274 Chapter 4 Applications of Derivatives

Size: px
Start display at page:

Download "274 Chapter 4 Applications of Derivatives"

Transcription

1 274 Chapter 4 Applicatios of Derivatives Ê % a%) Ê * %) Ê %) Ê. We discard as a etraeous solutio, leavig. Sice D a for % ad D a for %, the critical poit correspods to the miimum distace. The miimum distace is ÈD a. Geometry Method: The semicircle is cetered at the origi ad has radius %. The distace from the origi to Š ß È is Ê Š È. The shortest distace from the poit to the semicircle is the distace alog the radius () cotaiig the poit Š ß È. That distace is %. The miimum distace is from the poit Š ß È to the poit Š ß È o the graph of y È, ad this occurs at the value here Da, the distace squared, has its miimum value. a 6. (a) The ase radius of the coe is r ad so the height is h Èa r a É a ˆ. Therefore, V a rh ˆ a Éa ˆ a. () To simplify the calculatios, e shall cosider the volume as a fuctio of r: volume fa r r Èa r, here r a. f r r a r r d r a r a Š È a Š È r ra a r a r dr Èa r Èa r ar r ra a r a aè Èa r Èa r. The critical poit occurs he r, hich gives r a É. The h Èa r Éa a Éa aè aè aè. Usig r ad h, e may o fid the values of r ad h for the give values of a. % È % È & È & È Whe a % : r, h à Whe a & : r, h à Whe a : r È, h Èà Whe a ) : r, h à ) È ) È aè aè r h È (c) Sice r ad h, the relatioship is. 62. (a) Let represet the fied value of at the poit P, so that P has the coordiates a ß a, ad let m f a e the slope of the lie RT. The the equatio of the lie RT is y ma a. The y-itercept of this lie is m a ma a a m, ad the -itercept is the solutio of ma a, or. Let O desigate the origi. The m

2 (Area of triagle RST) (Area of triagle ORT) (-itercept of lie RT)(y-itercept of lie RT) ˆ m a m aam mˆ m a ˆ m a m m a m a m mˆ m ˆ m Sustitutig for, f a for m, ad fa for a, e have Aa f a. Sectio 4.5 Applied Optimizatio Prolems 275 f a f a () The domai is the ope iterval a. To graph, let y fa É ß & &, y f a NDERay, ad y y y Aa y Š. The graph of the area fuctio y Aa is sho elo. The vertical asymptotes at ad correspod to horizotal or vertical taget lies, hich do ot form triagles. (c) Usig our epressio for the y-itercept of the taget lie, the height of the triagle is a m fa f a & È & È 2 È 2 È We may use graphig methods or the aalytic method i part (d) to fid that the miimum value of Aa occurs at )Þ. Sustitutig this value ito the epressio aove, the height of the triagle is 5. This is times the y-coordiate of the ceter of the ellipse. (d) Part (a) remais uchaged. Assumig C B, the domai is aß C. To graph, ote that fa B BÉ B B ÈC B B ad f a a. Therefore e have C f a C B C ÈC CÈC B B ÈC B Š BC B È C Š È C A a fa f a CÈ C Œ C c B CÈ È C B C C c B Š BC BÈC Š ÈC B BCÈC BaC BCÈC BCÈC BCŠ C C BCŠ C ÈC È BCÈC ÈC ÈC a C ÈC C ÈC ÈC a ac Aa BC Š Š Š c Š Š c È C c ÈC c BCŠ C ÈC ac Š CÈC Š ÈC È BCŠ C ÈC ac C C CÈC ac ÈC BCŠ C È C BCŠ C ÈC ac ÈC ac Î C Š CÈ C C C CaC C ÈC BC C C Š È ac Î Š C CÈC

3 276 Chapter 4 Applicatios of Derivatives To fid the critical poits for C, e solve: C CÈC % % % Ê % % C C C C % Ê% C Ê a% C. The miimum value of Aa for C occurs at the critical poit CÈ C %, or. The correspodig triagle height is am fa f a BÈ C B CÉC C B C B C % C % C % BÈ C BŠ CÉC B C B Cˆ B B B BC % C B This shos that the traigle has miimum arrea he its height is B. 4.6 INDETERMINATE FORMS AND LHOPITALS ^ RULE. lhopital: ^ lim or lim lim lim Ä 2 ¹ Ä 2 Ä 2 a a Ä lhopital: ^ si 5 5 cos 5 si 5 si 5 lim 5 or lim 5 lim 5 5 Ä 0 ¹ Ä Ä lhopital: ^ lim lim lim or lim lim Ä_ Ä_ Ä_ Ä_ Ä_ 4. lhopital: ^ lim lim or lim lim Ä Ä Ä Ä a lim Ä a a a a a lhopital: ^ cos si cos cos acos cos lim lim lim or lim lim Ä Ä 2 Ä 2 Ä ˆ Ä co si si si lim lim Ä 2 a cos ˆ ˆ ˆ Ä cos 2 s 6. lhopital: ^ % % lim lim lim or lim lim Ä_ Ä_ Ä_ Ä_ Ä_ lim lim Ä 2 Ä lim lim 0 Ä5 5 Ä5 t 4t5 t 4 ( ) 4 2 t t 2 2t 2( ) 7 9. lim lim t Ä t Ä t t 4t t 2t 0. lim lim t Ä t Ä lim lim lim Ä_ Ä_ Ä_

4 lim lim lim Ä_ Ä_ Ä_ si t acos t (2t). lim lim 0 t Ä 0 t t Ä 0 si 5t 5 cos 5t 4. lim lim 5 t Ä 0 t t Ä lim lim lim 6 Ä 0 cos Ä 0 si Ä 0 cos si cos si cos lim lim lim lim Ä 0 Ä 0 Ä 0 Ä 0 2) lim lim 2 ) Ä Î2 cos(2 ) ) ) Ä Î2 si(2 ) ) si ˆ ) 8. lim lim ) Ä Î si ˆ ) ) ÄÎ cos ˆ ) si ) cos ) si ) cos 2 2 si 2 4 cos 2 ( 4)( ) 4 9. lim lim lim ) Ä Î2 ) ) Ä Î2 ) ) Ä Î2 ) l si ( ) cos ( ) 20. lim lim Ä Ä lim lim lim lim 2 Ä 0 l (sec ) Ä 0 ˆ sec ta Ä 0 ta Ä 0 sec sec l (csc ) ˆ csc cot csc 22. lim lim lim lim Ä Î2 ˆ ˆ Ä Î2 2ˆ ˆ Ä Î2 2ˆ ˆ Ä Î2 t( cos t) ( cos t) t(si t) si t (si t t cos t) t si t cos t si t 2. lim lim lim t Ä 0 t Ä 0 t Ä 0 cos tcos tcos tt si t 0 lim t Ä 0 cos t t si t si t t cos t cos t (cos t t si t) ( 0) Sectio 4.6 Idetermiate Forms ad LHopitals ^ Rule 277 cot csc 24. lim lim lim 2 t Ä 0 cos t t Ä 0 si t t Ä 0 cos t ˆ 25. lim ˆ sec lim lim ˆ ÄÐÎ2Ñc ÄÐÎ2Ñc cos ÄÐÎ2Ñc si ˆ 26. lim ˆ ta lim lim ˆ lim si ÄÐÎ2Ñc ÄÐÎ2Ñc cot ÄÐÎ2Ñc csc ÄÐÎ2Ñc si si (l )(cos )) a (l )() ) ) 27. lim lim l ) Ä 0 ) ) Ä 0 ) ) ˆ ˆ lˆ ˆ 28. lim lim l l l 2 l 2 ) Ä 0 ) ) Ä 0 ˆ 2 () a2 ()(l 2) a (l 2) 2 (l 2) 2 l 29. lim lim Ä 0 Ä 0 a l l l 2 2 l 2 2 l 2 l 0. lim lim Ä 0 Ä 0 l () l () ˆ. lim lim (l 2) lim (l 2) lim (l 2) lim l 2 Ä_ log 2 Ä_ ˆ l Ä_ ˆ Ä_ Ä_ l

