Chapter 4 Practice Exercises 303

Size: px
Start display at page:

Download "Chapter 4 Practice Exercises 303"

Transcription

1 Chapter Practice Eercises y 5. y 55. y 56. y

2 30 Chapter Applicatios of Derivatives % 57. y 58. y y 60. y 6. lim lim Ä Ä a ac a a b bc b 6. lim b lim Ä Ä & 63. lim Ä ta ta! ta sec 6. lim lim Ä! si Ä! cos si si cos si cos taa b sec a b sec a b a sec a btaa b b sec! 65. lim lim lim lim Ä! Ä! Ä! Ä! siamb m cosamb m siab cosab 66. lim lim Ä! Ä! cosa b sia b ( ( ( ( 67. lim seca( bcosa b lim lim Ä Î c Ä Î c cosa b Ä Î c sia b a b È 68. lim È sec lim Ä! b Ä! b! cos! cos si! 69. lim acsc cot b lim lim Ä! Ä! si! Ä! cos

3 Chapter Practice Eercises lim ˆ lim Š lim a b lim a b lim Ä! % Ä! % Ä! % Ä! Ä! % È È È È 7. lim lim Ä_ Š È È Ä_ Š È È lim Ä _ È È È Notice that for! so this is equivalet to b lim lim Ä_ b b c Ä_ È È É É É É a b a b 7. lim Š lim lim lim lim Ä_ Ä_ a ba b Ä_ % Ä_ % Ä_ lim lim! Ä_ % Ä_ (l The limit leads to the idetermiate form : lim 0 lim l 0 Ä 0 Ä The limit leads to the idetermiate form 0: lim lim l 3 Ä 0 Ä 0 si 0 (l 33 si (l (cos 75. The limit leads to the idetermiate form 0: lim e lim l Ä 0 e Ä 0 0 c si c si (l ( cos 76. The limit leads to the idetermiate form 0: lim e lim e l Ä 0 Ä cos 5 si 5 cos 77. The limit leads to the idetermiate form 0: lim e lim lim 5 Ä 0 e e Ä 0 Ä 0 0 e e 78. The limit leads to the idetermiate form 0: lim e lim e e Ä 0 Ä 0 tl(t Š b 0 t 79. The limit leads to the idetermiate form 0: lim t lim t _ t Ä! t Ä! 0 si ( (si (cos 0 e 3 ec 80. The limit leads to the idetermiate form : lim Ä c lim Ä lim lim si( cos( e e Ä Ä c c 0 e t e t e t 8. The limit leads to the idetermiate form 0: lim Š t t lim Š t lim t Ä! t Ä! t Ä! 8. The limit leads to the idetermiate form _: lim e l y lim lim y Ä! y Ä! e y Ä! y lim 0 y Ä! e y c _ c Îy l y y y ey y c c ˆ c b k Îb bk bk 83. lim lim e Ä _ ˆ Ä Š _ Îb 8. lim 0 0 Ä _ ˆ 7

4 306 Chapter Applicatios of Derivatives 85. (a Maimize f( È È Î Î 36 (36 here 0 Ÿ Ÿ 36 Î Î È36 È È È36 Ê f ( (36 ( Ê derivative fails to eist at 0 ad 36; f(0 6, ad f(36 6 Ê the umbers are 0 ad 36 (b Maimize g( È È Î Î 36 (36 here 0 Ÿ Ÿ 36 Î Î È36 È È È36 Ê g ( (36 ( Ê critical poits at 0, 8 ad 36; g(0 6, g(8 È8 6È ad g(36 6 Ê the umbers are 8 ad 8 È Î Î Î 3 Î 86. (a Maimize f( (0 0 here 0 Ÿ Ÿ 0 Ê f ( Ê 0 ad 0 are critical poits; f(0 f(0 0 ad f ˆ 0 É 0 ˆ 0 0 È È0 3È3 Ê the umbers are ad. È Î È0 È0 (b Maimize g( 0 (0 here 0 Ÿ Ÿ 0 Ê g ( 0 Ê È Ê. The critical poits are ad 0. Sice g ˆ 79 8 ad g(0 0, 79 the umbers must be ad. 87. A( ( a7 bfor 0 Ÿ Ÿ È7 Ê A ( 3(3 (3 ad A ( 6. The critical poits are 3 ad 3, but 3 is ot i the domai. Sice A (3 8 0 ad A Š È7 0, the maimum occurs at 3 Ê the largest area is A(3 5 sq uits The volume is V h 3 Ê h. The surface area is S( ˆ 3 8, here 0 Ê S ( ( a 6b Ê the critical poits are 0 ad, but 0 is ot i the 56 domai. No S ( 0 Ê at there is a miimum. The dimesios ft by ft by ft miimize the surface area. 89. From the diagram e have ˆ h r Š È3 Ê h r. The volume of the cylider is h È 3 V r h Š h ah h b, here 0 Ÿ h Ÿ 3. The V (h ( h( h Ê the critical poits are ad, but is ot i the domai. At h there is a maimum sice V ( 3 0. The dimesios of the largest cylider are radius È ad height.

5 Chapter Practice Eercises From the diagram e have radius ad y height ad V( (, here 0 Ÿ Ÿ 6 Ê V ( ( ad V ( 8. The critical poits are 0 ad ; V(0 V(6 0 Ê gives the maimum. Thus the values of r ad h yield the largest volume for the smaller coe The profit P p py p p ˆ 0 0 5, here p is the profit o grade B tires ad 0 Ÿ Ÿ. Thus P p ( (5 a 0 0 b Ê the critical poits are Š 5 È5, 5, ad Š 5 È5, but oly Š 5 È5 is i the domai. No P ( 0 for 0 Š 5 È5 ad P ( 0 for Š 5 È5 Ê at Š 5 È5 there is a local maimum. Also P(0 8p, P Š 5 È5 p Š 5 È5 p, ad P( 8p Ê at Š 5 È5 there is a absolute maimum. The maimum occurs he Š 5 È5 ad y Š 5 È5, the uits are hudreds of tires, i.e., 76 tires ad y 553 tires. 9. (a The distace betee the particles is lfab t lhere fab t cos t cosˆ t. The, f ab t si t siˆ t. Solvig f ab! t graphically, e obtai t Þ(, t %Þ!, ad so o. % % Alteratively, f ab t may be solved aalytically as follos. f ab t si ˆ t si ˆ! t siˆ t cos cosˆ t si siˆ t cos cosˆ t si si cosˆ t so the critical poits occur he cosˆ t!, or t k. At each of these values, fab t cos!þ(& uits, so the maimum distace betee the particles is!þ(& uits. (b Solvig cos t cos ˆ t graphically, e obtai t Þ(%*, t &Þ*!, ad so o. % Alteratively, this problem ca be solved aalytically as follos. cos t cos ˆ t cos ˆ t cos ˆ t cosˆ t cos siˆ t si cosˆ t cos siˆ t si si ˆ t si! si ˆ t! %

6 308 Chapter Applicatios of Derivatives ( t k ( Þ(%* The particles collide he t. (plus multiples of if they keep goig. 93. The dimesios ill be i. by! i. by i., so Vab a! ba b % &! for! &. The V ab!%! % a ba! b, so the critical poit i the correct domai is. This critical poit correspods to the maimum possible volume because V a b! for! ad V a b! for &. The bo of largest volume has a height of i. ad a base measurig 6 i. by i., ad its volume is i. Graphical support: 9. The legth of the ladder is d d 8 sec 6 csc. We ish to maimize I( 8 sec 6 csc Ê I ( 8 sec ta 6 csc cot. The I ( 0 È 6 Ê 8 si 6 cos 0 Ê ta Ê d É È36 ad d È36 É È36 Ê the legth of the ladder is about Š È36 É È 36 Š È36 *Þ( ft. Î 95. g( 3 Ê g( 0 ad g(3 0 Ê g( 0 i the iterval [ß3] by the Itermediate 3 Value Theorem. The g ( 3 3 Ê b 33 ;! Ê. Ê.965, ad so forth to & % 96. g( 75 Ê g(3 0 ad g( 7 0 Ê g( 0 i the iterval [ ß% ] by the Itermediate Value Theorem. The g ( 3 Ê ; 3 Ê b Ê , ad so forth to & % 97. a 5 7 b 5 d 7 C % 75 3! 98. Š 8t t % dt % t 8t t t C t t t C 6 6 Î c 99. ˆ 3È t dt ˆ Î 3t t 3t t Î dt C t C t Š 3 t Î c Š dt ˆ Î % t 3t t 3t dt Œ C È % t C Èt t ( 3 t

