17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15

Size: px
Start display at page:

Download "17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15"

Transcription

1 17. Joit distributios of extreme order statistics Lehma 5.1; Ferguso 15 I Example 10., we derived the asymptotic distributio of the maximum from a radom sample from a uiform distributio. We did this usig oly the defiitio of covergece i distributio without relyig o ay results other tha the fact that 1 + c ) b e c 3) b if c c ad b. I a similar way, we may derive the joit asymptotic distributio of several order statistics, as see i the followig example. Example 17.1 Rage of uiform sample: Let X 1,..., X be iid from Uiform0, 1). Let R = X ) X 1) deote the rage of the sample. What is the asymptotic distributio of R? We begi to aswer this questio by fidig the joit asymptotic distributio of X ), X 1) ), as follows. For certai sequeces k ad l, as yet uspecified, cosider P k X 1) > x ad l 1 X ) ) > y) = P X 1) > x/k ad X ) < 1 y/l ) = P x/k < X 1) < < X ) < 1 y/l ), where we have assumed that k ad l are positive. Sice the probability above is simply the probability that the etire sample is to be foud i the iterval x/k, 1 y/l ), we coclude that as log as 0 < x k < 1 y l < 1, we have P k X 1) > x ad l 1 X ) ) > y) = 1 y x ). l k Expressio 3) ow makes it clear that k = ad l = are sesible choices for k ad l, ad the result is that P X 1) > x ad 1 X ) ) > y) = 1 y x ) as log as 0 < x < 1 y < 1. 33) Notice that coditio 33) will be satisfied for large if ad oly if x ad y are both positive. We coclude that for x > 0, y > 0, P X 1) > x ad 1 X ) ) > y) e x e y. Sice this is the joit distributio of iid stadard expoetial radom variables, say, Y 1 ad Y, we coclude that ) ) X1) L Y1. 1 X ) ) Therefore, applyig the cotiuous fuctio fa, b) = a + b to both sides gives Y 1 X ) + X 1) ) = 1 R ) L Y 1 + Y, ad the sum of idepedet gamma1, 1) variables is gamma, 1). 46

2 Let s cosider a similar example i which the asymptotic joit distributio does ot ivolve idepedet radom variables. Example 17. As i Example 17.1, let X 1,..., X be iid from uiform0,1). We ow cosider the joit asymptotic distributio of X 1) ad X ). Omittig the step i which k ad l are to be foud, sice they would agai both be set to, we proceed as follows: P {1 X 1) ) > x ad 1 X ) ) > y)} = P X 1) < 1 x ad X ) < 1 y ). 34) We cosider two separate cases: If 0 < x < y, the the right had side of 34) is simply P X ) < 1 y/), which coverges to e y. O the other had, if 0 < y < x, the P X 1) < 1 x ad X ) < 1 y ) = P X ) < 1 x ) + P X 1) < 1 x < X ) < 1 y ) = 1 x ) + 1 x ) 1 x ) y e x 1 + x y). What is this joit asymptotic distributio? Suppose that Y 1 ad Y are iid stadard expoetial variables as i the previous example. Cosider the joit distributio of Y 1 ad Y 1 + Y : If 0 < x < y, the O the other had, if 0 < y < x, the P Y 1 + Y > x ad Y 1 > y) = P Y 1 > y) = e y. P Y 1 + Y > x ad Y 1 > y) = P Y 1 > max{y, x Y }) = E e max{y,x Y} Therefore, we coclude that = e y P y > x Y ) + ) 1 X 1) ) L 1 X ) ) x y 0 Y1 + Y Y 1 ). e t x e t dt = e x 1 + x y). Notice that this meas that the asymptotic margial distributio of 1 X 1) ) is gamma,1). Theorem 15 i Ferguso s book is a geeralizatio of Example 17.. Recall that if F is a cotiuous, ivertible cdf ad U is a stadard uiform radom variable, the F 1 U) F. This is easy to prove, sice P {F 1 U) t} = P {U F t)} = F t). We may use this fact i cojuctio with the result of Example 17. as i the followig example. Example 17.3 Suppose X 1,..., X are iid stadard expoetial radom variables. What is the joit asymptotic distributio of X 1), X ) )? Sice the cdf of a stadard expoetial distributio is F t) = 1 e t, whose iverse is F 1 u) = log1 u), clearly { log1 U 1) ), log1 U ) )} D ={X 1), X ) }, where D = meas has the same distributio. Therefore, log{1 U 1) ), 1 U ) )} = { log1 U 1) ) log, log1 U ) ) log } D = {X 1) log, X ) log }. We coclude by the result of Example 17. that ) ) X 1) log L logy1 + Y ), X ) log log Y 1 where Y 1 ad Y are iid stadard expoetial variables. 47