5 278 Chapter 4 Applicatios of Derivatives ˆ l log 2 l l l l l 2. lim lim lim lim Ä_ log ( ) ˆ Ä_ l ( ) l Ä_ l ( ) ˆ l ˆ Ä_ ˆ l lim Ä_ ˆ lim Ä_ l l l l Š l ˆ 2 2 l a 2 Š lim lim 2 lim lim lim Ä l Ä ˆ Ä 2 Ä 2 2 Ä e l ae Š e e e 0 e c 4. lim lim lim lim Ä l Ä ˆ Ä e Ä e È5y 25 5 Î (5y 25) 5 ˆ cî (5y 25) (5) 5 5. lim lim lim lim y Ä 0 y y Ä 0 y y Ä 0 y Ä 0 2È 5y 25 Èay a a aay a a ˆ aay a (a) a 6. lim lim Î lim lim, a 0 y Ä 0 y y Ä 0 y y Ä 0 y Ä 0 2È ay a 7. lim [l 2 l ( )] lim l ˆ l lim l lim l 2 Ä_ Ä_ Š Š Ä_ Ä_ 8. lim (l l si ) lim l ˆ l lim l lim l 0 Ä Ä si Š Š Ä si Ä cos siaa hsi a cosaa h cos a 9. lim lim h Ä 0 h h Ä lim ˆ lim Š lim Ä Ä Ä lim Ä Š cos cos ( )( si ) ()(0) 6 cos cos si 0 ( )(si ) si ( )(cos ) si si si cos 4. lim ˆ lim lim lim Ä Ä Š Ä Š l ( ) Ä Š l ( )(l ) (l ) ( ) ˆ ( l ) lim Ä Š (l ) (0 ) 42. lim (csc cot cos ) lim ˆ cos cos ( cos ) (si )(cos ) lim Š Ä Ä si si Ä si si cos si 00 lim Ä Š cos cos ) si ) cos ) 4. lim ) lim ) lim ) ) Ä 0 e ) ) Ä 0 e ) Ä 0 e e (h) e e 44. lim lim lim h Ä 0 h h Ä 0 h h Ä 0 t t t t e t e 2t e 2 e 45. lim lim lim lim t Ä_ et t Ä_ et t Ä_ et t Ä_ et lim e lim lim lim 0 Ä_ Ä_ e Ä_ e Ä_ e _ ÎÐcÑ ÎÐcÑ l 47. The limit leads to the idetermiate form. Let f() Ê l f() l a. No ÎÐcÑ lim l f() lim lim. Therefore lim lim f() lim e e Ä Ä Ä Ä Ä Ä l ˆ l fðñ e

6 Sectio 4.6 Idetermiate Forms ad LHopitals ^ Rule 279 _ ÎÐcÑ ÎÐcÑ l 48. The limit leads to the idetermiate form. Let f() Ê l f() l a. No l ˆ ÎÐcÑ lim l f() lim lim. Therefore lim lim f() lim e e e Ä Ä Ä Ä Ä Ä Î Î l (l ) l fðñ 49. The limit leads to the idetermiate form _. Let f() (l ) Ê l f() l (l ). No l (l ) ˆ lim l f() lim Ä_ Ä_ lim Ä_ l 0. Therefore lim (l ) lim f() Ä_ Ä_ lim e e Ä_ l fðñ _ ÎÐ c Ñ 50. The limit leads to the idetermiate form. Let f() (l ) Ê l f() e lim l f() Ä e l (l ) ˆ e l (l ) l fðñ Îe l ÎÐceÑ lim lim. Therefore (l ) lim f() lim e e e e Ä e Ä e Ä e Ä e 5. The limit leads to the idetermiate form 0. Let f() Ê l f() l. Therefore cîl l fðñ lim lim f() lim e e e Ä Ä Ä c Î l l l l Îl Î 52. The limit leads to the idetermiate form _. Let f() Ê l f() l. Therefore lim Ä_ fðñ lim f() lim e e e Ä_ Ä_ ÎÐ Ñ l ( 2) 2l 5. The limit leads to the idetermiate form _. Let f() ( 2) Ê l f() 2 l l ( 2) Ê lim l f() lim lim lim. Therefore lim ( 2) Ä_ Ä_ 2 l Ä_ 2 Ä_ Ä_ l fðñ Î lim f() lim e e Ä_ Ä_ 54. The limit leads to the idetermiate form. Let f() ae Ê l f() ÎÐ2lÑ _ Î lae l ae e Ä 0 Ä 0 Ä 0 e a Ä 0 Ä 0 l fðñ lim e e Ä 0 Ê lim l f() lim lim 2. Therefore lim e lim f() 55. The limit leads to the idetermiate form 0. Let f() Ê l f() l Ê l f() l ˆ lim l f() lim lim lim ( ) 0. Therefore lim lim f() Ä Ä ˆ Ä Š Ä Ä Ä l fðñ lim e e Ä c 56. The limit leads to the idetermiate form _. Let f() ˆ l a Ê l f() c Ê lim l f() Ä Š c c lim c lim lim 0. Therefore lim ˆ c c lim f() Ä Ä Ä Ä Ä l fðñ lim e e Ä È lim lim lim 9 Ä_ È É Ä_ É Ä_ È l ˆ È 58. lim Ä È si Ê si É lim Ä sec cos 59. lim lim lim Ä Î2c ta ˆ ˆ Ä Î2c cos si Ä Î2c si

7 280 Chapter 4 Applicatios of Derivatives cot ˆ cos 60. lim lim lim cos Ä csc si Ä ˆ Ä si 0 _ 6. Part () is correct ecause part (a) is either i the or form ad so lhopitals ^ rule may ot e used. 62. Part () is correct; the step lim lim i part (a) is false ecause lim is Ä 0 2 cos Ä 0 si Ä 0 2 cos ot a idetermiate quotiet form. 0 _ Part (d) is correct, the other parts are idetermiate forms ad caot e calculated y the icorrect arithmetic d d f () f() d d g () g() 64. (a) For Á 0, f () ( 2) ad g () ( ). Therefore, lim, hile lim Ä 0 Ä () This does ot cotradict lhopitals ^ rule ecause either f or g is differetiale at 0 (as evideced y the fact that either is cotiuous at 0), so lhopitals ^ rule does ot apply. 9 si 9 9 cos If f() is to e cotiuous at 0, the lim f() f(0) Ê c f(0) lim lim Ä 0 Ä 0 5 Ä 0 27 si 8 cos 27 lim lim. Ä 0 0 Ä (a) () The limit leads to the idetermiate form : È È È È lim Š È lim Š È a Š lim Š lim Ä_ Ä_ Ä_ Ä_ lim Ä_ È É 67. The graph idicates a limit ear. The limit leads to the idetermiate form 0 2 ( ) È 2 0 : lim Ä 9 Î Î Î lim lim Ä Ä cî _ 68. (a) The limit leads to the idetermiate form. Let f() ˆ Ê l f() l ˆ Ê lim l f() Ä_ l ˆ l a Š c lim lim lim c lim Ä_ ˆ c c Ä_ Ä_ Ä_ ˆ 0 Ê lim lim f() lim e e e Ä_ ˆ l fðñ Ä_ Ä_ c c

8 Sectio 4.6 Idetermiate Forms ad LHopitals ^ Rule 28 () ˆ , , Both fuctios have limits as approaches ifiity. The fuctio f has a maimum ut o miimum hile g has o etrema. The limit _ of f() leads to the idetermiate form. (c) Let f() ˆ Ê l f() l a 2 l a Š c c Ê lim l f() lim Ä_ Ä_ c a a 6 c lim Ä_ c lim Ä_ lim Ä_ lim Ä_ 0. Therefore lim ˆ l fðñ lim f() lim e e Ä_ Ä_ Ä_ rk k l a rk l a rk Š r k k k k rk 69. Let f(k) ˆ r c c rk Ê l f(k) Ê lim lim c lim k Ä_ k Ä_ k Ä_ rk r r k lim lim r. Therefore lim ˆ l fðkñ r lim f(k) lim e e. k Ä_ k r k Ä_ k Ä_ k k Ä_ k Ä_ c c c c c c y ˆ () l y 70. (a) y Î l Ê l y Ê Ê y ˆ l Î a. The sig patter is y Îe ±±hich idicates a maimum value of y e he e e Î l y ˆ a 2 l 2 l y () y Ê l y Ê Ê y ˆ Î a. The sig patter is % y Î2e ±± hich idicates a maimum of y e he Èe Èe Î l ˆ a (l ) ˆ c c ( l ) Î (c) y Ê l y 2 Ê y 2. The sig patter is Îe y ±± hich idicates a maimum of y e he È e È e Î l Î l ÐlÑÎ (d) lim lim ˆ e lim e ep Š lim ep lim e Ä_ Ä_ Ä_ Ä_ Š ˆ Ä_ 7. (a) We should assig the value to f() (si ) to make it cotiuous at 0. l (si ) l (si ) ˆ si (cos ) Š () l f() l (si ) ˆ Ê lim l f() lim ˆ lim Ä Ä Ä 2 lim lim 0 Ê lim f() e Ä 0 ta Ä 0 sec Ä 0 (c) The maimum value of f() is close to ear the poit.55 (see the graph i part (a)).