7 Chapter Practice Eercises Let u r 5 Ê du dr dr du u ar 5b u ar 5b c u du C u C C 0. Let u r È Ê du dr c 6 dr 6 dr 6 du u 3 6 u du 6 Š C 3u C C Š r È Š r È u Š rè 03. Let u Ê du d Ê du d Î 3 È d Èu ˆ 3 du 3 Î 3 u Î Î u du Œ C u C a b C 3 0. Let u 7 Ê du d Ê du d Î Î u Î d ˆ du u du C u C 7 C Œ È È7 Èu % a % Î% Î% Î% Î% % Î% b ˆ u Œ a b 05. Let u Ê du d Ê du d d u du u du C u C C 06. Let u Ê du d Ê du d Î& ( Î& d Î& u ( du Î& u du u C 5 Î& u C 5 ( Î& C Š s 0 0 s s 0 a b Let u Ê du ds Ê 0 du ds sec ds sec u (0 du 0 sec u du 0 ta u C 0 ta C 08. Let u s Ê du ds Ê du ds a bˆ csc s ds csc u du csc u du cot u C cot s C 09. Let u È Ê du È d Ê du d È csc È cot È d (csc u cot u Š du ( csc u C csc È C 0. Let u Ê du d Ê 3 du d È È È sec ta d (sec u ta u(3 du 3 sec u C 3 sec C. Let u Ê du d Ê du d cos u si u si d asi u b( du ˆ du ( cos u du ˆ u C u si u C ˆ si ˆ C si C. Let u Ê du d Ê du d cos u si u cos d acos u b( du ˆ du ( cos u du u C si C 3. ˆ 3 d 3 lll C

8 30 Chapter Applicatios of Derivatives. ˆ 5 d ˆ 5 d 5 ta C ct 5. ˆ t t e e t e t t dt e C e e C s 6 6. a s 5 5 s b 5 s ds C l a b d c C 8. a r b dr b r C l È È 9. d d sec C d d 0. si ˆ C È6 d Ê6Š É 6 6. y d a bd C C; y he Ê C Ê C Ê y y ˆ d ˆ d a bd C C; y he Ê C Ê C Ê y 3. dr 3 dr dt Š 5Èt dt ˆ Î 5t Î 3t dt Î 0t Î È 6t C; dt 8 he t t Ê Î Î 0( 6( C 8 Ê dr Î Î C 8. Thus dt 0t 6t 8 Ê r ˆ Î Î 0t 6t 8 dt &Î Î t t 8t C; r 0 he t Ê &Î Î ( ( 8( C 0 Ê C 0. Therefore, &Î Î r t t 8t dr dt. cos t dt si t C; r 0 he t 0 Ê si 0 C 0 Ê C 0. Thus, si t dr dt Ê si t dt cos t C ; r 0 he t 0 Ê C 0 Ê C. The cos t Ê r (cos t dt si t t C ; r he t 0 Ê 0 0 C Ê C. Therefore, r si tt 5. Yes, si ad cos differ by the costat È 6. Yes, the derivatives of y cos C ad y cos ( C are both c da c c c 7. A y e Ê d e (( e e a b. Solvig d 0 Ê 0 Ê da ; 0 for da ad 0 for 0 Ê absolute maimum of Î e at dr dt dr dt da È d È d È È Èe Î È Èe uits log by y e uits high. 8. A y ˆ l l da l l da Ê d. Solvig d 0 Ê l 0 Ê e; da 0 for e ad da 0 for e absolute maimum of l e d d Ê e e at e uits log ad y e uits high.

9 Chapter Practice Eercises 3 9. y l Ê y ˆ l ( l ; Ê ˆ e e ˆ Ê solvig y 0 ; y 0 for ad y 0 for Ê relative miimum of at ; f ad f 0 absolute miimum is at ad the absolute maimum is 0 at e 30. y 0( l Ê y 0( l 0 ˆ 0 0 l 0 0( l ; solvig y 0 Ê e; y 0 for e ad y 0 for e Ê relative maimum at e of 0e; y! o Ð!ß e Ó ad y ae b 0e ( l e 0 Ê absolute miimum is 0 at e ad the absolute maimum is 0e at e ÎÈ Š È Š È 3 b ÎÈ ÎÈ 3 Š È Š È 3. fab e for all i a_, _ b; f ab e e ˆ ˆ a 3 Î b ÎÈ ÎÈ ÎÈ Ä_ Ä _ È ÎÈ e 0 Ê 0 Ê are critical poits. Cosider the behavior of f as Ä _; lim e lim e as suggested by the folloig table ( digit precisio, digits displayed: Î e _ 0 ã ã ã ã ã ã _ 0 Therefore, y is a horizotal asymptote i both directios. Check the critical poits for absolute etreme values: ÈÎ ÈÎ ÈÎ fab e 0.93, fab e.08 Ê the absolute miimum value of the fuctio is e at, È Î ad the absolute maimum value is e at. È 3 3. fab e ; The domai of g is all such that 3 0. The parabola y 3 is cocave do ith -itercepts at 3 ad, therefore 3 0 if 3 Ÿ Ÿ, ad this iterval is the domai of g; È3 0 È3 g a b e 0 Ê 0 Ê is a critical poit; g a 3 b g a b e,

10 3 Chapter Applicatios of Derivatives gab e Ê the absolute miimum value of the fuctio is at 3 ad, ad the aboslute maimum value is e at. l l l È È Î È 33. (a y Ê y 3 &Î &Î &Î Ê y ( l ˆ 3 l ; solvig y 0 Ê l Ê e ; y 0 for e ad ad y 0 for e Ê a maimum of ; y 0 8 Î Ê l 3 Ê e ; the curve is cocave do o ˆ Î 0 e ad cocave up o ˆ Î ß e ß_ ; so there is a iflectio poit at ˆ Î e ß. e %Î (b y e Ê y e Ê y e e a be ; solvig y 0 Ê 0; y 0 for 0 ad y 0 for 0 Ê a maimum at 0 of! e ; there are poits of iflectio at È ; the curve is cocave do for ad cocave up otherise. e È È c c c c (c y ( e Ê y e ( e e Ê y ec e c ( e c ; solvig y 0 c Ê e 0 Ê 0; y 0 for 0 ad y 0 for 0 Ê a maimum at 0 of ( 0 e! ; there is a poit of iflectio at ad the curve is cocave up for ad cocave do for. 3. y l Ê y l ˆ l ; solvig y 0 Ê l 0 Ê l Ê e ; y 0 for e ad y 0 for e Ê a miimum of e l e at e. This miimum is a absolute miimum e sice y is positive for all!. 35 I the iterval the fuctio si 0 si Ê (si is ot defied for all values i that iterval or its traslatio by.