3 Problems Problem 17.1 If X 1,..., X are iid stadard uiform variables, fid the joit asymptotic distributio of {X ), 1 X 1) )}. Hit: To fid a probability such as P a < X ) < X ) < b), cosider the triomial distributio with parameters [; a, b a, 1 b)] ad ote that the probability i questio is the same as the probability that the umbers i the first ad third categories are each 1. Problem 17. Let X 1,..., X be a radom sample from the distributio with cdf F x) = [1 1/x)]I{x > 1}. a) Fid the joit asymptotic distributio of X 1) /, X ) /). b) Fid the asymptotic distributio of X 1) /X ). Hit: I part a), proceed as i Example Problem 17.3 Problem 17.4 If X 1,..., X are iid uiform0,1) variables, prove that X 1) /X ) L uiform0,1). Let X 1,..., X be iid from uiform 0, θ). a) Let M = X 1) + X ) )/. Fid the asymptotic distributio of M θ). b) Compare the asymptotic performace of the three estimators M, X, ad the sample media X by cosiderig their relative efficiecies. c) For {101, 1001, 10001}, geerate 500 samples of size, takig θ = 1. Keep track of M, X, ad X for each sample. Costruct a 3 3 table i which you report the sample variace of each estimator for each value of. Do your simulatio results agree with your theoretical results i part b)? Problem 17.5 Let X 1,..., X be a iid sample from a logistic distributio with cdf F t) = e t/θ /1 + e t/θ ) for all t. a) Fid the asymptotic distributio of X ) X 1). b) Based o part a), costruct a approximate 95% cofidece iterval for θ. Use the fact that the.05 ad.975 quatiles of the stadard expoetial distributio are ad , respectively. c) Simulate 1000 samples of size = 40 with θ =. How may cofidece itervals cotai θ? Hit: zero. I part a), use the fact that log U ) ad log U 1) both coverge i probability to 48

4 18. The multivariate ormal distributio Lehma 5., 5.4 We begi with a desity for a multivariate ormal distributio o R k. However, ote that ot all multivariate ormal distributios have desities cosider the uivariate example of N0, 0). Give a mea vector ξ R k ad a positive defiite k k covariace matrix Σ, X has a multivariate ormal distributio with mea ξ ad covariace Σ, writte X N k ξ, Σ), if its desity o R k is { fx) = C exp 1 } x ξ)t Σ 1 x ξ). 35) I expressio 35), the costat is C = k π k Σ ) 1/, where Σ deotes the determiat of Σ. Because of the assumptio that Σ is positive defiite, a assumptio that we will later relax, Σ is guarateed to be positive. As a special case, cosider the bivariate ormal distributio, where for some σ > 0, τ > 0, ad 1 < ρ < 1 we have ) σ ρστ Σ = ρστ τ ad thus Σ = σ τ 1 ρ ) ad Σ 1 = ) 1 τ ρστ σ τ 1 ρ ) ρστ σ. I this case, of course, X 1 ad X have correlatio ρ ad margial variaces σ ad τ, respectively. To see the bivariate ormal desity really writte out, see Lehma page 87. However, here we will use matrix otatio wheever possible because of its elegace compared to the compoetwise expasios. To defie the multivariate ormal distributio i full geerality, we first cosider the case i which Σ is diagoal, say Σ = D = diagd 1,..., d k ). Of course, if D is a legitimate covariace matrix it must be oegative defiite or positive semidefiite), which meas that all of its eigevalues are oegative. Sice the eigevalues of a diagoal matrix are simply its diagoal elemets, we see immediately that d i 0 for all i. We may ow defie a multivariate ormal distributio with covariace matrix D. Defiitio 18.1 Suppose that D = diagd 1,..., d k ) for oegative real umbers d 1,..., d k. The for ξ R k, the multivariate ormal distributio with mea ξ ad covariace D, deoted N k ξ, D), is the joit distributio of the idepedet radom variables X 1,..., X k, where X i Nξ i, d i ). To defie a multivariate ormal distributio for a geeral covariace matrix Σ, we make use of the fact that ay symmetric matrix may be diagoalized by a orthogoal matrix. We first defie orthogoal, the state the diagoalizability result as a lemma. Defiitio 18. A square matrix Q is orthogoal if Q 1 exists ad is equal to Q t. Lemma 18.1 If A is a symmetric k k matrix, the there exists a orthogoal matrix Q such that QAQ t is diagoal. Note that the diagoal elemets of the matrix QAQ t i the matrix above must be the eigevalues of A. This is easy to prove, sice if λ is a diagoal elemet of QAQ t the it is a eigevalue of QAQ t ad hece there exists a vector x such that QAQ t x = λx, which implies that AQ t x) = λq t x) ad so λ is a eigevalue of A. 49