9 282 Chapter 4 Applicatios of Derivatives (d) The root i questio is ear (a) Whe si 0 there are gaps i the sketch. The ih of each gap is. () Let f() (si ) ta Ê l f() (ta ) l (si ) Ê lim l f() lim Ä Î2c Ä Î2 ˆ si (cos ) c l (si ) cot cos lim lim 0 Ä Î2c csc Ä Î2c ( si ) Ê lim f() e. Similarly, Ä Î2 c lim f() e. Therefore, lim f(). Ä Î2 Ä Î2 (c) From the graph i part () e have a miimum of aout at 0.47 ad the maimum is aout.49 at cos 7. Graphig fa o th ido Òß Ó y ÒÞ&ß Ó it appears that lim fa. Hoever, e see that if e let Ä 0 u, the lim f a lim cos u lim si u lim cos u. Ä 0 u Ä 0 u u Ä 0 u u Ä 0 f a c fa fa ga c ga ga % c 74. (a) We seek c i aß so that. Sice f a c ad g a c c e have that Ê c. fa c f a fa a a ga c g aga a a c a () We seek c i aaß so that. Sice f a c ad g a c c e have that Ê c a. f ac (c) We seek c i aß so that fa fa. Sice f a c c % ad g a c c e have that gac ga ga * c % È( È( c Ê c Ê c.

10 PA CE 75. (a) By similar triagles, here E is the poit o AB such that CE ¼ AB : AB EB Sectio 4.7 Netos Method 28 cos ) acos ) ) ) si ) ) si ) ) acos ) ) si ) cos ) ) cos ) si ) si ) ) cos ) si ) a ) Ä 0 ) Ä 0 ) si ) ) Ä 0 cos ) ) Ä 0 si ) ) Ä 0 si ) ) asi ) cos ) cos ) ) si ) cos ) lim lim ) Ä 0 cos ) ) Ä 0 cos ) Thus, sice the coordiates of C are acos ) ß si ). Hece,. () lim lim lim lim lim ) acos ) (c) We have that lim cos ) a a ) lim acos ) lim acos ) ) Ä_ ) Ä_ ) si ) ) Ä_ ) si ) As ) Ä _, a cos ) oscillates etee ad, ad so it is ouded. Sice lim ˆ ), ) Ä_ ) si ) ) lim a cos ). Geometrically, this meas that as ) Ä_, the distace etee poits P ad D ) Ä_ ) si ) approaches Throughout this prolem ote that r y, r y ad that oth r Ä_ ad y Ä_ as Ä Þ (a) lim r y lim ) Ä Î2 ) Ä Î2 ry () lim r y lim ) Ä Î2 ) Ä Î2 r ry y y y y y y y r y r r r y ) Ä Î2 r ) ) Ä Î2 ) Ä Î2 (c) We have that r y ar yar ry y y. Sice lim y lim si y e have that lim r y. ) 4Þ7 NEWTONS METHOD y Ê y 2 Ê ; Ê 9 Ê Ê.6905; Ê 2 Ê y Ê y Ê ; 0 Ê 0 7 Ê % % y Ê y 4 Ê ; Ê Ê.6542; Ê Ê

11 284 Chapter 4 Applicatios of Derivatives ; y 2 Ê y 2 2 Ê ; 0 Ê 0 Ê Ê Ê Oe ovious root is 0. Graphig e ad 2 shos that 0 is the oly root. Takig a aive approach e ca use Netos Method to estimate the root as follos: Let fa e 2,, ad ec 2 0 ec 2. Performig iteratios o a calculator, spreadsheet, or CAS gives 0.594, , You may get differet results depedig upo hat you select for fa ad, ad hat calculator or computer you may use Graphig ta a ad 2 shos that there is oly oe root ad it is etee 0. ad 0.4. Let f a tac a 2 f a 2 2 fa ta a2, 0., ad. Performig iteratios o a calculator, spreadsheet, or CAS gives , 0.729, You may get differet results depedig upo hat you select for fa ad, ad hat calculator or computer you may use. fa 7. f( ) 0 ad f () Á Ê gives Ê f a Ê for all 0. That is, all of the approimatios i Netos method ill e the root of f() It does matter. If you start too far aay from, the calculated values may approach some other root. Startig ith 0.5, for istace, leads to as the root, ot. f a f a 9. If h 0 Ê h È f( ) f() f(h) f(h) h h hš Èh Š 2Èh h; Š È h if h 0 Ê h È f( ) f( h) f() f( h) h h hš Èh Š 2Èh h. c Š È 2 h Î 0. f() Ê f () ˆ Î Ê ˆ Î cî 2 ; Ê 2, 4, 8, ad % 6 ad so forth. Sice kk 2l cl e may coclude that Ä _ Ê k k Ä _.. i) is equivalet to solvig. ii) is equivalet to solvig. iii) is equivalet to solvig. iv) is equivalet to solvig. All four equatios are equivalet. 0.5 si 2. f() 0.5 si Ê f () 0.5 cos Ê 0.5 cos ; if.5, the.49870

12 Sectio 4.7 Netos Method 285. For Þ, the procedure coverges to the root Þ)&&ÞÞÞÞ (a) () (c) (d) Values for ill vary. Oe possile choice is Þ. (e) Values for ill vary. 4. (a) f() Ê f () Ê Ê the to egative zeros are.5209 ad () The estimated solutios of 0 are.5209, 0.470, (c) The estimated -values here % g() has horizotal tagets are the roots of g (), ad these are.5209, 0.470, ta a 2 5. f() ta 2 Ê f () sec 2 Ê sec a ; Ê Ê Ê % 6. f() Ê f () Ê ; if 0.5, the % ; if 2.5, the % %

13 286 Chapter 4 Applicatios of Derivatives 7. (a) The graph of f() si 0.99 i the ido 2 Ÿ Ÿ 2, 2 Ÿ y Ÿ suggests three roots. Hoever, he you zoom i o the -ais ear.2, you ca see that the graph lies aove the ais there. There are oly to roots, oe ear, the other ear 0.4. () f() si 0.99 Ê f () cos 2 Ê ad the solutios si ( ) 0.99 cos ( ) 2 are approimately ad (a) Yes, three times as idicted y the graphs () f() cos Ê f () si Ê cos a si a ; at approimately , , ad e have cos % 9. f() 2 4 Ê f () 8 8 Ê ; if 2, the ; if % , the ; the roots are approimately ad ecause f() is a eve fuctio. ta a 20. f() ta Ê f () sec Ê sec a ; Ê.97 Ê.459 ad e approimate to e Graphig e ad shos that there are to places here the curves itersect, oe at 0 ad the other c f e etee 0.5 ad 0.6. Let fa e, 0.5, ad f 0 a. 2 2 e c2 Performig iteratios o a calculator, spreadsheet, or CAS gives , , , (You may get differet results depedig upo hat you select for fa ad, ad hat calculator or 4 0 computer you may use.) Therefore, the to curves itersect at 0 ad Graphig la ad shos that there are to places here the curves itersect, oe etee ad 0.9, ad the other etee 0.5 ad 0.6. Let fa la, ad a 2 f a f a. Performig iteratios o a calculator, spreadsheet, or CAS ith 0.5 gives , lˆ 2 c2 c , , ad ith 0.9 gives , , , (You may get differet results depedig upo hat you select for fa ad, ad 4 0 hat calculator or computer you may use.) Therefore, the to curves itersect at ad If f() 2 4, the f() 0 ad f(2) 8 0 Ê y the Itermediate Value Theorem the equatio has a solutio etee ad 2. Cosequetly, f () 2 ad The Ê.2 Ê.7975 Ê Ê % Ê the root is approimately.795.

14 % % 24. We ish to solve Let f() 8 4 9, the f () Ê. approimatio of correspodig root % Sectio 4.8 Atiderivatives 287 % i i i 25. f() 4 4 Ê f () 6 8 Ê. Iteratios are performed usig the f a f a i i i i % procedure i prolem i this sectio. (a) For or Þ), i Ä as i gets large. () For Þ& or Þ&, i Ä as i gets large. (c) For Þ) or, i Ä as i gets large. (d) (If your calculator has a CAS, put it i eact mode, otherise approimate the radicals ith a decimal value.) È2 È2 7 7 i È2 È2 7 7 For or, Netos method does ot coverge. The values of alterate etee or as i icreases. 26. (a) The distace ca e represeted y D() É( 2) ˆ, here 0. The distace D() is miimized he ˆ f() ( 2) ˆ is miimized. If f() ( 2), the f () 4 a ad f () 4 a 0. No f () 0 Ê 0 Ê a Ê. 2 a () Let g() a Ê g () a (2) Ê ; Ê to five decimal places. Œ Î Ñ c2 ÏŠ c Ò % i % * 27. f() ( ) Ê f () 40( ) Ê. With 2, our computer % a 40 a * 9 40 gave )( )) )* â.05, comig ithi 0.05 of the root. 28. f() Ê f () 7.2 Ê ; 2 Ê Ê Ê Ê % hich is 2.45 to to decimal places. Recall that 0 % ch O d Ê ch O d () a0 % (2.45) a0 % ANTIDERIVATIVES. (a) () (c) 8 8 ) ) 2. (a) () (c) 8 c c. (a) () (c)

