberg, Be Jakubowski Jauary 20, 208 Istructios: Followig most lab ad lecture sectios, we

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

More information

32 estimating the cumulative distribution function

32 estimating the cumulative distribution function 32 estimatig the cumulative distributio fuctio 4.6 types of cofidece itervals/bads Let F be a class of distributio fuctios F ad let θ be some quatity of iterest, such as the mea of F or the whole fuctio

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

Enumerative & Asymptotic Combinatorics

Enumerative & Asymptotic Combinatorics C50 Eumerative & Asymptotic Combiatorics Stirlig ad Lagrage Sprig 2003 This sectio of the otes cotais proofs of Stirlig s formula ad the Lagrage Iversio Formula. Stirlig s formula Theorem 1 (Stirlig s

More information

5.1 A mutual information bound based on metric entropy

5.1 A mutual information bound based on metric entropy Chapter 5 Global Fao Method I this chapter, we exted the techiques of Chapter 2.4 o Fao s method the local Fao method) to a more global costructio. I particular, we show that, rather tha costructig a local

More information

McGill University Math 354: Honors Analysis 3 Fall 2012 Solutions to selected problems

McGill University Math 354: Honors Analysis 3 Fall 2012 Solutions to selected problems McGill Uiversity Math 354: Hoors Aalysis 3 Fall 212 Assigmet 3 Solutios to selected problems Problem 1. Lipschitz fuctios. Let Lip K be the set of all fuctios cotiuous fuctios o [, 1] satisfyig a Lipschitz

More information

ENGI 4421 Confidence Intervals (Two Samples) Page 12-01

ENGI 4421 Confidence Intervals (Two Samples) Page 12-01 ENGI 44 Cofidece Itervals (Two Samples) Page -0 Two Sample Cofidece Iterval for a Differece i Populatio Meas [Navidi sectios 5.4-5.7; Devore chapter 9] From the cetral limit theorem, we kow that, for sufficietly

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Support vector machine revisited

Support vector machine revisited 6.867 Machie learig, lecture 8 (Jaakkola) 1 Lecture topics: Support vector machie ad kerels Kerel optimizatio, selectio Support vector machie revisited Our task here is to first tur the support vector

More information

10-701/ Machine Learning Mid-term Exam Solution

10-701/ Machine Learning Mid-term Exam Solution 0-70/5-78 Machie Learig Mid-term Exam Solutio Your Name: Your Adrew ID: True or False (Give oe setece explaatio) (20%). (F) For a cotiuous radom variable x ad its probability distributio fuctio p(x), it

More information

6.867 Machine learning, lecture 7 (Jaakkola) 1

6.867 Machine learning, lecture 7 (Jaakkola) 1 6.867 Machie learig, lecture 7 (Jaakkola) 1 Lecture topics: Kerel form of liear regressio Kerels, examples, costructio, properties Liear regressio ad kerels Cosider a slightly simpler model where we omit

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)].

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)]. Probability 2 - Notes 0 Some Useful Iequalities. Lemma. If X is a radom variable ad g(x 0 for all x i the support of f X, the P(g(X E[g(X]. Proof. (cotiuous case P(g(X Corollaries x:g(x f X (xdx x:g(x

More information

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018)

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018) Radomized Algorithms I, Sprig 08, Departmet of Computer Sciece, Uiversity of Helsiki Homework : Solutios Discussed Jauary 5, 08). Exercise.: Cosider the followig balls-ad-bi game. We start with oe black

More information

1 Introduction to reducing variance in Monte Carlo simulations

1 Introduction to reducing variance in Monte Carlo simulations Copyright c 010 by Karl Sigma 1 Itroductio to reducig variace i Mote Carlo simulatios 11 Review of cofidece itervals for estimatig a mea I statistics, we estimate a ukow mea µ = E(X) of a distributio by

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial.

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial. Taylor Polyomials ad Taylor Series It is ofte useful to approximate complicated fuctios usig simpler oes We cosider the task of approximatig a fuctio by a polyomial If f is at least -times differetiable

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

Algorithms for Clustering

Algorithms for Clustering CR2: Statistical Learig & Applicatios Algorithms for Clusterig Lecturer: J. Salmo Scribe: A. Alcolei Settig: give a data set X R p where is the umber of observatio ad p is the umber of features, we wat

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

1+x 1 + α+x. x = 2(α x2 ) 1+x

1+x 1 + α+x. x = 2(α x2 ) 1+x Math 2030 Homework 6 Solutios # [Problem 5] For coveiece we let α lim sup a ad β lim sup b. Without loss of geerality let us assume that α β. If α the by assumptio β < so i this case α + β. By Theorem

More information

Problem Set 4 Due Oct, 12

Problem Set 4 Due Oct, 12 EE226: Radom Processes i Systems Lecturer: Jea C. Walrad Problem Set 4 Due Oct, 12 Fall 06 GSI: Assae Gueye This problem set essetially reviews detectio theory ad hypothesis testig ad some basic otios

More information

Statistical Machine Learning II Spring 2017, Learning Theory, Lecture 7

Statistical Machine Learning II Spring 2017, Learning Theory, Lecture 7 Statistical Machie Learig II Sprig 2017, Learig Theory, Lecture 7 1 Itroductio Jea Hoorio jhoorio@purdue.edu So far we have see some techiques for provig geeralizatio for coutably fiite hypothesis classes

More information

A Risk Comparison of Ordinary Least Squares vs Ridge Regression

A Risk Comparison of Ordinary Least Squares vs Ridge Regression Joural of Machie Learig Research 14 (2013) 1505-1511 Submitted 5/12; Revised 3/13; Published 6/13 A Risk Compariso of Ordiary Least Squares vs Ridge Regressio Paramveer S. Dhillo Departmet of Computer

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week Lecture: Cocept Check Exercises Starred problems are optioal. Statistical Learig Theory. Suppose A = Y = R ad X is some other set. Furthermore, assume P X Y is a discrete

More information

Lecture 10: Bounded Linear Operators and Orthogonality in Hilbert Spaces

Lecture 10: Bounded Linear Operators and Orthogonality in Hilbert Spaces Lecture : Bouded Liear Operators ad Orthogoality i Hilbert Spaces 34 Bouded Liear Operator Let ( X, ), ( Y, ) i i be ored liear vector spaces ad { } X Y The, T is said to be bouded if a real uber c such

More information

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT OCTOBER 7, 2016 LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT Geometry of LS We ca thik of y ad the colums of X as members of the -dimesioal Euclidea space R Oe ca

More information

4.3 Growth Rates of Solutions to Recurrences

4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

Math Solutions to homework 6

Math Solutions to homework 6 Math 175 - Solutios to homework 6 Cédric De Groote November 16, 2017 Problem 1 (8.11 i the book): Let K be a compact Hermitia operator o a Hilbert space H ad let the kerel of K be {0}. Show that there

More information

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ.

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ. 2 5. Weighted umber of late jobs 5.1. Release dates ad due dates: maximimizig the weight of o-time jobs Oce we add release dates, miimizig the umber of late jobs becomes a sigificatly harder problem. For

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

Lecture 27. Capacity of additive Gaussian noise channel and the sphere packing bound

Lecture 27. Capacity of additive Gaussian noise channel and the sphere packing bound Lecture 7 Ageda for the lecture Gaussia chael with average power costraits Capacity of additive Gaussia oise chael ad the sphere packig boud 7. Additive Gaussia oise chael Up to this poit, we have bee

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information