5 Defiitio 18.3 Suppose Σ is a arbitrary symmetric k k matrix with oegative eigevalues. Let Q be a orthogoal matrix such that QΣQ t is diagoal. The for ξ R k, the multivariate ormal distributio with mea ξ ad covariace Σ, deoted N k ξ, Σ), is the distributio of ξ + Q t Y, where Y N k 0, QΣQ t ). It is ot immediately clear that N k ξ, Σ) is well-defied by Defiitio 18.3, sice it is ot clear that ξ + Q t 1Y ad ξ + Q t Y must have the same distributio wheever Q 1 ΣQ t 1 ad Q ΣQ t are both diagoal for orthoal Q 1 ad Q. However, this is ideed true though we will ot prove it here), so Defiitio 18.3 is a valid defiitio. Now that N k ξ, Σ) is defied, we may state the multivariate versio of the cetral limit theorem: Theorem 18.1 If X 1), X ),... are iid with mea vector µ R k ad covariace Σ where Σ has fiite etries), the X µ) L N k 0, Σ). Example 18.1 Let X 1, X,... be iid with E X i = ξ, Var X i = σ, E X i ξ) 3 = γ, ad Var X i ξ) = τ <. Let S = 1 X i X ). 36) i=1 We have show earlier that S σ ) L N0, τ ). The same fact may be prove usig the multivariate results of Chapter 5 as follows. First, let Y i = X i ξ ad Z i = Yi. We may use the multivariate cetral limit theorem to fid the joit asymptotic distributio of Y ad Z, amely { ) Y Z 0 σ )} )} L σ γ N {0, γ τ. Note that the above result uses the fact that Cov Y 1, Z 1 ) = γ, which is easy to check. We may write S = Z Y ). Therefore, defie the fuctio ga, b) = b a ad ote that this gives ġa, b) = a, 1). To use the delta method, we should evaluate ) ) ) ġ0, σ σ γ ) γ τ ġ0, σ ) t σ γ 0 = 0, 1) γ τ = ġ0, σ ) t = τ 1 We coclude that { g Y Z ) 0 g σ )} = S σ ) L N0, τ ) as foud earlier. Problems Problem 18.1 Suppose X N k ξ, Σ), where Σ is ivertible. Prove that X ξ) t Σ 1 X ξ) χ k. Hit: If Q diagoalizes Σ, say QΣQ t = Λ, let Λ 1/ have the obvious defiitio ad cosider Y t Y, where Y = Λ 1/ ) 1 QX ξ). 50

6 Problem 18. Let X 1, X,... be iid from Nξ, σ ) where ξ 0. Let S be defied as i equatio 36). Fid the asymptotic distributio of the coefficiet of variatio S /X. Problem 18.3 If X ad Y are stadard ormal distributios, the ay mixture of these distributios is trivially stadard ormal sice αf X x) + 1 α)f Y x) is a stadard ormal desity. Is the same true of bivariate ormal distributios? I other words, if X ad Y are bivariate ormal, where each of the margial distributios is stadard ormal that is, X 1, X, Y 1, ad Y are all stadard ormal), is αf X x) + 1 α)f Y x) a bivariate ormal desity? If yes, prove it; if o, provide a couterexample. 51

Since X n /n P p, we know that X n (n. Xn (n X n ) Using the asymptotic result above to obtain an approximation for fixed n, we obtain

Since X n /n P p, we know that X n (n. Xn (n X n ) Using the asymptotic result above to obtain an approximation for fixed n, we obtain Assigmet 9 Exercise 5.5 Let X biomial, p, where p 0, 1 is ukow. Obtai cofidece itervals for p i two differet ways: a Sice X / p d N0, p1 p], the variace of the limitig distributio depeds oly o p. Use the

More information

32 estimating the cumulative distribution function

32 estimating the cumulative distribution function 32 estimatig the cumulative distributio fuctio 4.6 types of cofidece itervals/bads Let F be a class of distributio fuctios F ad let θ be some quatity of iterest, such as the mea of F or the whole fuctio

More information

This section is optional.

This section is optional. 4 Momet Geeratig Fuctios* This sectio is optioal. The momet geeratig fuctio g : R R of a radom variable X is defied as g(t) = E[e tx ]. Propositio 1. We have g () (0) = E[X ] for = 1, 2,... Proof. Therefore

More information

Distribution of Random Samples & Limit theorems

Distribution of Random Samples & Limit theorems STAT/MATH 395 A - PROBABILITY II UW Witer Quarter 2017 Néhémy Lim Distributio of Radom Samples & Limit theorems 1 Distributio of i.i.d. Samples Motivatig example. Assume that the goal of a study is to

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Exercise 4.3 Use the Continuity Theorem to prove the Cramér-Wold Theorem, Theorem. (1) φ a X(1).