15 288 Chapter 4 Applicatios of Derivatives 4 2 c c 4. (a) () (c) (a) () (c) 2 % (a) () (c) 7. (a) È () È 2 (c) È 2È %Î Î %Î Î 4 8. (a) () (c) Î Î Î 9. (a) () (c) Î Î Î 0. (a) () (c). (a) l l l () 7 l l l (c) 5 l ll (a) l l l () l l l (c) l ll cos ( ). (a) cos ( ) () cos (c) cos () 4. (a) si ( ) () si ˆ (c) ˆ 2 si ˆ si 5. (a) ta () 2 ta ˆ 2 (c) ta ˆ 6. (a) cot () cot ˆ (c) 4 cot (2) 7. (a) csc () csc (5) (c) 2 csc ˆ (a) sec () sec () (c) sec ˆ /2 9. (a) e () e (c) 2e 2 4/ / (a) e () e (c) 5e 5 2. (a) () 2 (c) ˆ l l 2 la5/ È È2 È È2 22. (a) () (c) 2. (a) 2 si () ta (c) ta a l a/2 l 2 l (a) ˆ () 2 (c) l ll 25. ( ) d C 26. (5 6) d 5 C 27. ˆ t t % C 28. Š 4t t t t t t C 4 6

16 % 5 & Sectio 4.8 Atiderivatives a2 5 7 d 7 C 0. a d C c. ˆ d ˆ d C C c 2. ˆ 2 2 d ˆ d Š C C Î Î &Î% 4 2 4È 4 Î cî%. d C C 4. d C C Î %Î 5. ˆ È È d ˆ Î Î 2 Î %Î d C C 4 4 È 2 È Î Î 6. Š d ˆ Î Î 2 Î Î d Š 2 Š C 4 C Î% 2 7. Š 8y dy ˆ Î% 8y 2y 8y y 8 Î% dy 2 Š C 4y y C y Î% 4 cî% 8. Š dy ˆ &Î% y y y 4 dy y Š C C 7 &Î% y c 9. 2 a d a2 2 d 2 Š C C c c 40. ( ) d a d Š C C È È y Î% t t t Î Î Î cî t t Î Î t t 2 4. Š ˆ t t Š C 2Èt C t t t È 4 t Î c cî 4 t &Î t t Š ˆ 4t t 4 Š Š C Î C t t t t 4. 2 cos t 2 si t C si t 5 cos t C ) ) si d) 2 cos C 46. cos 5 ) d ) si 5) C sec ta 47. csc d cot C 48. d C csc ) cot ) d ) csc ) C 50. sec ) ta ) d ) sec ) C e ae 5e d 5e C 52. a2e e d 2e e C 4 a. l 4 l a. 5. ae 4 d e C 54. a. d C Èt t 55. a 4 sec ta 2 sec d 4 sec 2 ta C a csc csc cot d cot csc C 57. asi 2 csc d cos 2 cot C 58. (2 cos 2 si ) d si 2 cos C

17 290 Chapter 4 Applicatios of Derivatives cos 4t si 4t t si 4t 59. ˆ cos 4t t ˆ C C cos 6t si 6t t si 6t 60. ˆ cos 6t t ˆ C C ˆ /4 d l ll 5 ta C 62. Š dy 2 si y y C È y2 y/4 Š È È 6. d C 64. Š È2c È2 d C È È2 65. a ta ) d) sec ) d) ta ) C 66. a2 ta ) d) a ta ) d ) a sec ) d) ) ta ) C 67. cot d acsc d cot C 68. a cot d a acsc d a2 csc d 2 cot C 69. cos )(ta ) sec )) d ) (si ) ) d) cos ) ) C ˆ ˆ csc ) csc ) si ) csc ) si ) csc ) si ) si ) si ) cos ) 70. d ) d ) d ) d) sec ) d) ta ) C d (7 % 2) 4(7 2) (7) d Š C (7 2) d ( 5) ( 5) () d c c 72. Š C Š ( 5) d 7. ˆ ta (5 ) C asec (5 ) (5) sec (5 ) d 5 5 d 74. ˆ cot ˆ C ˆ csc ˆ ˆ csc ˆ d d 75. ˆ C d ( )( ) () ( )( )( ) 76. ˆ C d ( ) d ( ) ( ) d d d d 77. ala C 78. a e e e a e e e 79. ˆ ta ˆ ˆ d d d a a a ˆ 2 d a a Š a a a ˆ si ˆ ˆ d d d a É d a ˆ 2 aéˆ 2 Èa 2 2 a a ta Š ta 8. If y l l a c C, the dy d ta a ata a ta a a c c c Š d d d, hich verifies the formula c

18 Sectio 4.8 Atiderivatives If y asi 2 2È si C, the c 2 asi 2 dy asi 2 si 2È Š d asi d, hich verifies the formula È È È d 2 8. (a) Wrog: d Š si C si cos si cos Á si d d d d () Wrog: ( cos C) cos si Á si (c) Right: ( cos si C) cos si cos si d sec ) sec ) d) 84. (a) Wrog: Š C (sec ) ta )) sec ) ta ) Á ta ) sec ) d () Right: ˆ ta C d) ) (2 ta )) sec ) ta ) sec ) d (c) Right: ˆ sec C d) ) (2 sec )) sec ) ta ) ta ) sec ) d (2 ) (2 ) (2) d 85. (a) Wrog: Š C 2(2 ) Á (2 ) d d a d d a () Wrog: (2 ) C (2 ) (2) 6(2 ) Á (2 ) (c) Right: (2 ) C 6(2 ) d Î Î (a) Wrog: a C a C (2 ) Á È2 È d 2 C d Î Î 2 () Wrog: Š a C a (2 ) Á È2 È d 2 d d (c) Right: Œ Š È2 C ˆ Î (2 ) C Î (2 ) (2) È2 d d 6 dy 87. Graph (), ecause d 2 B Ê y C. The y() 4 Ê C. dy d 88. Graph (), ecause B Ê y C. The y( ) Ê C. dy d Ê y 7 C; at 2 ad y 0 e have 0 2 7(2) C Ê C 0 Ê y 7 0 dy d Ê y 0 C; at 0 ad y e have 0(0) C Ê C Ê y 0 dy d 2 9. Ê y C; at 2 ad y e have 2 C Ê C Ê y or y dy d Ê y 2 5 C; at ad y 0 e have 0 ( ) 2( ) 5( ) C Ê C 0 Ê y dy d Î Î Î Î 9. Ê y C * ; at 9 C; at ad y & e have &* ( ) C Ê C % Î Ê y 9 % dy d È Î Î Î Î 94. Ê y C; at 4 ad y 0 e have 0 4 C Ê C 2 Ê y 2 ds 95. cos t Ê s t si t C; at t 0 ad s 4 e have 4 0 si 0 C Ê C 4 Ê s t si t 4

19 292 Chapter 4 Applicatios of Derivatives ds 96. cos t si t Ê s si t cos t C; at t ad s e have si cos C Ê C 0 Ê s si t cos t dr d) 97. si ) Ê r cos ( ) ) C; at r 0 ad ) 0 e have 0 cos ( 0) C Ê C Ê r cos ( ) ) dr d) 98. cos ) Ê r si( ) ) C; at r ad ) 0 e have si ( 0) C Ê C Ê r si ( ) ) dv 99. sec t ta t Ê v sec t C; at v ad t 0 e have sec (0) C Ê C Ê v sec t dv 00. 8t csc t Ê v 4t cot t C; at v 7 ad t e have 7 4 ˆ cot ˆ C Ê C 7 Ê v 4t cot t 7 dv tèt 0., t Ê v sec t C; at t 2 ad v 0 e have 0 sec 2 C Ê C Ê v sec t dv 8 t sec t Ê v 8 ta t ta t C; at t 0 ad v e have 8 ta a0taa0c Ê C Ê v 8 ta t ta t d y dy dy d d d dy d Ê 2 C ; at 4 ad 0 e have 4 2(0) (0) C Ê C 4 Ê 2 4 Ê y 4 C ; at y ad 0 e have 0 0 4(0) C Ê C Ê y 4 d y dy dy dy d d d d Ê C ; at 2 ad 0 e have C 2 Ê 2 Ê y 2 C ; at y 0 ad 0 e have 0 2(0) C Ê C 0 Ê y 2 dr 2 dr dr dr t Ê r t 2t C ; at r ad t e have 2() C Ê C 2 Ê r t 2t 2 or r t 2t t Ê t C ; at ad t e have () C Ê C 2 Ê t 2 d s t ds t ds (4) ds t t t s 4 ad t 4 e have 4 6 C Ê C 0 Ê s Ê C ; at ad t 4 e have C Ê C 0 Ê Ê s C ; at dy dy dy dy d d d d dy dy dy d d d Ê 6 C ; at 8 ad 0 e have 8 6(0) C Ê C 8 Ê 6 8 Ê 8 C ; at 0 ad 0 e have 0 (0) 8(0) C Ê C 0 Ê 8 Ê y 4 C ; at y 5 ad 0 e have 5 0 4(0) C Ê C 5 Ê y 4 5 d ) d ) d ) d ) d) d) Ê C ; at 2 ad t 0 e have 2 Ê 2t C ; at ad t 0 e d) have 2(0) C Ê C Ê 2t Ê ) t t C ; at ) È2 ad t 0 e have È 2 0 (0) C C È Ê 2 Ê t tè2 ) Ð%Ñ 09. y si t cos t Ê y cos t si t C ; at y 7 ad t 0 e have 7 cos (0) si (0) C Ê C 6 Ê y cos t si t 6 Ê y si t cos t 6t C ; at y ad t 0 e have si (0) cos (0) 6(0) C Ê C 0 Ê y si t cos t 6t Ê y cos t si t t C ; at y ad t 0 e have cos (0) si (0) (0) C Ê C 0 Ê y cos t si t t Ê y si t cos t t C %; at y 0 ad t 0 e have 0 si (0) cos (0) 0 C % Ê C% Ê y si t cos t t