11 Chapter Additioal ad Advaced Eercises v l ˆ dv (l l l Ê l ˆ dv ( l ; solvig 0 d d cî dv cî dv cî d d c Î r h Ê Î È Ê l 0 Ê l Ê e ; 0 for e ad 0 for e Ê a relative maimum at e ; ad r h e e.65 cm CHAPTER ADDITIONAL AND ADVANCED EXERCISES. If M ad m are the maimum ad miimum values, respectively, the m Ÿ f( Ÿ M for all I. If m M the f is costat o I. 3 6, Ÿ 0. No, the fuctio f( has a absolute miimum value of 0 at ad a absolute 9, 0 Ÿ Ÿ maimum value of 9 at 0, but it is discotiuous at O a ope iterval the etreme values of a cotiuous fuctio (if ay must occur at a iterior critical poit. O a half-ope iterval the etreme values of a cotiuous fuctio may be at a critical poit or at the closed edpoit. Etreme values occur oly here f 0, f does ot eist, or at the edpoits of the iterval. Thus the etreme poits ill ot be at the eds of a ope iterval.. The patter f ± ± ± ± idicates a local maimum at ad a local % miimum at (a If y 6( (, the y 0 for ad y 0 for. The sig patter is f ± ± Ê f has a local miimum at. Also y 6( ( ( 6( (3 Ê y 0 for 0 or, hile y 0 for 0. Therefore f has poits of iflectio at 0 ad. There is o local maimum. (b If y 6( (, the y 0 for ad 0 ; y 0 for 0 ad. The sig sig patter is y ± ± ±. Therefore f has a local maimum at 0 ad! È7 È7 local miima at ad. Also, y Š Š, so y 0 for È7 È7 È7 ad y 0 for all other Ê f has poits of iflectio at. f(6 f(0 6. The Mea Value Theorem idicates that 6 0 f (c Ÿ for some c i (0ß6. The f(6 f(0 Ÿ idicates the most that f ca icrease is. 7. If f is cotiuous o [aßc ad f ( Ÿ 0 o [aßc, the by the Mea Value Theorem for all [aßc e have f(c f( c Ÿ 0 Ê f(c f( Ÿ 0 Ê f( f(c. Also if f is cotiuous o (cß b] ad f ( 0 o (cßb], the for f( f(c c all (cß b] e have 0 Ê f( f(c 0 Ê f( f(c. Therefore f( f(c for all [aßb]. 8. (a For all, ( Ÿ 0 Ÿ ( Ê a b Ÿ Ÿ a b Ê Ÿ Ÿ. c f(b f(a f(b f(a c (b There eists c (aßb such that Ê ¹ ¹ Ÿ, from part (a Ê kf(b f(a k Ÿ kb a k. c ba ba c 9. No. Corollary requires that f ( 0 for all i some iterval I, ot f ( 0 at a sigle poit i I. 0. (a h( f(g( Ê h ( f (g( f(g ( hich chages sigs at a sice f (, g ( 0 he a, f (, g ( 0 he a ad f(, g( 0 for all. Therefore h( does have a local maimum at a.

12 3 Chapter Applicatios of Derivatives (b No, let f( g( hich have poits of iflectio at 0, but h( has o poit of iflectio (it has a local miimum at 0. a. From (ii, f( bc 0 Ê a ; from (iii, either lim f( or lim f(. I either case, Ä_ Ä_ lim f( lim lim b 0 ad c. For if b, the Ä _ Ä _ b Ê c Ä _ b c lim! ad if c 0, the lim lim _. Thus a, b 0, ad c. Ä _ c Ä _ b Ä _ È k k 36 d 6. 3 k 3 0 Ê Ê has oly oe value he k 36 0 Ê k 9 or k The area of the? ABC is A( ( È a b Î, here 0 Ÿ Ÿ. Thus A ( Ê 0 ad are È critical poits. Also A a b 0 so A(0 is the maimum. Whe 0 the? ABC is isosceles sice AC BC È. f(ch f(c. lim f (c for f (c 0 there eists a 0 such that 0 h h Ä 0 h Ê % k k k k f(ch f(c f(ch h h Ê ¹ f (c ¹ kf (c k. The f (c 0 Ê kf (c k f (c kf (c k f(ch h 3 f(ch f(ch 3 h h Ê f (c kf (c k f (c kf (c k. If f (c 0, the kf (c k f (c Ê f (c f (c 0; likeise if f (c 0, the 0 f (c f (c. (a If f (c 0, the h 0 Ê f (c h 0 ad 0 h Ê f (c h 0. Therefore, f(c is a local maimum. (b If f (c 0, the h 0 Ê f (c h 0 ad 0 h Ê f (c h 0. Therefore, f(c is a local miimum. 5. The time it ould take the ater to hit the groud from height y is É y g, here g is the acceleratio of gravity. The product of time ad eit velocity (rate yields the distace the ater travels: y Î Î h g g g D(y É È6(h y 8 É ahy y b, 0 Ÿ y Ÿ h Ê D (y É ahy y b (h y Ê 0, ad h are critical poits. No D(0 0, D ˆ h 8h h ad D(h 0 Ê the best place to drill the hole is at y. Èg b a ta ta a h ta ta h b a a ta h ta a bh 6. From the figure i the tet, ta ( ; ta ( ; ad ta. These equatios h give h a ta h a ta. Solvig for ta gives ta h a(b a or h ah a(b a bta bh. Differetiatig both sides ith respect to h gives d d bh dh dh h a(b a È h ta ah a(b a bsec b. The 0 Ê h ta b Ê h Š b Ê bh bh ab(b a Ê h a(b a Ê h a(a b.

13 7. The surface area of the cylider is S r rh. From the diagram e have r H h h RH rh R H Ê R ad S(r r(r h r ˆ H r H r R ˆ H r Hr, here 0 Ÿ r Ÿ R. R Chapter Additioal ad Advaced Eercises 35 Case : H R Ê S(r is a quadratic equatio cotaiig the origi ad cocave upard Ê S(r is maimum at r R. Case : H R Ê S(r is a liear equatio cotaiig the origi ith a positive slope Ê S(r is maimum at r R. Case 3: H R Ê S(r is a quadratic equatio cotaiig the origi ad cocave doard. The ds ˆ H r H ad ds 0 Ê ˆ H r H 0 Ê r RH. For simplificatio dr R dr R (H R e let r RH (H R. RH Ê Ê (H R (a If R H R, the 0 H R H (H R R hich is impossible. R (b If H R, the r R R Ê S(r is maimum at r R. H RH (c If H R, the R H H Ê H (H R Ê Ê R Ê r R. Therefore, RH (H R S(r is a maimum at r r. (H R (H R Coclusio: If H (0ßR] or H R, the the maimum surface area is at r R. If H (RßR, the r R RH hich is ot possible. If H (R ß_, the the maimum is at r r. (H R 8. f( m Ê f ( m ad f ( 0 he 0. The f ( 0 Ê yields a Èm miimum. If f Š 0, the Èm Èm Èm 0 Ê m. Thus the smallest acceptable value for m is. Èm sia& b sia& b! sia& b!! 9. (a lim lim lim Ä! Ä! a& b Ä! a& b & sia& bcosa b sia& bsia b& cosa& bcosa b (b lim sia& bcota b lim lim Ä! Ä! sia b Ä! cosa b (c lim csc È lim lim lim lim Ä! Ä! È siè siè cosè Ä! Ä! siš È È Ä! lim Ä! cosš È & È cosš È È si (d lim asec ta b lim lim Ä / Ä / cos!þ Ä / si si cos cos cos si (e lim lim lim lim lim li Ä! ta Ä! sec Ä! ta Ä! ta Ä! ta sec m Ä! cos lim Ä! cos sia b cosa b a bsia b cosa b (f lim lim lim Ä! si Ä! cos si Ä! si cos sec sec ta sec ta sec! (g lim lim lim Ä! Ä! Ä! a ba % b % %%% (h lim lim lim Ä % Ä a ba b Ä % si si cos È b & & È & È É 0. (a lim lim lim Ä_ È & Ä_ È Ä_ b& & È È (É (b lim lim lim Ä_ ( È Ä_ Ä_! b( È