Exercise 4.3 Use the Continuity Theorem to prove the Cramér-Wold Theorem, Theorem. (1) φ a X(1). Assigmet 7 Exercise 4.3 Use the Cotiuity Theorem to prove the Cramér-Wold Theorem, Theorem 4.12. Hit: a X d a X implies that φ a X (1) φ a X(1). Sketch of solutio: As we poited out i class, the oly tricky

More information

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)].

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)]. Probability 2 - Notes 0 Some Useful Iequalities. Lemma. If X is a radom variable ad g(x 0 for all x i the support of f X, the P(g(X E[g(X]. Proof. (cotiuous case P(g(X Corollaries x:g(x f X (xdx x:g(x

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

Statistical Theory MT 2008 Problems 1: Solution sketches

Statistical Theory MT 2008 Problems 1: Solution sketches Statistical Theory MT 008 Problems : Solutio sketches. Which of the followig desities are withi a expoetial family? Explai your reasoig. a) Let 0 < θ < ad put fx, θ) = θ)θ x ; x = 0,,,... b) c) where α

More information

Large Sample Theory. Convergence. Central Limit Theorems Asymptotic Distribution Delta Method. Convergence in Probability Convergence in Distribution

Large Sample Theory. Convergence. Central Limit Theorems Asymptotic Distribution Delta Method. Convergence in Probability Convergence in Distribution Large Sample Theory Covergece Covergece i Probability Covergece i Distributio Cetral Limit Theorems Asymptotic Distributio Delta Method Covergece i Probability A sequece of radom scalars {z } = (z 1,z,

More information

4. Partial Sums and the Central Limit Theorem

4. Partial Sums and the Central Limit Theorem 1 of 10 7/16/2009 6:05 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 4. Partial Sums ad the Cetral Limit Theorem The cetral limit theorem ad the law of large umbers are the two fudametal theorems

More information

HOMEWORK I: PREREQUISITES FROM MATH 727

HOMEWORK I: PREREQUISITES FROM MATH 727 HOMEWORK I: PREREQUISITES FROM MATH 727 Questio. Let X, X 2,... be idepedet expoetial radom variables with mea µ. (a) Show that for Z +, we have EX µ!. (b) Show that almost surely, X + + X (c) Fid the

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

Statistical Theory MT 2009 Problems 1: Solution sketches

Statistical Theory MT 2009 Problems 1: Solution sketches Statistical Theory MT 009 Problems : Solutio sketches. Which of the followig desities are withi a expoetial family? Explai your reasoig. (a) Let 0 < θ < ad put f(x, θ) = ( θ)θ x ; x = 0,,,... (b) (c) where

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

Direction: This test is worth 250 points. You are required to complete this test within 50 minutes.

Direction: This test is worth 250 points. You are required to complete this test within 50 minutes. Term Test October 3, 003 Name Math 56 Studet Number Directio: This test is worth 50 poits. You are required to complete this test withi 50 miutes. I order to receive full credit, aswer each problem completely

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

Math Solutions to homework 6

Math Solutions to homework 6 Math 175 - Solutios to homework 6 Cédric De Groote November 16, 2017 Problem 1 (8.11 i the book): Let K be a compact Hermitia operator o a Hilbert space H ad let the kerel of K be {0}. Show that there

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

6. Sufficient, Complete, and Ancillary Statistics

6. Sufficient, Complete, and Ancillary Statistics Sufficiet, Complete ad Acillary Statistics http://www.math.uah.edu/stat/poit/sufficiet.xhtml 1 of 7 7/16/2009 6:13 AM Virtual Laboratories > 7. Poit Estimatio > 1 2 3 4 5 6 6. Sufficiet, Complete, ad Acillary

More information

Probability and statistics: basic terms

Probability and statistics: basic terms Probability ad statistics: basic terms M. Veeraraghava August 203 A radom variable is a rule that assigs a umerical value to each possible outcome of a experimet. Outcomes of a experimet form the sample

More information

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam. Probability ad Statistics FS 07 Secod Sessio Exam 09.0.08 Time Limit: 80 Miutes Name: Studet ID: This exam cotais 9 pages (icludig this cover page) ad 0 questios. A Formulae sheet is provided with the

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

Lecture 33: Bootstrap

Lecture 33: Bootstrap Lecture 33: ootstrap Motivatio To evaluate ad compare differet estimators, we eed cosistet estimators of variaces or asymptotic variaces of estimators. This is also importat for hypothesis testig ad cofidece