20 Ð%Ñ Sectio 4.8 Atiderivatives y cos 8 si (2) Ê y si 4 cos (2) C ; at y 0 ad 0 e have 0 si (0) % cos (2(0)) C Ê C 4 Ê y si 4 cos (2) 4 Ê y cos 2 si (2) 4 C ; at y ad 0 e have cos (0) 2 si (2(0)) 4(0) C Ê C 0 Ê y cos 2 si (2) 4 Ê y si cos (2) 2 C ; at y ad 0 e have si (0) cos (2(0)) 2(0) C Ê C 0 2 Ê y si cos (2) 2 Ê y cos si (2) C ; at y ad 0 e have % 2 2 % % cos (0) si (2(0)) (0) C Ê C 4 Ê y cos si (2) 4. m y È Î Î Î Î Ê y 2 C; at (*ß4) e have 4 2(9) C Ê C 50 Ê y 2 50 dy dy dy d d d Ê y C ; at y ad 0 e have C Ê y 2. (a) 6 Ê C ; at y 0 ad 0 e have 0 (0) C Ê C 0 Ê () Oe, ecause ay other possile fuctio ould differ from of the iitial coditios y a costat that must e zero ecause dy 4 Î 4. Ê y ˆ Î %Î %Î d C; at (ß0.5) o the curve e have 0.5 C d Ê C 0.5 Ê y %Î dy ( ) d Ê C Ê y 4. Ê y ( ) d C; at ( ß) o the curve e have ( ) C dy 5. si cos Ê y (si cos ) d cos si C; at ( ß) o the curve e have d cos ( ) si ( ) C Ê C 2 Ê y cos si 2 dy 6. si Î si Ê y Î si d Î È ˆ cos C; at ( ß ) o the d Î curve e have 2 cos () C Ê C 0 Ê y È cos ds 7. (a) 9.8t Ê s 4.9t t C; (i) at s 5 ad t 0 e have C 5 Ê s 4.9t t 5; displacemet s() s() ((4.9)(9) 9 5) (4.9 5).2 uits; (ii) at s 2 ad t 0 e have C 2 Ê s 4.9t t 2; displacemet s() s() ((4.9)(9) 9 2) (4.9 2).2 uits; (iii) at s s ad t 0 e have C s Ê s 4.9t t s ; displacemet s() s() ((4.9)(9) 9 s ) (4.9 s ).2 uits () True. Give a atiderivative f(t) of the velocity fuctio, e ko that the odys positio fuctio is s f(t) C for some costat C. Therefore, the displacemet from t a to t is (f() C) (f(a) C) f() f(a). Thus e ca fid the displacemet from ay atiderivative f as the umerical differece f() f(a) ithout koig the eact values of C ad s. 8. a(t) v (t) 20 Ê v(t) 20t C; at (0 ß ) e have C 0 Ê v(t) 20t. Whe t 60, the v(60) 20(60) 200 m/sec. d s ds ds ds 9. Step : k Ê kt C ; at 88 ad t 0 e have C 88 Ê kt 88 Ê t kt s kš 88t C ; at s 0 ad t 0 e have C 0 Ê s 88t ds 88 k k ˆ 88 k ˆ 88 (88) (88) (88) k 2k k 2k Step 2: 0 Ê 0 kt 88 Ê t Step : Ê 242 Ê 242 Ê k 6

21 294 Chapter 4 Applicatios of Derivatives d s ds ds ds kt k(0) Ê kt ds k s 44t. The 0 Ê kt 44 0 Ê t ad s ˆ 44 k k 44 k 44 ˆ k ft Ê k k 45 Ê k 45 Ê k sec. 20. k Ê k kt C; at 44 he t 0 e have 44 k(0) C Ê C 44 Ê kt 44 Ê s 44t C ; at s 0 he t 0 e have 0 44(0) C Ê C 0 ˆ Î Î Î Î ds Î Î Î 2. (a) v a 5t t 0t 6t C; () 4 Ê 4 0() 6() C Ê C 0 Î Ê v 0t 6t ˆ Î Î &Î Î &Î Î () s v 0t 6t 4t 4t C; s() 0 Ê 0 4() 4() C Ê C 0 &Î Ê s 4t 4t Î d s ds ds ds Ê 5.2t C ; at 0 ad t 0 e have C 0 Ê 5.2t Ê s 2.6t C ; at s 4 ad t 0 e have C 4 Ê s 2.6t 4. The s 0 Ê 0 2.6t 4 Ê t.24 sec, sice t 0 É d s ds ds ds at a(0) at he t 0 Ê s v (0) C Ê C s Ê s v t s 2. a Ê a at C; v he t 0 Ê C v Ê at v Ê s v t C ; s s 24. The appropriate iitial value prolem is: Differetial Equatio: g ith Iitial Coditios: v ad ds ds s s he t 0. Thus, g gt C ; (0) v Ê v ( g)(0) C Ê C v ds Ê gt v. Thus s a gt v gt v t C ; s(0) s (g)(0) v (0) C Ê C s. Thus s gt v t s 25. (a) f() d È C È C () g() d 2 C C ds (c) f() d ˆ È C È C (d) g() d ( 2) C C (e) [f() g()] d ˆ È ( 2) C È C (f) [f() g()] d ˆ È ( 2) C È C ds 26. Yes. If F() ad G() oth solve the iitial value prolem o a iterval I the they oth have the same first derivative. Therefore, y Corollary 2 of the Mea Value Theorem there is a costat C such that F() G() C for all. I particular, F( ) G( ) C, so C F( ) G( ) 0. Hece F() G() for all Eample CAS commads: Maple: ith(studet): f := -> cos()^2 + si(); ic := [=Pi,y=]; F := uapply( it( f(), ) + C, ); eq := eval( y=f(), ic ); solc := solve( eq, {C} ); Y := uapply( eval( F(), solc ), ); DEplot( diff(y(),) = f(), y(), =0..2*Pi, [[y(pi)=]], color=lack, liecolor=lack, stepsize=0.05, title=sectio ); Mathematica: (fuctios ad values may vary) The folloig commads use the defiite itegral ad the Fudametal Theorem of calculus to costruct the solutio of the iitial value prolems for eercises 27-0.

22 Chapter 4 Practice Eercises 295 Clear[, y, yprime] yprime[_] = Cos[] 2 Si[]; iitvalue = ; iityvalue = ; y[_] = Itegrate[yprime[t], {t, iitvalue, }] iityvalue If the solutio satisfies the differetial equatio ad iitial coditio, the folloig yield True yprime[]==d[y[], ] //Simplify y[iitvalue]==iityvalue Sice eercise 06 is a secod order differetial equatio, to itegratios ill e required. Clear[, y, yprime] y2prime[_] = Ep[/2] ; iitval = 0; iityval = 4; iityprimeval = ; yprime[_] = Itegrate[y2prime[t],{t, iitval, }] iityprimeval y[_] = Itegrate[yprime[t], {t, iitval, }] iityval Verify that y[] solves the differetial equatio ad iitial coditio ad plot the solutio (red) ad its derivative (lue). y2prime[]==d[y[], {, 2}]//Simplify y[iitval]==iityval yprime[iitval]==iityprimeval Plot[{y[], yprime[]}, {, iitval, iitval }, PlotStyle Ä {RGBColor[,0,0], RGBColor[0,0,]}] CHAPTER 4 PRACTICE EXERCISES. No, sice f() 2 ta Ê f () 2 sec 0 Ê f() is alays icreasig o its domai cos 2 2. No, sice g() csc 2 cot Ê g () csc cot 2 csc si si si (cos 2) 0 Ê g() is alays decreasig o its domai. No asolute miimum ecause lim (7 )( ) _. Net f () Ä_ Î Î ( ) (7 ) 4( ) ( ) (7 )( ) Ê ad are critical poits. Î ( ) Î ( ) Sice f 0 if ad f 0 if, f() 6 is the asolute maimum. Î a a a 2(a ) aa 2 a a a % a 8 a a a 4. f() Ê f () ; f () 0 Ê (* a a) Ê& a. We require also that f(). Thus Ê a ). Solvig oth equatios yields a 6 ad 0. No, f () so that f ± ± ± ±. Thus f chages sig at from / positive to egative so there is a local maimum at hich has a value f(). 5. ga e Ê g a e Ê g ± Ê the graph is decreasig o a_, 0, icreasig o a0, _ ; 0 a asolute miimum value is at 0; 0 is the oly critical poit of g; there is o asolute maimum value 2e ˆ 2 2e 2e 2 2 2e a 6. fa 2 Ê f a 2 2 Ê f ± Ê the graph is icreasig o a_, _ ; a2 a2 is the oly critical poit of f; there are o asolute maimum values or asolute miimum values fa 2 l o Ÿ Ÿ Ê f a Ê f ± ± ± Ê the graph is decreasig o a, 2, 2 icreasig o a2, ; a asolute miimum value is 2 2 l 2 at 2; a asolute maimum value is at.