14 36 Chapter Applicatios of Derivatives. (a The profit fuctio is Pab ac eb aa bb e ac bb a. P ab e c b!. (a cb c b e e Ê. P ab e! if e! so that the profit fuctio is maimized at. (b The price therefore that correspods to a productio level yeildig a maimum profit is p¹ c e ˆ cb cb dollars. c b c e e e e % e (c The eekly profit at this productio level is Pab eˆ cb ac bbˆ cb ac bb a a. (d The ta icreases cost to the e profit fuctio is Fab ac eb aa b tb e ac b tb a. tbc cbt No F ab e c b t! he e e. Sice F ab e! if e!, F is maimized cbt he uits per eek. Thus the price per uit is p c e ˆ cbt cbt dollars. Thus, such a ta e e cbt cb t icreases the cost per uit by dollars if uits are priced to maimize profit. f a b f a b c The -itercept occurs he!ê Ê. (b By Netos method,. Here f a b. So Š a b. q q q q f a b a q a aq ba q a f a! b q q q q q!!!! a q q! q q!!!!! 3.!!! so that is a eighted average of qc qc qc Š qc Š! ad ith eights m ad m.! c a q a q a a q a!! q q q q q q q q I the case here qc e have a ad Š Š Š.! c c c c!!!! d y d d d yd d d d y y d d y yd d d d d d d. We have that a hb ay hb r ad so a hb ay h b! ad ay h b! hold. d Thus y h h, by the former. Solvig for h, e obtai h. Substitutig this ito the secod equatio yields y Œ!. Dividig by results i y Œ!. ds ds kt 5. dt ks Ê s k dt Ê l s kt C Ê s s! e Ê the th cetury model of free fall as epoetial; ote that the motio starts too sloly at first ad the becomes too fast after about 7 secods

15 6. To vies of the graph of y 000 (.99 are sho belo. Chapter Additioal ad Advaced Eercises 37 (a At about there is a miimum (b There is o maimum; hoever, the curve is asymptotic to y 000. The curve is ear 000 he 63. kt kt!! Ê!!!!! È!! k k ab! È!! k È!! k k k 7. (a aab t s ab t k ak! bês ab t kt C, here s a! bêc Êsab t kt. So sab t t C here sa b C so sab t t. No sab t he kt t. Solvig for t e obtai t. At such t e at s t, thus k Š! or k Š!. I either case e obtai!! k!!! so that k Þ( ft/sec. kt %% (b The iitial coditio that s a! b%% ft/sec implies that s ab t kt %% ad sab t %% t here k is as above. The car is stopped at a time t such that s ab t kt %%!Êt k. At this time the car has traveled a distace s ˆ %% ˆ %% k ˆ %% %% * ˆ!! k k %% k k k * & feet. Thus halvig the iitial velocity quarters stoppig distace. 8. hab f ab g ab h ab fabf ab gabg ab Ê fabf abgabg ab fabgabgabafabb!!. Thus hab c, a costat. Sice h a! b &, ha b & for all i the domai of h. Thus h a! b &. d 9. Yes. The curve y satisfies all three coditios sice everyhere, he!, y!, ad! everyhere. 30. y for all Êy C here C ÊC %Êy %. d y d t! % % t t ab a b ab a b Î % Î a Cb Î Î Î Î %Î % a b a b Ê a b ˆ C Ê a b ˆ C b % Ê Î% Î% a% bb a% bb È Î% Ê C. Thus v! s a! b b. 3. s ab t a t Ê v s ab t C. We seek v s a! b C. We ko that sat b b for some t ad s is at a maimum for this t. Sice s t Ct k ad s!! e have that s t Ct ad also s t! so that t C. So C C b C C b C b C Î Î Î Î % Î Î % % &Î % Î % % % &Î % Î % % ab & a! b & ab & & 3. (a s ab t t t Ê vab t s ab t t t k here va! b k Ê vab t t t Þ (b s t t t t k here s k. Thus s t t t t. 33. (a L k ˆ a b cot b csc dl b csc b csc cot dl Ê k Š ; solvig 0 R% r% d R% r% d % % % % Ê r b csc br csc cot 0 Ê (b csc ar csc R cot b 0; but b csc Á 0 sice % % r R % % Á Ê r csc R cot 0 Ê cos Ê cos Š, the critical value of % 6 (b cos ˆ 5 cos ( r R % %

16 38 Chapter Applicatios of Derivatives ad f ab f a b 3 f a b 3. (a If 3 0, the 0 Ê. (b fab Ê 3 a3 b 35. The graph of fab a b c ith a! is a parabola opeig upards. Thus fa b! for all if fa b! for at most b Éa bb % ac a oe real value of. The solutios to fa b! are, by the quadratic equatio. Thus e require a bb % ac Ÿ! Ê b ac Ÿ!. 36. (a Clearly fab aa b b ÞÞÞaa b b! for all. Epadig e see f a b aa ab b bþþþaa ab bb aa a ÞÞÞab aab ab ÞÞÞ abbab b ÞÞÞ b b!. ÞÞÞ Ÿ ÞÞÞ ÞÞÞ Thus aa b a b ÞÞÞ a b b aa a ÞÞÞa bab b ÞÞÞb b Ÿ! by Eercise 35. Thus aab ab abb aa a abab b b b. (b Referrig to Eercise 35: It is clear that fa b! for some real Íb % ac!, by quadratic formula. No otice that this implies that f a b aabb ÞÞÞaa bb aa a ÞÞÞab aab ab ÞÞÞ abbab b ÞÞÞbb! Íaab ab ÞÞÞ abb aa a ÞÞÞabab b ÞÞÞbb! Íaab ab ÞÞÞ abb aa a ÞÞÞabab b ÞÞÞbb But o fab!íab! for all i ßßÞÞÞßÍ a b! for all i ßßÞÞÞß. i i i i

CHAPTER 4 APPLICATIONS OF DERIVATIVES

CHAPTER 4 APPLICATIONS OF DERIVATIVES CHAPTER APPLICATIONS OF DERIVATIVES. EXTREME VALUES OF FUNCTIONS. A absolute miimum at c, a absolute maimum at b. Theorem guaratees the eistece of such etreme values because h is cotiuous o [aß b].. A

More information

AP Calculus BC Review Applications of Derivatives (Chapter 4) and f,

AP Calculus BC Review Applications of Derivatives (Chapter 4) and f, AP alculus B Review Applicatios of Derivatives (hapter ) Thigs to Kow ad Be Able to Do Defiitios of the followig i terms of derivatives, ad how to fid them: critical poit, global miima/maima, local (relative)

More information

Maximum and Minimum Values

Maximum and Minimum Values Sec 4.1 Maimum ad Miimum Values A. Absolute Maimum or Miimum / Etreme Values A fuctio Similarly, f has a Absolute Maimum at c if c f f has a Absolute Miimum at c if c f f for every poit i the domai. f

More information

180 Chapter 3 Applications of Derivatives

180 Chapter 3 Applications of Derivatives 80 Chapter Applicatios of Derivatives. Let represet the legth of the rectagle i meters (! % ) The the idth is % ad the area is Aab a%b %. Sice A ab %, the critical poit occurs at. Sice, A a b! for! ad

More information

274 Chapter 4 Applications of Derivatives

274 Chapter 4 Applications of Derivatives 274 Chapter 4 Applicatios of Derivatives Ê % a%) Ê * %) Ê %) Ê. We discard as a etraeous solutio, leavig. Sice D a for % ad D a for %, the critical poit correspods to the miimum distace. The miimum distace

More information

Name: Math 10550, Final Exam: December 15, 2007

Name: Math 10550, Final Exam: December 15, 2007 Math 55, Fial Exam: December 5, 7 Name: Be sure that you have all pages of the test. No calculators are to be used. The exam lasts for two hours. Whe told to begi, remove this aswer sheet ad keep it uder

More information

CHAPTER 5 INTEGRATION

CHAPTER 5 INTEGRATION CHAPTER 5 INTEGRATION 5. AREA AND ESTIMATING WITH FINITE SUMS. fa Sice f is icreasig o Òß Ó, we use left edpoits to otai lower sums ad right edpoits to otai upper sums. i ) i i ( ( i ˆ i Š ˆ ˆ ˆ ) i i

More information

The type of limit that is used to find TANGENTS and VELOCITIES gives rise to the central idea in DIFFERENTIAL CALCULUS, the DERIVATIVE.