More information

Section 11.8: Power Series

Section 11.8: Power Series Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

STAT331. Example of Martingale CLT with Cox s Model

STAT331. Example of Martingale CLT with Cox s Model STAT33 Example of Martigale CLT with Cox s Model I this uit we illustrate the Martigale Cetral Limit Theorem by applyig it to the partial likelihood score fuctio from Cox s model. For simplicity of presetatio

More information

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

CHAPTER 5. Theory and Solution Using Matrix Techniques

CHAPTER 5. Theory and Solution Using Matrix Techniques A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 3 A COLLECTION OF HANDOUTS ON SYSTEMS OF ORDINARY DIFFERENTIAL

More information

REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS

REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS 18th Feb, 016 Defiitio (Lipschitz fuctio). A fuctio f : R R is said to be Lipschitz if there exists a positive real umber c such that for ay x, y i the domai

More information

Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables

Some Basic Probability Concepts. 2.1 Experiments, Outcomes and Random Variables Some Basic Probability Cocepts 2. Experimets, Outcomes ad Radom Variables A radom variable is a variable whose value is ukow util it is observed. The value of a radom variable results from a experimet;

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

Direction: This test is worth 150 points. You are required to complete this test within 55 minutes.

Direction: This test is worth 150 points. You are required to complete this test within 55 minutes. Term Test 3 (Part A) November 1, 004 Name Math 6 Studet Number Directio: This test is worth 10 poits. You are required to complete this test withi miutes. I order to receive full credit, aswer each problem

More information

Lecture 20: Multivariate convergence and the Central Limit Theorem

Lecture 20: Multivariate convergence and the Central Limit Theorem Lecture 20: Multivariate covergece ad the Cetral Limit Theorem Covergece i distributio for radom vectors Let Z,Z 1,Z 2,... be radom vectors o R k. If the cdf of Z is cotiuous, the we ca defie covergece

More information

Singular Continuous Measures by Michael Pejic 5/14/10

Singular Continuous Measures by Michael Pejic 5/14/10 Sigular Cotiuous Measures by Michael Peic 5/4/0 Prelimiaries Give a set X, a σ-algebra o X is a collectio of subsets of X that cotais X ad ad is closed uder complemetatio ad coutable uios hece, coutable

More information

Journal of Multivariate Analysis. Superefficient estimation of the marginals by exploiting knowledge on the copula

Journal of Multivariate Analysis. Superefficient estimation of the marginals by exploiting knowledge on the copula Joural of Multivariate Aalysis 102 (2011) 1315 1319 Cotets lists available at ScieceDirect Joural of Multivariate Aalysis joural homepage: www.elsevier.com/locate/jmva Superefficiet estimatio of the margials

More information

Simulation. Two Rule For Inverting A Distribution Function

Simulation. Two Rule For Inverting A Distribution Function Simulatio Two Rule For Ivertig A Distributio Fuctio Rule 1. If F(x) = u is costat o a iterval [x 1, x 2 ), the the uiform value u is mapped oto x 2 through the iversio process. Rule 2. If there is a jump

More information

Advanced Stochastic Processes.

Advanced Stochastic Processes. Advaced Stochastic Processes. David Gamarik LECTURE 2 Radom variables ad measurable fuctios. Strog Law of Large Numbers (SLLN). Scary stuff cotiued... Outlie of Lecture Radom variables ad measurable fuctios.

More information

Bayesian Methods: Introduction to Multi-parameter Models

Bayesian Methods: Introduction to Multi-parameter Models Bayesia Methods: Itroductio to Multi-parameter Models Parameter: θ = ( θ, θ) Give Likelihood p(y θ) ad prior p(θ ), the posterior p proportioal to p(y θ) x p(θ ) Margial posterior ( θ, θ y) is Iterested

More information

LECTURE 8: ASYMPTOTICS I

LECTURE 8: ASYMPTOTICS I LECTURE 8: ASYMPTOTICS I We are iterested i the properties of estimators as. Cosider a sequece of radom variables {, X 1}. N. M. Kiefer, Corell Uiversity, Ecoomics 60 1 Defiitio: (Weak covergece) A sequece

More information

Math 61CM - Solutions to homework 3

Math 61CM - Solutions to homework 3 Math 6CM - Solutios to homework 3 Cédric De Groote October 2 th, 208 Problem : Let F be a field, m 0 a fixed oegative iteger ad let V = {a 0 + a x + + a m x m a 0,, a m F} be the vector space cosistig

More information

Mathematical Statistics - MS

Mathematical Statistics - MS Paper Specific Istructios. The examiatio is of hours duratio. There are a total of 60 questios carryig 00 marks. The etire paper is divided ito three sectios, A, B ad C. All sectios are compulsory. Questios