23 296 Chapter 4 Applicatios of Derivatives fa l o ŸŸ 4 Êf a 2 2 Êf ±±± Êthe graph is decreasig o 2 4 a, 2, icreasig o a2, 4 ; a asolute miimum value is 2 l 4 at 2; a asolute maimum value is 4 at. 9. Yes, ecause at each poit of [ß Ñ ecept 0, the fuctios value is a local miimum value as ell as a local maimum value. At 0 the fuctios value, 0, is ot a local miimum value ecause each ope iterval aroud 0 o the -ais cotais poits to the left of 0 here f equals. 0. (a) The first derivative of the fuctio f() is zero at 0 eve though f has o local etreme value at 0. () Theorem 2 says oly that if f is differetiale ad f has a local etreme at c the f (c) 0. It does ot assert the (false) reverse implicatio f (c) 0 Ê f has a local etreme at c.. No, ecause the iterval 0 fails to e closed. The Etreme Value Theorem says that if the fuctio is cotiuous throughout a fiite closed iterval a Ÿ Ÿ the the eistece of asolute etrema is guarateed o that iterval. 2. The asolute maimum is kk ad the asolute miimum is k0k 0. This is ot icosistet ith the Etreme Value Theorem for cotiuous fuctios, hich says a cotiuous fuctio o a closed iterval attais its etreme values o that iterval. The theorem says othig aout the ehavior of a cotiuous fuctio o a iterval hich is half ope ad half closed, such as Òß Ñ, so there is othig to cotradict.. (a) There appear to e local miima at.75 ad.8. Poits of iflectio are idicated at approimately 0 ad. ( & % () f () 5 5 a a 5. The patter y ± ± ± ± È È& È idicates a local maimum at È 5 ad local miima at È. (c)

24 Chapter 4 Practice Eercises (a) The graph does ot idicate ay local etremum. Poits of iflectio are idicated at approimately ad. % ( % 0 ( () f () 2 5 a 2a 5. The patter f )( ± ± idicates ( È & È a local maimum at (È 5 ad a local miimum at È 2. (c) 5. (a) g(t) si t t Ê g (t) 2 si t cos t si (2t) Ê g 0 Ê g(t) is alays fallig ad hece must decrease o every iterval i its domai. () Oe, sice si t t 5 0 ad si t t 5 have the same solutios: f(t) si t t 5 has the same derivative as g(t) i part (a) ad is alays decreasig ith f( ) 0 ad f(0) 0. The Itermediate Value Theorem guaratees the cotiuous fuctio f has a root i [ ß 0]. dy d) 6. (a) y ta ) Ê sec ) 0 Ê y ta ) is alays risig o its domai Ê y ta ) icreases o every iterval i its domai () The iterval 4 ß is ot i the tagets domai ecause ta ) is udefied at ). Thus the taget eed ot icrease o this iterval. % 7. (a) f() 2 2 Ê f () 4 4. Sice f(0) 2 0, f() 0 ad f () 0 for 0 Ÿ Ÿ, e may coclude from the Itermediate Value Theorem that f() has eactly oe solutio he 0 Ÿ Ÿ. 2 È48 () 0 Ê È ad 0 Ê È () 8. (a) y Ê y 0, for all i the domai of Ê y is icreasig i every iterval i its domai () y 2 Ê y 2 0 for all Ê the graph of y 2 is alays icreasig ad ca ever have a local maimum or miimum 9. Let V(t) represet the volume of the ater i the reservoir at time t, i miutes, let V(0) a e the iitial amout ad V(440) a (400)(4,560)(7.48) gallos e the amout of ater cotaied i the reservoir after the rai, here 24 hr 440 mi. Assume that V(t) is cotiuous o [ß440] ad differetiale o (ß 440). The Mea Value Theorem says that for some t i (ß 440) e have V (t ) a (400)(4,560)(7.48) a 456,60,20 gal mi V(440) V(0) ,778 gal/mi. Therefore at t the reservoirs volume as icreasig at a rate i ecess of 225,000 gal/mi.

AP Calculus BC Review Applications of Derivatives (Chapter 4) and f,

AP Calculus BC Review Applications of Derivatives (Chapter 4) and f, AP alculus B Review Applicatios of Derivatives (hapter ) Thigs to Kow ad Be Able to Do Defiitios of the followig i terms of derivatives, ad how to fid them: critical poit, global miima/maima, local (relative)

More information

180 Chapter 3 Applications of Derivatives

180 Chapter 3 Applications of Derivatives 80 Chapter Applicatios of Derivatives. Let represet the legth of the rectagle i meters (! % ) The the idth is % ad the area is Aab a%b %. Sice A ab %, the critical poit occurs at. Sice, A a b! for! ad

More information

CHAPTER 4 APPLICATIONS OF DERIVATIVES

CHAPTER 4 APPLICATIONS OF DERIVATIVES CHAPTER APPLICATIONS OF DERIVATIVES. EXTREME VALUES OF FUNCTIONS. A absolute miimum at c, a absolute maimum at b. Theorem guaratees the eistece of such etreme values because h is cotiuous o [aß b].. A

More information

' ' Š # # ' " # # # Section 5.3 The Definite Integral 275. œ x dx 1 dx x dx 1 dx. œ " # œ x dx 1 dx œ (3 1) œ ( 1 2) œ (see parts (a) and (b) above).

' ' Š # # '  # # # Section 5.3 The Definite Integral 275. œ x dx 1 dx x dx 1 dx. œ  # œ x dx 1 dx œ (3 1) œ ( 1 2) œ (see parts (a) and (b) above). Sectio. The Defiite Itegral 7 ( ) t dt t dt t dt t dt 6. av(f) Š at t dt Š ( ) ( ) Š Š. ( ) ( ) d ( ) d 6. (a) av(g) Š akk d d d d d ( ) Š ( ( )) Š ( ). () av(g) ˆ akk d ( ) d Š d d ( ). ( ) k k (c) av(g)

More information

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is Calculus BC Fial Review Name: Revised 7 EXAM Date: Tuesday, May 9 Remiders:. Put ew batteries i your calculator. Make sure your calculator is i RADIAN mode.. Get a good ight s sleep. Eat breakfast. Brig:

More information

CHAPTER 5 INTEGRATION

CHAPTER 5 INTEGRATION CHAPTER 5 INTEGRATION 5. AREA AND ESTIMATING WITH FINITE SUMS. fa Sice f is icreasig o Òß Ó, we use left edpoits to otai lower sums ad right edpoits to otai upper sums. i ) i i ( ( i ˆ i Š ˆ ˆ ˆ ) i i

More information

CHAPTER 4 Integration

CHAPTER 4 Integration CHAPTER Itegratio Sectio. Atierivatives a Iefiite Itegratio......... Sectio. Area............................. Sectio. Riema Sums a Defiite Itegrals........... Sectio. The Fuametal Theorem of Calculus..........

More information

Maximum and Minimum Values

Maximum and Minimum Values Sec 4.1 Maimum ad Miimum Values A. Absolute Maimum or Miimum / Etreme Values A fuctio Similarly, f has a Absolute Maimum at c if c f f has a Absolute Miimum at c if c f f for every poit i the domai. f

More information

The type of limit that is used to find TANGENTS and VELOCITIES gives rise to the central idea in DIFFERENTIAL CALCULUS, the DERIVATIVE.