The type of limit that is used to find TANGENTS and VELOCITIES gives rise to the central idea in DIFFERENTIAL CALCULUS, the DERIVATIVE. NOTES : LIMITS AND DERIVATIVES Name: Date: Period: Iitial: LESSON.1 THE TANGENT AND VELOCITY PROBLEMS Pre-Calculus Mathematics Limit Process Calculus The type of it that is used to fid TANGENTS ad VELOCITIES

More information

MATH 1A FINAL (7:00 PM VERSION) SOLUTION. (Last edited December 25, 2013 at 9:14pm.)

MATH 1A FINAL (7:00 PM VERSION) SOLUTION. (Last edited December 25, 2013 at 9:14pm.) MATH A FINAL (7: PM VERSION) SOLUTION (Last edited December 5, 3 at 9:4pm.) Problem. (i) Give the precise defiitio of the defiite itegral usig Riema sums. (ii) Write a epressio for the defiite itegral

More information

Math 105: Review for Final Exam, Part II - SOLUTIONS

Math 105: Review for Final Exam, Part II - SOLUTIONS Math 5: Review for Fial Exam, Part II - SOLUTIONS. Cosider the fuctio f(x) = x 3 lx o the iterval [/e, e ]. (a) Fid the x- ad y-coordiates of ay ad all local extrema ad classify each as a local maximum

More information

y = f x x 1. If f x = e 2x tan -1 x, then f 1 = e 2 2 e 2 p C e 2 D e 2 p+1 4

y = f x x 1. If f x = e 2x tan -1 x, then f 1 = e 2 2 e 2 p C e 2 D e 2 p+1 4 . If f = e ta -, the f = e e p e e p e p+ 4 f = e ta -, so f = e ta - + e, so + f = e p + e = e p + e or f = e p + 4. The slope of the lie taget to the curve - + = at the poit, - is - 5 Differetiate -

More information

MTH Assignment 1 : Real Numbers, Sequences

MTH Assignment 1 : Real Numbers, Sequences MTH -26 Assigmet : Real Numbers, Sequeces. Fid the supremum of the set { m m+ : N, m Z}. 2. Let A be a o-empty subset of R ad α R. Show that α = supa if ad oly if α is ot a upper boud of A but α + is a

More information

PRACTICE FINAL/STUDY GUIDE SOLUTIONS

PRACTICE FINAL/STUDY GUIDE SOLUTIONS Last edited December 9, 03 at 4:33pm) Feel free to sed me ay feedback, icludig commets, typos, ad mathematical errors Problem Give the precise meaig of the followig statemets i) a f) L ii) a + f) L iii)

More information

CALCULUS AB SECTION I, Part A Time 60 minutes Number of questions 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM.

CALCULUS AB SECTION I, Part A Time 60 minutes Number of questions 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM. AP Calculus AB Portfolio Project Multiple Choice Practice Name: CALCULUS AB SECTION I, Part A Time 60 miutes Number of questios 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM. Directios: Solve

More information

MATH 10550, EXAM 3 SOLUTIONS

MATH 10550, EXAM 3 SOLUTIONS MATH 155, EXAM 3 SOLUTIONS 1. I fidig a approximate solutio to the equatio x 3 +x 4 = usig Newto s method with iitial approximatio x 1 = 1, what is x? Solutio. Recall that x +1 = x f(x ) f (x ). Hece,

More information

' ' Š # # ' " # # # Section 5.3 The Definite Integral 275. œ x dx 1 dx x dx 1 dx. œ " # œ x dx 1 dx œ (3 1) œ ( 1 2) œ (see parts (a) and (b) above).

' ' Š # # '  # # # Section 5.3 The Definite Integral 275. œ x dx 1 dx x dx 1 dx. œ  # œ x dx 1 dx œ (3 1) œ ( 1 2) œ (see parts (a) and (b) above). Sectio. The Defiite Itegral 7 ( ) t dt t dt t dt t dt 6. av(f) Š at t dt Š ( ) ( ) Š Š. ( ) ( ) d ( ) d 6. (a) av(g) Š akk d d d d d ( ) Š ( ( )) Š ( ). () av(g) ˆ akk d ( ) d Š d d ( ). ( ) k k (c) av(g)

More information

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0.

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0. THE SOLUTION OF NONLINEAR EQUATIONS f( ) = 0. Noliear Equatio Solvers Bracketig. Graphical. Aalytical Ope Methods Bisectio False Positio (Regula-Falsi) Fied poit iteratio Newto Raphso Secat The root of

More information

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1 Assigmet : Real Numbers, Sequeces. Let A be a o-empty subset of R ad α R. Show that α = supa if ad oly if α is ot a upper boud of A but α + is a upper boud of A for every N. 2. Let y (, ) ad x (, ). Evaluate

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Math PracTest Be sure to review Lab (ad all labs) There are lots of good questios o it a) State the Mea Value Theorem ad draw a graph that illustrates b) Name a importat theorem where the Mea Value Theorem

More information

CALCULUS BASIC SUMMER REVIEW

CALCULUS BASIC SUMMER REVIEW CALCULUS BASIC SUMMER REVIEW NAME rise y y y Slope of a o vertical lie: m ru Poit Slope Equatio: y y m( ) The slope is m ad a poit o your lie is, ). ( y Slope-Itercept Equatio: y m b slope= m y-itercept=

More information

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is Calculus BC Fial Review Name: Revised 7 EXAM Date: Tuesday, May 9 Remiders:. Put ew batteries i your calculator. Make sure your calculator is i RADIAN mode.. Get a good ight s sleep. Eat breakfast. Brig:

More information

1988 AP Calculus BC: Section I

1988 AP Calculus BC: Section I 988 AP Calculus BC: Sectio I 9 Miutes No Calculator Notes: () I this eamiatio, l deotes the atural logarithm of (that is, logarithm to the base e). () Uless otherwise specified, the domai of a fuctio f

More information

CHAPTER 4 Integration

CHAPTER 4 Integration CHAPTER Itegratio Sectio. Atierivatives a Iefiite Itegratio......... 77 Sectio. Area............................. 8 Sectio. Riema Sums a Defiite Itegrals........... 88 Sectio. The Fuametal Theorem of Calculus..........

More information

SINGLE CORRECT ANSWER TYPE QUESTIONS: TRIGONOMETRY 2 2

SINGLE CORRECT ANSWER TYPE QUESTIONS: TRIGONOMETRY 2 2 Class-Jr.X_E-E SIMPLE HOLIDAY PACKAGE CLASS-IX MATHEMATICS SUB BATCH : E-E SINGLE CORRECT ANSWER TYPE QUESTIONS: TRIGONOMETRY. siθ+cosθ + siθ cosθ = ) ) ). If a cos q, y bsi q, the a y b ) ) ). The value

More information

MATHEMATICS. 61. The differential equation representing the family of curves where c is a positive parameter, is of

MATHEMATICS. 61. The differential equation representing the family of curves where c is a positive parameter, is of MATHEMATICS 6 The differetial equatio represetig the family of curves where c is a positive parameter, is of Order Order Degree (d) Degree (a,c) Give curve is y c ( c) Differetiate wrt, y c c y Hece differetial

More information

Honors Calculus Homework 13 Solutions, due 12/8/5

Honors Calculus Homework 13 Solutions, due 12/8/5 Hoors Calculus Homework Solutios, due /8/5 Questio Let a regio R i the plae be bouded by the curves y = 5 ad = 5y y. Sketch the regio R. The two curves meet where both equatios hold at oce, so where: y

More information

Continuous Functions

Continuous Functions Cotiuous Fuctios Q What does it mea for a fuctio to be cotiuous at a poit? Aswer- I mathematics, we have a defiitio that cosists of three cocepts that are liked i a special way Cosider the followig defiitio

More information

Areas and Distances. We can easily find areas of certain geometric figures using well-known formulas:

Areas and Distances. We can easily find areas of certain geometric figures using well-known formulas: Areas ad Distaces We ca easily fid areas of certai geometric figures usig well-kow formulas: However, it is t easy to fid the area of a regio with curved sides: METHOD: To evaluate the area of the regio

More information

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations Chapter The Solutio of Numerical Algebraic ad Trascedetal Equatios Itroductio I this chapter we shall discuss some umerical methods for solvig algebraic ad trascedetal equatios. The equatio f( is said

More information

236 Chapter 4 Applications of Derivatives

236 Chapter 4 Applications of Derivatives 26 Chapter Applications of Derivatives Î$ &Î$ Î$ 5 Î$ 0 "Î$ 5( 2) $È 26. (a) g() œ ( 5) œ 5 Ê g () œ œ Ê critical points at œ 2 and œ 0 Ê g œ ± )(, increasing on ( _ß 2) and (!ß _), decreasing on ( 2 ß!)!