More information

Unbiased Estimation. February 7-12, 2008

Unbiased Estimation. February 7-12, 2008 Ubiased Estimatio February 7-2, 2008 We begi with a sample X = (X,..., X ) of radom variables chose accordig to oe of a family of probabilities P θ where θ is elemet from the parameter space Θ. For radom

More information

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors ECONOMETRIC THEORY MODULE XIII Lecture - 34 Asymptotic Theory ad Stochastic Regressors Dr. Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Asymptotic theory The asymptotic

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

EE 4TM4: Digital Communications II Probability Theory

EE 4TM4: Digital Communications II Probability Theory 1 EE 4TM4: Digital Commuicatios II Probability Theory I. RANDOM VARIABLES A radom variable is a real-valued fuctio defied o the sample space. Example: Suppose that our experimet cosists of tossig two fair

More information

Estimation of the Mean and the ACVF

Estimation of the Mean and the ACVF Chapter 5 Estimatio of the Mea ad the ACVF A statioary process {X t } is characterized by its mea ad its autocovariace fuctio γ ), ad so by the autocorrelatio fuctio ρ ) I this chapter we preset the estimators

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

of the matrix is =-85, so it is not positive definite. Thus, the first

of the matrix is =-85, so it is not positive definite. Thus, the first BOSTON COLLEGE Departmet of Ecoomics EC771: Ecoometrics Sprig 4 Prof. Baum, Ms. Uysal Solutio Key for Problem Set 1 1. Are the followig quadratic forms positive for all values of x? (a) y = x 1 8x 1 x

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 Fuctioal Law of Large Numbers. Costructio of the Wieer Measure Cotet. 1. Additioal techical results o weak covergece

More information

Solution to Chapter 2 Analytical Exercises

Solution to Chapter 2 Analytical Exercises Nov. 25, 23, Revised Dec. 27, 23 Hayashi Ecoometrics Solutio to Chapter 2 Aalytical Exercises. For ay ε >, So, plim z =. O the other had, which meas that lim E(z =. 2. As show i the hit, Prob( z > ε =

More information

STA Object Data Analysis - A List of Projects. January 18, 2018

STA Object Data Analysis - A List of Projects. January 18, 2018 STA 6557 Jauary 8, 208 Object Data Aalysis - A List of Projects. Schoeberg Mea glaucomatous shape chages of the Optic Nerve Head regio i aimal models 2. Aalysis of VW- Kedall ati-mea shapes with a applicatio

More information

2.2. Central limit theorem.

2.2. Central limit theorem. 36.. Cetral limit theorem. The most ideal case of the CLT is that the radom variables are iid with fiite variace. Although it is a special case of the more geeral Lideberg-Feller CLT, it is most stadard

More information

Exponential Families and Bayesian Inference

Exponential Families and Bayesian Inference Computer Visio Expoetial Families ad Bayesia Iferece Lecture Expoetial Families A expoetial family of distributios is a d-parameter family f(x; havig the followig form: f(x; = h(xe g(t T (x B(, (. where

More information

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample. Statistical Iferece (Chapter 10) Statistical iferece = lear about a populatio based o the iformatio provided by a sample. Populatio: The set of all values of a radom variable X of iterest. Characterized

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

Chi-squared tests Math 6070, Spring 2014

Chi-squared tests Math 6070, Spring 2014 Chi-squared tests Math 6070, Sprig 204 Davar Khoshevisa Uiversity of Utah March, 204 Cotets MLE for goodess-of fit 2 2 The Multivariate ormal distributio 3 3 Cetral limit theorems 5 4 Applicatio to goodess-of-fit

More information

Efficient GMM LECTURE 12 GMM II

Efficient GMM LECTURE 12 GMM II DECEMBER 1 010 LECTURE 1 II Efficiet The estimator depeds o the choice of the weight matrix A. The efficiet estimator is the oe that has the smallest asymptotic variace amog all estimators defied by differet

More information

Fall 2013 MTH431/531 Real analysis Section Notes

Fall 2013 MTH431/531 Real analysis Section Notes Fall 013 MTH431/531 Real aalysis Sectio 8.1-8. Notes Yi Su 013.11.1 1. Defiitio of uiform covergece. We look at a sequece of fuctios f (x) ad study the coverget property. Notice we have two parameters

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

Lecture 23: Minimal sufficiency

Lecture 23: Minimal sufficiency Lecture 23: Miimal sufficiecy Maximal reductio without loss of iformatio There are may sufficiet statistics for a give problem. I fact, X (the whole data set) is sufficiet. If T is a sufficiet statistic