The type of limit that is used to find TANGENTS and VELOCITIES gives rise to the central idea in DIFFERENTIAL CALCULUS, the DERIVATIVE. NOTES : LIMITS AND DERIVATIVES Name: Date: Period: Iitial: LESSON.1 THE TANGENT AND VELOCITY PROBLEMS Pre-Calculus Mathematics Limit Process Calculus The type of it that is used to fid TANGENTS ad VELOCITIES

More information

PRACTICE FINAL/STUDY GUIDE SOLUTIONS

PRACTICE FINAL/STUDY GUIDE SOLUTIONS Last edited December 9, 03 at 4:33pm) Feel free to sed me ay feedback, icludig commets, typos, ad mathematical errors Problem Give the precise meaig of the followig statemets i) a f) L ii) a + f) L iii)

More information

y = f x x 1. If f x = e 2x tan -1 x, then f 1 = e 2 2 e 2 p C e 2 D e 2 p+1 4

y = f x x 1. If f x = e 2x tan -1 x, then f 1 = e 2 2 e 2 p C e 2 D e 2 p+1 4 . If f = e ta -, the f = e e p e e p e p+ 4 f = e ta -, so f = e ta - + e, so + f = e p + e = e p + e or f = e p + 4. The slope of the lie taget to the curve - + = at the poit, - is - 5 Differetiate -

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Math PracTest Be sure to review Lab (ad all labs) There are lots of good questios o it a) State the Mea Value Theorem ad draw a graph that illustrates b) Name a importat theorem where the Mea Value Theorem

More information

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations Chapter The Solutio of Numerical Algebraic ad Trascedetal Equatios Itroductio I this chapter we shall discuss some umerical methods for solvig algebraic ad trascedetal equatios. The equatio f( is said

More information

Chapter 4 Practice Exercises 303

Chapter 4 Practice Exercises 303 Chapter Practice Eercises 303 0 3 3 5 5 53. y 5. y 55. y 56. y 30 Chapter Applicatios of Derivatives % 57. y 58. y 3 3 59. y 60. y 6. lim lim Ä Ä a ac a a b bc b 6. lim b lim Ä Ä & 63. lim Ä ta ta! ta

More information

Math 21B-B - Homework Set 2

Math 21B-B - Homework Set 2 Math B-B - Homework Set Sectio 5.:. a) lim P k= c k c k ) x k, where P is a partitio of [, 5. x x ) dx b) lim P k= 4 ck x k, where P is a partitio of [,. 4 x dx c) lim P k= ta c k ) x k, where P is a partitio

More information

Math 105: Review for Final Exam, Part II - SOLUTIONS

Math 105: Review for Final Exam, Part II - SOLUTIONS Math 5: Review for Fial Exam, Part II - SOLUTIONS. Cosider the fuctio f(x) = x 3 lx o the iterval [/e, e ]. (a) Fid the x- ad y-coordiates of ay ad all local extrema ad classify each as a local maximum

More information

Honors Calculus Homework 13 Solutions, due 12/8/5

Honors Calculus Homework 13 Solutions, due 12/8/5 Hoors Calculus Homework Solutios, due /8/5 Questio Let a regio R i the plae be bouded by the curves y = 5 ad = 5y y. Sketch the regio R. The two curves meet where both equatios hold at oce, so where: y

More information

CALCULUS BASIC SUMMER REVIEW

CALCULUS BASIC SUMMER REVIEW CALCULUS BASIC SUMMER REVIEW NAME rise y y y Slope of a o vertical lie: m ru Poit Slope Equatio: y y m( ) The slope is m ad a poit o your lie is, ). ( y Slope-Itercept Equatio: y m b slope= m y-itercept=

More information

MATH 1A FINAL (7:00 PM VERSION) SOLUTION. (Last edited December 25, 2013 at 9:14pm.)

MATH 1A FINAL (7:00 PM VERSION) SOLUTION. (Last edited December 25, 2013 at 9:14pm.) MATH A FINAL (7: PM VERSION) SOLUTION (Last edited December 5, 3 at 9:4pm.) Problem. (i) Give the precise defiitio of the defiite itegral usig Riema sums. (ii) Write a epressio for the defiite itegral

More information

CHAPTER 4 Integration

CHAPTER 4 Integration CHAPTER Itegratio Sectio. Atierivatives a Iefiite Itegratio......... 77 Sectio. Area............................. 8 Sectio. Riema Sums a Defiite Itegrals........... 88 Sectio. The Fuametal Theorem of Calculus..........

More information

Student s Printed Name:

Student s Printed Name: Studet s Prited Name: Istructor: XID: C Sectio: No questios will be aswered durig this eam. If you cosider a questio to be ambiguous, state your assumptios i the margi ad do the best you ca to provide

More information

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0.

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0. THE SOLUTION OF NONLINEAR EQUATIONS f( ) = 0. Noliear Equatio Solvers Bracketig. Graphical. Aalytical Ope Methods Bisectio False Positio (Regula-Falsi) Fied poit iteratio Newto Raphso Secat The root of

More information

FINALTERM EXAMINATION Fall 9 Calculus & Aalytical Geometry-I Questio No: ( Mars: ) - Please choose oe Let f ( x) is a fuctio such that as x approaches a real umber a, either from left or right-had-side,

More information

MTH Assignment 1 : Real Numbers, Sequences

MTH Assignment 1 : Real Numbers, Sequences MTH -26 Assigmet : Real Numbers, Sequeces. Fid the supremum of the set { m m+ : N, m Z}. 2. Let A be a o-empty subset of R ad α R. Show that α = supa if ad oly if α is ot a upper boud of A but α + is a

More information

VICTORIA JUNIOR COLLEGE Preliminary Examination. Paper 1 September 2015

VICTORIA JUNIOR COLLEGE Preliminary Examination. Paper 1 September 2015 VICTORIA JUNIOR COLLEGE Prelimiary Eamiatio MATHEMATICS (Higher ) 70/0 Paper September 05 Additioal Materials: Aswer Paper Graph Paper List of Formulae (MF5) 3 hours READ THESE INSTRUCTIONS FIRST Write

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0,

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0, Math Activity 9( Due with Fial Eam) Usig first ad secod Taylor polyomials with remaider, show that for, 8 Usig a secod Taylor polyomial with remaider, fid the best costat C so that for, C 9 The th Derivative

More information

TECHNIQUES OF INTEGRATION

TECHNIQUES OF INTEGRATION 7 TECHNIQUES OF INTEGRATION Simpso s Rule estimates itegrals b approimatig graphs with parabolas. Because of the Fudametal Theorem of Calculus, we ca itegrate a fuctio if we kow a atiderivative, that is,

More information

Name: Math 10550, Final Exam: December 15, 2007

Name: Math 10550, Final Exam: December 15, 2007 Math 55, Fial Exam: December 5, 7 Name: Be sure that you have all pages of the test. No calculators are to be used. The exam lasts for two hours. Whe told to begi, remove this aswer sheet ad keep it uder

More information

MATH 10550, EXAM 3 SOLUTIONS

MATH 10550, EXAM 3 SOLUTIONS MATH 155, EXAM 3 SOLUTIONS 1. I fidig a approximate solutio to the equatio x 3 +x 4 = usig Newto s method with iitial approximatio x 1 = 1, what is x? Solutio. Recall that x +1 = x f(x ) f (x ). Hece,

More information

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B) SCORING GUIDELINES (Form B) Questio 5 Let f be a fuctio defied o the closed iterval [,7]. The graph of f, cosistig of four lie segmets, is show above. Let g be the fuctio give by g ftdt. (a) Fid g (, )

More information

AP Calculus BC 2011 Scoring Guidelines Form B

AP Calculus BC 2011 Scoring Guidelines Form B AP Calculus BC Scorig Guidelies Form B The College Board The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success ad opportuity. Fouded i 9, the College

More information

CALCULUS AB SECTION I, Part A Time 60 minutes Number of questions 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM.

CALCULUS AB SECTION I, Part A Time 60 minutes Number of questions 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM. AP Calculus AB Portfolio Project Multiple Choice Practice Name: CALCULUS AB SECTION I, Part A Time 60 miutes Number of questios 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM. Directios: Solve

More information

(A) 0 (B) (C) (D) (E) 2.703

(A) 0 (B) (C) (D) (E) 2.703 Class Questios 007 BC Calculus Istitute Questios for 007 BC Calculus Istitutes CALCULATOR. How may zeros does the fuctio f ( x) si ( l ( x) ) Explai how you kow. = have i the iterval (0,]? LIMITS. 00 Released

More information

7.) Consider the region bounded by y = x 2, y = x - 1, x = -1 and x = 1. Find the volume of the solid produced by revolving the region around x = 3.