More information

Student s Printed Name:

Student s Printed Name: Studet s Prited Name: Istructor: XID: C Sectio: No questios will be aswered durig this eam. If you cosider a questio to be ambiguous, state your assumptios i the margi ad do the best you ca to provide

More information

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim Math 3, Sectio 2. (25 poits) Why we defie f(x) dx as we do. (a) Show that the improper itegral diverges. Hece the improper itegral x 2 + x 2 + b also diverges. Solutio: We compute x 2 + = lim b x 2 + =

More information

CHAPTER 4 Integration

CHAPTER 4 Integration CHAPTER Itegratio Sectio. Atierivatives a Iefiite Itegratio......... Sectio. Area............................. Sectio. Riema Sums a Defiite Itegrals........... Sectio. The Fuametal Theorem of Calculus..........

More information

MATH 1080: Calculus of One Variable II Fall 2017 Textbook: Single Variable Calculus: Early Transcendentals, 7e, by James Stewart.

MATH 1080: Calculus of One Variable II Fall 2017 Textbook: Single Variable Calculus: Early Transcendentals, 7e, by James Stewart. MATH 1080: Calculus of Oe Variable II Fall 2017 Textbook: Sigle Variable Calculus: Early Trascedetals, 7e, by James Stewart Uit 3 Skill Set Importat: Studets should expect test questios that require a

More information

+ {JEE Advace 03} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks: 00. If A (α, β) = (a) A( α, β) = A( α, β) (c) Adj (A ( α, β)) = Sol : We

More information

John Riley 30 August 2016

John Riley 30 August 2016 Joh Riley 3 August 6 Basic mathematics of ecoomic models Fuctios ad derivatives Limit of a fuctio Cotiuity 3 Level ad superlevel sets 3 4 Cost fuctio ad margial cost 4 5 Derivative of a fuctio 5 6 Higher

More information

Mathematics Extension 1

Mathematics Extension 1 016 Bored of Studies Trial Eamiatios Mathematics Etesio 1 3 rd ctober 016 Geeral Istructios Total Marks 70 Readig time 5 miutes Workig time hours Write usig black or blue pe Black pe is preferred Board-approved

More information

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t Itroductio to Differetial Equatios Defiitios ad Termiolog Differetial Equatio: A equatio cotaiig the derivatives of oe or more depedet variables, with respect to oe or more idepedet variables, is said

More information

JEE ADVANCED 2013 PAPER 1 MATHEMATICS

JEE ADVANCED 2013 PAPER 1 MATHEMATICS Oly Oe Optio Correct Type JEE ADVANCED 0 PAPER MATHEMATICS This sectio cotais TEN questios. Each has FOUR optios (A), (B), (C) ad (D) out of which ONLY ONE is correct.. The value of (A) 5 (C) 4 cot cot

More information

Math 21B-B - Homework Set 2

Math 21B-B - Homework Set 2 Math B-B - Homework Set Sectio 5.:. a) lim P k= c k c k ) x k, where P is a partitio of [, 5. x x ) dx b) lim P k= 4 ck x k, where P is a partitio of [,. 4 x dx c) lim P k= ta c k ) x k, where P is a partitio

More information

668 Chapter 11 Parametric Equatins and Polar Coordinates

668 Chapter 11 Parametric Equatins and Polar Coordinates 668 Chapter Parametric Equatins and Polar Coordinates 5. sin ( sin Á r and sin ( sin Á r Ê not symmetric about the x-axis; sin ( sin r Ê symmetric about the y-axis; therefore not symmetric about the origin

More information

AP Calculus AB 2006 Scoring Guidelines Form B

AP Calculus AB 2006 Scoring Guidelines Form B AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

More information

WBJEE Answer Keys by Aakash Institute, Kolkata Centre

WBJEE Answer Keys by Aakash Institute, Kolkata Centre WBJEE - 7 Aswer Keys by, Kolkata Cetre MATHEMATICS Q.No. B A C B A C A B 3 D C B B 4 B C D D 5 D A B B 6 C D B B 7 B C C A 8 B B A A 9 A * B D C C B B D A A D B B C B 3 A D D D 4 C B A A 5 C B B B 6 C

More information

AP Calculus BC 2005 Scoring Guidelines

AP Calculus BC 2005 Scoring Guidelines AP Calculus BC 5 Scorig Guidelies The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success ad

More information

MA1200 Exercise for Chapter 7 Techniques of Differentiation Solutions. First Principle 1. a) To simplify the calculation, note. Then. lim h.

MA1200 Exercise for Chapter 7 Techniques of Differentiation Solutions. First Principle 1. a) To simplify the calculation, note. Then. lim h. MA00 Eercise for Chapter 7 Techiques of Differetiatio Solutios First Priciple a) To simplify the calculatio, ote The b) ( h) lim h 0 h lim h 0 h[ ( h) ( h) h ( h) ] f '( ) Product/Quotiet/Chai Rules a)

More information

Log1 Contest Round 1 Theta Equations & Inequalities. 4 points each. 5 points each. 7, a c d. 9, find the value of the product abcd.

Log1 Contest Round 1 Theta Equations & Inequalities. 4 points each. 5 points each. 7, a c d. 9, find the value of the product abcd. 013 01 Log1 Cotest Roud 1 Theta Equatios & Iequalities Name: poits each 1 Solve for x : x 3 38 Fid the greatest itegral value of x satisfyig the iequality x x 3 7 1 3 3 xy71 Fid the ordered pair solutio

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

EDEXCEL STUDENT CONFERENCE 2006 A2 MATHEMATICS STUDENT NOTES

EDEXCEL STUDENT CONFERENCE 2006 A2 MATHEMATICS STUDENT NOTES EDEXCEL STUDENT CONFERENCE 006 A MATHEMATICS STUDENT NOTES South: Thursday 3rd March 006, Lodo EXAMINATION HINTS Before the eamiatio Obtai a copy of the formulae book ad use it! Write a list of ad LEARN

More information

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n Review of Power Series, Power Series Solutios A power series i x - a is a ifiite series of the form c (x a) =c +c (x a)+(x a) +... We also call this a power series cetered at a. Ex. (x+) is cetered at

More information

3. If x and y are real numbers, what is the simplified radical form

3. If x and y are real numbers, what is the simplified radical form lgebra II Practice Test Objective:.a. Which is equivalet to 98 94 4 49?. Which epressio is aother way to write 5 4? 5 5 4 4 4 5 4 5. If ad y are real umbers, what is the simplified radical form of 5 y

More information

PAPER : IIT-JAM 2010

PAPER : IIT-JAM 2010 MATHEMATICS-MA (CODE A) Q.-Q.5: Oly oe optio is correct for each questio. Each questio carries (+6) marks for correct aswer ad ( ) marks for icorrect aswer.. Which of the followig coditios does NOT esure

More information

130 Chapter 3 Differentiation

130 Chapter 3 Differentiation 0 Capter Differentiation 20. (a) (b) 2. C position, A velocity, an B acceleration. Neiter A nor C can be te erivative of B because B's erivative is constant. Grap C cannot be te erivative of A eiter, because

More information

AP Calculus BC 2007 Scoring Guidelines Form B

AP Calculus BC 2007 Scoring Guidelines Form B AP Calculus BC 7 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