More information

Notes 19 : Martingale CLT

Notes 19 : Martingale CLT Notes 9 : Martigale CLT Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces: [Bil95, Chapter 35], [Roc, Chapter 3]. Sice we have ot ecoutered weak covergece i some time, we first recall

More information

Generalized Semi- Markov Processes (GSMP)

Generalized Semi- Markov Processes (GSMP) Geeralized Semi- Markov Processes (GSMP) Summary Some Defiitios Markov ad Semi-Markov Processes The Poisso Process Properties of the Poisso Process Iterarrival times Memoryless property ad the residual

More information

1 Introduction to reducing variance in Monte Carlo simulations

1 Introduction to reducing variance in Monte Carlo simulations Copyright c 010 by Karl Sigma 1 Itroductio to reducig variace i Mote Carlo simulatios 11 Review of cofidece itervals for estimatig a mea I statistics, we estimate a ukow mea µ = E(X) of a distributio by

More information

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5 Ma 42: Itroductio to Lebesgue Itegratio Solutios to Homework Assigmet 5 Prof. Wickerhauser Due Thursday, April th, 23 Please retur your solutios to the istructor by the ed of class o the due date. You

More information

Lecture 8: Convergence of transformations and law of large numbers

Lecture 8: Convergence of transformations and law of large numbers Lecture 8: Covergece of trasformatios ad law of large umbers Trasformatio ad covergece Trasformatio is a importat tool i statistics. If X coverges to X i some sese, we ofte eed to check whether g(x ) coverges

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. Comments:

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. Comments: Recall: STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Commets:. So far we have estimates of the parameters! 0 ad!, but have o idea how good these estimates are. Assumptio: E(Y x)! 0 +! x (liear coditioal

More information

Lecture 18: Sampling distributions

Lecture 18: Sampling distributions Lecture 18: Samplig distributios I may applicatios, the populatio is oe or several ormal distributios (or approximately). We ow study properties of some importat statistics based o a radom sample from

More information

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise First Year Quatitative Comp Exam Sprig, 2012 Istructio: There are three parts. Aswer every questio i every part. Questio I-1 Part I - 203A A radom variable X is distributed with the margial desity: >

More information

A Note on Box-Cox Quantile Regression Estimation of the Parameters of the Generalized Pareto Distribution

A Note on Box-Cox Quantile Regression Estimation of the Parameters of the Generalized Pareto Distribution A Note o Box-Cox Quatile Regressio Estimatio of the Parameters of the Geeralized Pareto Distributio JM va Zyl Abstract: Makig use of the quatile equatio, Box-Cox regressio ad Laplace distributed disturbaces,

More information

Ma 530 Introduction to Power Series

Ma 530 Introduction to Power Series Ma 530 Itroductio to Power Series Please ote that there is material o power series at Visual Calculus. Some of this material was used as part of the presetatio of the topics that follow. What is a Power

More information

Approximations and more PMFs and PDFs

Approximations and more PMFs and PDFs Approximatios ad more PMFs ad PDFs Saad Meimeh 1 Approximatio of biomial with Poisso Cosider the biomial distributio ( b(k,,p = p k (1 p k, k λ: k Assume that is large, ad p is small, but p λ at the limit.

More information

Univariate Normal distribution. whereaandbareconstants. Theprobabilitydensityfunction(PDFfromnowon)ofZ andx is. ) 2π.

Univariate Normal distribution. whereaandbareconstants. Theprobabilitydensityfunction(PDFfromnowon)ofZ andx is. ) 2π. Uivariate Normal distributio I geeral, it has two parameters, µ ad σ mea ad stadard deviatio. A special case is stadardized Normal distributio, with the mea of 0 ad stadard deviatio equal to. Ay geeral

More information

MATH 413 FINAL EXAM. f(x) f(y) M x y. x + 1 n

MATH 413 FINAL EXAM. f(x) f(y) M x y. x + 1 n MATH 43 FINAL EXAM Math 43 fial exam, 3 May 28. The exam starts at 9: am ad you have 5 miutes. No textbooks or calculators may be used durig the exam. This exam is prited o both sides of the paper. Good

More information

EFFECTIVE WLLN, SLLN, AND CLT IN STATISTICAL MODELS

EFFECTIVE WLLN, SLLN, AND CLT IN STATISTICAL MODELS EFFECTIVE WLLN, SLLN, AND CLT IN STATISTICAL MODELS Ryszard Zieliński Ist Math Polish Acad Sc POBox 21, 00-956 Warszawa 10, Polad e-mail: rziel@impagovpl ABSTRACT Weak laws of large umbers (W LLN), strog

More information

Review Questions, Chapters 8, 9. f(y) = 0, elsewhere. F (y) = f Y(1) = n ( e y/θ) n 1 1 θ e y/θ = n θ e yn

Review Questions, Chapters 8, 9. f(y) = 0, elsewhere. F (y) = f Y(1) = n ( e y/θ) n 1 1 θ e y/θ = n θ e yn Stat 366 Lab 2 Solutios (September 2, 2006) page TA: Yury Petracheko, CAB 484, yuryp@ualberta.ca, http://www.ualberta.ca/ yuryp/ Review Questios, Chapters 8, 9 8.5 Suppose that Y, Y 2,..., Y deote a radom

More information

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1. Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

More information

Output Analysis and Run-Length Control

Output Analysis and Run-Length Control IEOR E4703: Mote Carlo Simulatio Columbia Uiversity c 2017 by Marti Haugh Output Aalysis ad Ru-Legth Cotrol I these otes we describe how the Cetral Limit Theorem ca be used to costruct approximate (1 α%

More information

Kernel density estimator

Kernel density estimator Jauary, 07 NONPARAMETRIC ERNEL DENSITY ESTIMATION I this lecture, we discuss kerel estimatio of probability desity fuctios PDF Noparametric desity estimatio is oe of the cetral problems i statistics I

More information

Created by T. Madas SERIES. Created by T. Madas

Created by T. Madas SERIES. Created by T. Madas SERIES SUMMATIONS BY STANDARD RESULTS Questio (**) Use stadard results o summatios to fid the value of 48 ( r )( 3r ). 36 FP-B, 66638 Questio (**+) Fid, i fully simplified factorized form, a expressio

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 016 MODULE : Statistical Iferece Time allowed: Three hours Cadidates should aswer FIVE questios. All questios carry equal marks. The umber

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

Assignment 2 Solutions SOLUTION. ϕ 1 Â = 3 ϕ 1 4i ϕ 2. The other case can be dealt with in a similar way. { ϕ 2 Â} χ = { 4i ϕ 1 3 ϕ 2 } χ.

Assignment 2 Solutions SOLUTION. ϕ 1  = 3 ϕ 1 4i ϕ 2. The other case can be dealt with in a similar way. { ϕ 2 Â} χ = { 4i ϕ 1 3 ϕ 2 } χ. PHYSICS 34 QUANTUM PHYSICS II (25) Assigmet 2 Solutios 1. With respect to a pair of orthoormal vectors ϕ 1 ad ϕ 2 that spa the Hilbert space H of a certai system, the operator  is defied by its actio

More information

The Central Limit Theorem

The Central Limit Theorem Chapter The Cetral Limit Theorem Deote by Z the stadard ormal radom variable with desity 2π e x2 /2. Lemma.. Ee itz = e t2 /2 Proof. We use the same calculatio as for the momet geeratig fuctio: exp(itx

More information

Joint Probability Distributions and Random Samples. Jointly Distributed Random Variables. Chapter { }

Joint Probability Distributions and Random Samples. Jointly Distributed Random Variables. Chapter { } UCLA STAT A Applied Probability & Statistics for Egieers Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistat: Neda Farziia, UCLA Statistics Uiversity of Califoria, Los Ageles, Sprig

More information

1.010 Uncertainty in Engineering Fall 2008

1.010 Uncertainty in Engineering Fall 2008 MIT OpeCourseWare http://ocw.mit.edu.00 Ucertaity i Egieerig Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu.terms. .00 - Brief Notes # 9 Poit ad Iterval

More information

Entropy Rates and Asymptotic Equipartition

Entropy Rates and Asymptotic Equipartition Chapter 29 Etropy Rates ad Asymptotic Equipartitio Sectio 29. itroduces the etropy rate the asymptotic etropy per time-step of a stochastic process ad shows that it is well-defied; ad similarly for iformatio,

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

ECE 330:541, Stochastic Signals and Systems Lecture Notes on Limit Theorems from Probability Fall 2002

ECE 330:541, Stochastic Signals and Systems Lecture Notes on Limit Theorems from Probability Fall 2002 ECE 330:541, Stochastic Sigals ad Systems Lecture Notes o Limit Theorems from robability Fall 00 I practice, there are two ways we ca costruct a ew sequece of radom variables from a old sequece of radom

More information

M17 MAT25-21 HOMEWORK 5 SOLUTIONS

M17 MAT25-21 HOMEWORK 5 SOLUTIONS M17 MAT5-1 HOMEWORK 5 SOLUTIONS 1. To Had I Cauchy Codesatio Test. Exercise 1: Applicatio of the Cauchy Codesatio Test Use the Cauchy Codesatio Test to prove that 1 diverges. Solutio 1. Give the series

More information