More information

Poornima University, For any query, contact us at: ,18

Poornima University, For any query, contact us at: ,18 AIEEE/1/MAHS 1 S. No Questios Solutios Q.1 he circle passig through (1, ) ad touchig the axis of x at (, ) also passes through the poit (a) (, ) (b) (, ) (c) (, ) (d) (, ) Q. ABCD is a trapezium such that

More information

GULF MATHEMATICS OLYMPIAD 2014 CLASS : XII

GULF MATHEMATICS OLYMPIAD 2014 CLASS : XII GULF MATHEMATICS OLYMPIAD 04 CLASS : XII Date of Eamiatio: Maimum Marks : 50 Time : 0:30 a.m. to :30 p.m. Duratio: Hours Istructios to cadidates. This questio paper cosists of 50 questios. All questios

More information

(A) 0 (B) (C) (D) (E) 2.703

(A) 0 (B) (C) (D) (E) 2.703 Class Questios 007 BC Calculus Istitute Questios for 007 BC Calculus Istitutes CALCULATOR. How may zeros does the fuctio f ( x) si ( l ( x) ) Explai how you kow. = have i the iterval (0,]? LIMITS. 00 Released

More information

Objective Mathematics

Objective Mathematics 6. If si () + cos () =, the is equal to :. If <

More information

610 Chapter 9 Further Applications of Integration

610 Chapter 9 Further Applications of Integration 6 Chapter 9 Further Applications of Integration 4. So for the orthogonals: 4. c Ê c Ê Ê Ê Ê Ê C Ê É C, C ab ˆ Ê % Ê ˆ ˆ ab Ê ˆ 5. k Ê k Ê k a bab. So for the orthogonals: Ê Ê ln C 4 Ê Ê ln / ln ln C /

More information

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6 Math 4 Activity (Due by EOC Apr. ) Graph the followig epoetial fuctios by modifyig the graph of f. Fid the rage of each fuctio.. g. g. g 4. g. g 6. g Fid a formula for the epoetial fuctio whose graph is

More information

Quiz. Use either the RATIO or ROOT TEST to determine whether the series is convergent or not.

Quiz. Use either the RATIO or ROOT TEST to determine whether the series is convergent or not. Quiz. Use either the RATIO or ROOT TEST to determie whether the series is coverget or ot. e .6 POWER SERIES Defiitio. A power series i about is a series of the form c 0 c a c a... c a... a 0 c a where

More information

Calculus 2 Test File Fall 2013

Calculus 2 Test File Fall 2013 Calculus Test File Fall 013 Test #1 1.) Without usig your calculator, fid the eact area betwee the curves f() = 4 - ad g() = si(), -1 < < 1..) Cosider the followig solid. Triagle ABC is perpedicular to

More information

CET MOCK TEST If a,b,c are p, q and r terms repectively of a G.P., then (q-r)loga+(r-p)logb+(p-q)logc= a)0 b) 1 c)-1 d)abc

CET MOCK TEST If a,b,c are p, q and r terms repectively of a G.P., then (q-r)loga+(r-p)logb+(p-q)logc= a)0 b) 1 c)-1 d)abc CET MOCK TEST 5 SUB:MATHEMATICS MARKS:60 TOTAL DURATION MARKS FOR ASWERING:70MINUTES th th th 0. If a,b,c are p, q ad r terms repectively of a G.P., the (q-r)loga+(r-p)logb+(p-q)logc= a)0 b) c)- d)abc

More information

SEQUENCE AND SERIES NCERT

SEQUENCE AND SERIES NCERT 9. Overview By a sequece, we mea a arragemet of umbers i a defiite order accordig to some rule. We deote the terms of a sequece by a, a,..., etc., the subscript deotes the positio of the term. I view of

More information

Unit 4: Polynomial and Rational Functions

Unit 4: Polynomial and Rational Functions 48 Uit 4: Polyomial ad Ratioal Fuctios Polyomial Fuctios A polyomial fuctio y px ( ) is a fuctio of the form p( x) ax + a x + a x +... + ax + ax+ a 1 1 1 0 where a, a 1,..., a, a1, a0are real costats ad

More information

Section 13.3 Area and the Definite Integral

Section 13.3 Area and the Definite Integral Sectio 3.3 Area ad the Defiite Itegral We ca easily fid areas of certai geometric figures usig well-kow formulas: However, it is t easy to fid the area of a regio with curved sides: METHOD: To evaluate

More information

WEIGHTED LEAST SQUARES - used to give more emphasis to selected points in the analysis. Recall, in OLS we minimize Q =! % =!

WEIGHTED LEAST SQUARES - used to give more emphasis to selected points in the analysis. Recall, in OLS we minimize Q =! % =! WEIGHTED LEAST SQUARES - used to give more emphasis to selected poits i the aalysis What are eighted least squares?! " i=1 i=1 Recall, i OLS e miimize Q =! % =!(Y - " - " X ) or Q = (Y_ - X "_) (Y_ - X

More information

MATHEMATICAL METHODS

MATHEMATICAL METHODS 8 Practice Exam A Letter STUDENT NUMBER MATHEMATICAL METHODS Writte examiatio Sectio Readig time: 5 miutes Writig time: hours WORKED SOLUTIONS Number of questios Structure of book Number of questios to

More information

CHAPTER 10 INFINITE SEQUENCES AND SERIES

CHAPTER 10 INFINITE SEQUENCES AND SERIES CHAPTER 10 INFINITE SEQUENCES AND SERIES 10.1 Sequeces 10.2 Ifiite Series 10.3 The Itegral Tests 10.4 Compariso Tests 10.5 The Ratio ad Root Tests 10.6 Alteratig Series: Absolute ad Coditioal Covergece

More information

MATHEMATICS Code No. 13 INSTRUCTIONS

MATHEMATICS Code No. 13 INSTRUCTIONS DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO COMBINED COMPETITIVE (PRELIMINARY) EXAMINATION, 0 Serial No. MATHEMATICS Code No. A Time Allowed : Two Hours Maimum Marks : 00 INSTRUCTIONS. IMMEDIATELY

More information

Mark Howell Gonzaga High School, Washington, D.C. Benita Albert Oak Ridge High School, Oak Ridge, Tennessee

Mark Howell Gonzaga High School, Washington, D.C. Benita Albert Oak Ridge High School, Oak Ridge, Tennessee Be Prepared for the Third Editio Calculus Exam * AP ad Advaced Placemet Program are registered trademarks of the College Etrace Examiatio Board, which was ot ivolved i the productio of ad does ot edorse

More information

CHAPTER 2 LIMITS AND CONTINUITY

CHAPTER 2 LIMITS AND CONTINUITY CHAPTER LIMITS AND CONTINUITY RATES OF CHANGE AND LIMITS (a) Does not eist As approaches from the right, g() approaches 0 As approaches from the left, g() approaches There is no single number L that all

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NAIONAL SENI CERIFICAE GRADE MAHEMAICS P NOVEMBER 008 MEMANDUM MARKS: 0 his memoradum cosists of pages. Copright reserved Please tur over Mathematics/P DoE/November 008 NSC Memoradum Cotiued Accurac will

More information

CALCULUS IN A NUTSHELL INTRODUCTION:

CALCULUS IN A NUTSHELL INTRODUCTION: CALCULUS IN A NUTSHELL INTRODUCTION: Studets are usually itroduced to basic calculus i twelfth grade i high school or the first year of college. The course is typically stretched out over oe year ad ivolves

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam 4 will cover.-., 0. ad 0.. Note that eve though. was tested i exam, questios from that sectios may also be o this exam. For practice problems o., refer to the last review. This

More information

Regn. No. North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: ,

Regn. No. North Delhi : 33-35, Mall Road, G.T.B. Nagar (Opp. Metro Gate No. 3), Delhi-09, Ph: , . Sectio-A cotais 30 Multiple Choice Questios (MCQ). Each questio has 4 choices (a), (b), (c) ad (d), for its aswer, out of which ONLY ONE is correct. From Q. to Q.0 carries Marks ad Q. to Q.30 carries

More information

a is some real number (called the coefficient) other

a is some real number (called the coefficient) other Precalculus Notes for Sectio.1 Liear/Quadratic Fuctios ad Modelig http://www.schooltube.com/video/77e0a939a3344194bb4f Defiitios: A moomial is a term of the form tha zero ad is a oegative iteger. a where

More information

AIEEE 2004 (MATHEMATICS)

AIEEE 2004 (MATHEMATICS) AIEEE 00 (MATHEMATICS) Importat Istructios: i) The test is of hours duratio. ii) The test cosists of 75 questios. iii) The maimum marks are 5. iv) For each correct aswer you will get marks ad for a wrog

More information

CS537. Numerical Analysis and Computing

CS537. Numerical Analysis and Computing CS57 Numerical Aalysis ad Computig Lecture Locatig Roots o Equatios Proessor Ju Zhag Departmet o Computer Sciece Uiversity o Ketucky Leigto KY 456-6 Jauary 9 9 What is the Root May physical system ca be

More information

Calculus 2 Test File Spring Test #1

Calculus 2 Test File Spring Test #1 Calculus Test File Sprig 009 Test #.) Without usig your calculator, fid the eact area betwee the curves f() = - ad g() = +..) Without usig your calculator, fid the eact area betwee the curves f() = ad

More information

Math 176 Calculus Sec. 5.1: Areas and Distances (Using Finite Sums)

Math 176 Calculus Sec. 5.1: Areas and Distances (Using Finite Sums) Math 176 Calculus Sec. 5.1: Areas ad Distaces (Usig Fiite Sums) I. Area A. Cosider the problem of fidig the area uder the curve o the f y=-x 2 +5 over the domai [0, 2]. We ca approximate this area by usig

More information

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0,

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0, Math Activity 9( Due with Fial Eam) Usig first ad secod Taylor polyomials with remaider, show that for, 8 Usig a secod Taylor polyomial with remaider, fid the best costat C so that for, C 9 The th Derivative

More information

EGN 3353C Fluid Mechanics

EGN 3353C Fluid Mechanics Chapter 7: DIMENSIONAL ANALYSIS AND MODELING Lecture 3 dimesio measure of a physical quatity ithout umerical values (e.g., legth) uit assigs a umber to that dimesio (e.g., meter) 7 fudametal dimesios from

More information

Polynomial Functions and Their Graphs

Polynomial Functions and Their Graphs Polyomial Fuctios ad Their Graphs I this sectio we begi the study of fuctios defied by polyomial expressios. Polyomial ad ratioal fuctios are the most commo fuctios used to model data, ad are used extesively

More information

TECHNIQUES OF INTEGRATION

TECHNIQUES OF INTEGRATION 7 TECHNIQUES OF INTEGRATION Simpso s Rule estimates itegrals b approimatig graphs with parabolas. Because of the Fudametal Theorem of Calculus, we ca itegrate a fuctio if we kow a atiderivative, that is,

More information

MATH Exam 1 Solutions February 24, 2016

MATH Exam 1 Solutions February 24, 2016 MATH 7.57 Exam Solutios February, 6. Evaluate (A) l(6) (B) l(7) (C) l(8) (D) l(9) (E) l() 6x x 3 + dx. Solutio: D We perform a substitutio. Let u = x 3 +, so du = 3x dx. Therefore, 6x u() x 3 + dx = [

More information

PRELIM PROBLEM SOLUTIONS

PRELIM PROBLEM SOLUTIONS PRELIM PROBLEM SOLUTIONS THE GRAD STUDENTS + KEN Cotets. Complex Aalysis Practice Problems 2. 2. Real Aalysis Practice Problems 2. 4 3. Algebra Practice Problems 2. 8. Complex Aalysis Practice Problems

More information

Calculus I Practice Test Problems for Chapter 5 Page 1 of 9

Calculus I Practice Test Problems for Chapter 5 Page 1 of 9 Calculus I Practice Test Problems for Chapter 5 Page of 9 This is a set of practice test problems for Chapter 5. This is i o way a iclusive set of problems there ca be other types of problems o the actual

More information

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B) SCORING GUIDELINES (Form B) Questio 5 Let f be a fuctio defied o the closed iterval [,7]. The graph of f, cosistig of four lie segmets, is show above. Let g be the fuctio give by g ftdt. (a) Fid g (, )

More information

Circular Functions (Trigonometry)

Circular Functions (Trigonometry) Circular Fuctios (Trigoometry) Circular fuctios Revisio Where do si cos ad ta come from? Uit circle (of radius ) cos is the coordiate si is the y coordiate si ta cos all are measures of legth. Remember

More information

FINALTERM EXAMINATION Fall 9 Calculus & Aalytical Geometry-I Questio No: ( Mars: ) - Please choose oe Let f ( x) is a fuctio such that as x approaches a real umber a, either from left or right-had-side,

More information

Castiel, Supernatural, Season 6, Episode 18

Castiel, Supernatural, Season 6, Episode 18 13 Differetial Equatios the aswer to your questio ca best be epressed as a series of partial differetial equatios... Castiel, Superatural, Seaso 6, Episode 18 A differetial equatio is a mathematical equatio

More information

Chapter 4 : Laplace Transform

Chapter 4 : Laplace Transform 4. Itroductio Laplace trasform is a alterative to solve the differetial equatio by the complex frequecy domai ( s = σ + jω), istead of the usual time domai. The DE ca be easily trasformed ito a algebraic

More information

INEQUALITIES BJORN POONEN

INEQUALITIES BJORN POONEN INEQUALITIES BJORN POONEN 1 The AM-GM iequality The most basic arithmetic mea-geometric mea (AM-GM) iequality states simply that if x ad y are oegative real umbers, the (x + y)/2 xy, with equality if ad

More information

Calculus 2 - D. Yuen Final Exam Review (Version 11/22/2017. Please report any possible typos.)

Calculus 2 - D. Yuen Final Exam Review (Version 11/22/2017. Please report any possible typos.) Calculus - D Yue Fial Eam Review (Versio //7 Please report ay possible typos) NOTE: The review otes are oly o topics ot covered o previous eams See previous review sheets for summary of previous topics

More information

AP Calculus BC 2011 Scoring Guidelines Form B

AP Calculus BC 2011 Scoring Guidelines Form B AP Calculus BC Scorig Guidelies Form B The College Board The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success ad opportuity. Fouded i 9, the College

More information

Fundamental Concepts: Surfaces and Curves

Fundamental Concepts: Surfaces and Curves UNDAMENTAL CONCEPTS: SURACES AND CURVES CHAPTER udametal Cocepts: Surfaces ad Curves. INTRODUCTION This chapter describes two geometrical objects, vi., surfaces ad curves because the pla a ver importat

More information

Solving equations (incl. radical equations) involving these skills, but ultimately solvable by factoring/quadratic formula (no complex roots)

Solving equations (incl. radical equations) involving these skills, but ultimately solvable by factoring/quadratic formula (no complex roots) Evet A: Fuctios ad Algebraic Maipulatio Factorig Square of a sum: ( a + b) = a + ab + b Square of a differece: ( a b) = a ab + b Differece of squares: a b = ( a b )(a + b ) Differece of cubes: a 3 b 3

More information

2018 MAΘ National Convention Mu Individual Solutions ( ) ( ) + + +

2018 MAΘ National Convention Mu Individual Solutions ( ) ( ) + + + 8 MΘ Natioal ovetio Mu Idividual Solutios b a f + f + + f + + + ) (... ) ( l ( ) l ( ) l ( 7) l ( ) ) l ( 8) ) a( ) cos + si ( ) a' ( ) cos ( ) a" ( ) si ( ) ) For a fuctio to be differetiable at c, it

More information

MATHEMATICS (Three hours and a quarter)

MATHEMATICS (Three hours and a quarter) MATHEMATICS (Three hours ad a quarter) (The first fiftee miutes of the eamiatio are for readig the paper oly. Cadidates must NOT start writig durig this time.) Aswer Questio from Sectio A ad questios from

More information