7.) Consider the region bounded by y = x 2, y = x - 1, x = -1 and x = 1. Find the volume of the solid produced by revolving the region around x = 3. Calculus Eam File Fall 07 Test #.) Fid the eact area betwee the curves f() = 8 - ad g() = +. For # - 5, cosider the regio bouded by the curves y =, y = 3 + 4. Produce a solid by revolvig the regio aroud

More information

A.1 Algebra Review: Polynomials/Rationals. Definitions:

A.1 Algebra Review: Polynomials/Rationals. Definitions: MATH 040 Notes: Uit 0 Page 1 A.1 Algera Review: Polyomials/Ratioals Defiitios: A polyomial is a sum of polyomial terms. Polyomial terms are epressios formed y products of costats ad variales with whole

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS MIDTERM 3 CALCULUS MATH 300 FALL 08 Moday, December 3, 08 5:5 PM to 6:45 PM Name PRACTICE EXAM S Please aswer all of the questios, ad show your work. You must explai your aswers to get credit. You will

More information

Continuous Functions

Continuous Functions Cotiuous Fuctios Q What does it mea for a fuctio to be cotiuous at a poit? Aswer- I mathematics, we have a defiitio that cosists of three cocepts that are liked i a special way Cosider the followig defiitio

More information

Mathematics Extension 1

Mathematics Extension 1 016 Bored of Studies Trial Eamiatios Mathematics Etesio 1 3 rd ctober 016 Geeral Istructios Total Marks 70 Readig time 5 miutes Workig time hours Write usig black or blue pe Black pe is preferred Board-approved

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam 4 will cover.-., 0. ad 0.. Note that eve though. was tested i exam, questios from that sectios may also be o this exam. For practice problems o., refer to the last review. This

More information

For example suppose we divide the interval [0,2] into 5 equal subintervals of length

For example suppose we divide the interval [0,2] into 5 equal subintervals of length Math 120c Calculus Sec 1: Estimatig with Fiite Sums I Area A Cosider the problem of fidig the area uder the curve o the fuctio y!x 2 + over the domai [0,2] We ca approximate this area by usig a familiar

More information

Calculus 2 Test File Fall 2013

Calculus 2 Test File Fall 2013 Calculus Test File Fall 013 Test #1 1.) Without usig your calculator, fid the eact area betwee the curves f() = 4 - ad g() = si(), -1 < < 1..) Cosider the followig solid. Triagle ABC is perpedicular to

More information

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1 Assigmet : Real Numbers, Sequeces. Let A be a o-empty subset of R ad α R. Show that α = supa if ad oly if α is ot a upper boud of A but α + is a upper boud of A for every N. 2. Let y (, ) ad x (, ). Evaluate

More information

Z ß cos x + si x R du We start with the substitutio u = si(x), so du = cos(x). The itegral becomes but +u we should chage the limits to go with the ew

Z ß cos x + si x R du We start with the substitutio u = si(x), so du = cos(x). The itegral becomes but +u we should chage the limits to go with the ew Problem ( poits) Evaluate the itegrals Z p x 9 x We ca draw a right triagle labeled this way x p x 9 From this we ca read off x = sec, so = sec ta, ad p x 9 = R ta. Puttig those pieces ito the itegralrwe

More information

GULF MATHEMATICS OLYMPIAD 2014 CLASS : XII

GULF MATHEMATICS OLYMPIAD 2014 CLASS : XII GULF MATHEMATICS OLYMPIAD 04 CLASS : XII Date of Eamiatio: Maimum Marks : 50 Time : 0:30 a.m. to :30 p.m. Duratio: Hours Istructios to cadidates. This questio paper cosists of 50 questios. All questios

More information

GRAPHING LINEAR EQUATIONS. Linear Equations ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Quadrat II Quadrat I ORDERED PAIR: The first umer i the ordered pair is the -coordiate ad the secod umer i the ordered pair is the y-coordiate. (,1 ) Origi ( 0, 0 ) _-ais Liear

More information

Calculus I Practice Test Problems for Chapter 5 Page 1 of 9

Calculus I Practice Test Problems for Chapter 5 Page 1 of 9 Calculus I Practice Test Problems for Chapter 5 Page of 9 This is a set of practice test problems for Chapter 5. This is i o way a iclusive set of problems there ca be other types of problems o the actual

More information

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6 Math 4 Activity (Due by EOC Apr. ) Graph the followig epoetial fuctios by modifyig the graph of f. Fid the rage of each fuctio.. g. g. g 4. g. g 6. g Fid a formula for the epoetial fuctio whose graph is

More information

n 3 ln n n ln n is convergent by p-series for p = 2 > 1. n2 Therefore we can apply Limit Comparison Test to determine lutely convergent.

n 3 ln n n ln n is convergent by p-series for p = 2 > 1. n2 Therefore we can apply Limit Comparison Test to determine lutely convergent. 06 微甲 0-04 06-0 班期中考解答和評分標準. ( poits) Determie whether the series is absolutely coverget, coditioally coverget, or diverget. Please state the tests which you use. (a) ( poits) (b) ( poits) (c) ( poits)

More information

Lesson 10: Limits and Continuity

Lesson 10: Limits and Continuity www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals

More information

ENGI 9420 Lecture Notes 3 - Numerical Methods Page 3.01

ENGI 9420 Lecture Notes 3 - Numerical Methods Page 3.01 ENGI 940 Lecture Notes 3 - Numerical Methods Page 3.0 3. Numerical Methods The majority of equatios of iterest i actual practice do ot admit ay aalytic solutio. Eve equatios as simple as = e ad I = e d

More information

Calculus 2 Test File Spring Test #1

Calculus 2 Test File Spring Test #1 Calculus Test File Sprig 009 Test #.) Without usig your calculator, fid the eact area betwee the curves f() = - ad g() = +..) Without usig your calculator, fid the eact area betwee the curves f() = ad

More information

+ {JEE Advace 03} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks: 00. If A (α, β) = (a) A( α, β) = A( α, β) (c) Adj (A ( α, β)) = Sol : We

More information

f t dt. Write the third-degree Taylor polynomial for G

f t dt. Write the third-degree Taylor polynomial for G AP Calculus BC Homework - Chapter 8B Taylor, Maclauri, ad Power Series # Taylor & Maclauri Polyomials Critical Thikig Joural: (CTJ: 5 pts.) Discuss the followig questios i a paragraph: What does it mea

More information

Example 2. Find the upper bound for the remainder for the approximation from Example 1.

Example 2. Find the upper bound for the remainder for the approximation from Example 1. Lesso 8- Error Approimatios 0 Alteratig Series Remaider: For a coverget alteratig series whe approimatig the sum of a series by usig oly the first terms, the error will be less tha or equal to the absolute

More information

MATHEMATICS 9740 (HIGHER 2)

MATHEMATICS 9740 (HIGHER 2) VICTORIA JUNIOR COLLEGE PROMOTIONAL EXAMINATION MATHEMATICS 970 (HIGHER ) Frida 6 Sept 0 8am -am hours Additioal materials: Aswer Paper List of Formulae (MF5) READ THESE INSTRUCTIONS FIRST Write our ame

More information

B U Department of Mathematics Math 101 Calculus I

B U Department of Mathematics Math 101 Calculus I B U Departmet of Mathematics Math Calculus I Sprig 5 Fial Exam Calculus archive is a property of Boğaziçi Uiversity Mathematics Departmet. The purpose of this archive is to orgaise ad cetralise the distributio

More information

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1.

SOLUTIONS TO EXAM 3. Solution: Note that this defines two convergent geometric series with respective radii r 1 = 2/5 < 1 and r 2 = 1/5 < 1. SOLUTIONS TO EXAM 3 Problem Fid the sum of the followig series 2 + ( ) 5 5 2 5 3 25 2 2 This series diverges Solutio: Note that this defies two coverget geometric series with respective radii r 2/5 < ad

More information

Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t =

Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t = Mathematics Summer Wilso Fial Exam August 8, ANSWERS Problem 1 (a) Fid the solutio to y +x y = e x x that satisfies y() = 5 : This is already i the form we used for a first order liear differetial equatio,

More information

For example suppose we divide the interval [0,2] into 5 equal subintervals of length

For example suppose we divide the interval [0,2] into 5 equal subintervals of length Math 1206 Calculus Sec 1: Estimatig with Fiite Sums Abbreviatios: wrt with respect to! for all! there exists! therefore Def defiitio Th m Theorem sol solutio! perpedicular iff or! if ad oly if pt poit

More information

CS537. Numerical Analysis and Computing

CS537. Numerical Analysis and Computing CS57 Numerical Aalysis ad Computig Lecture Locatig Roots o Equatios Proessor Ju Zhag Departmet o Computer Sciece Uiversity o Ketucky Leigto KY 456-6 Jauary 9 9 What is the Root May physical system ca be

More information

6.) Find the y-coordinate of the centroid (use your calculator for any integrations) of the region bounded by y = cos x, y = 0, x = - /2 and x = /2.

6.) Find the y-coordinate of the centroid (use your calculator for any integrations) of the region bounded by y = cos x, y = 0, x = - /2 and x = /2. Calculus Test File Sprig 06 Test #.) Fid the eact area betwee the curves f() = 8 - ad g() = +. For # - 5, cosider the regio bouded by the curves y =, y = +. Produce a solid by revolvig the regio aroud

More information

3 Show in each case that there is a root of the given equation in the given interval. a x 3 = 12 4

3 Show in each case that there is a root of the given equation in the given interval. a x 3 = 12 4 C Worksheet A Show i each case that there is a root of the equatio f() = 0 i the give iterval a f() = + 7 (, ) f() = 5 cos (05, ) c f() = e + + 5 ( 6, 5) d f() = 4 5 + (, ) e f() = l (4 ) + (04, 05) f

More information

Sequences. A Sequence is a list of numbers written in order.

Sequences. A Sequence is a list of numbers written in order. Sequeces A Sequece is a list of umbers writte i order. {a, a 2, a 3,... } The sequece may be ifiite. The th term of the sequece is the th umber o the list. O the list above a = st term, a 2 = 2 d term,

More information

Taylor Polynomials and Taylor Series

Taylor Polynomials and Taylor Series Taylor Polyomials ad Taylor Series Cotets Taylor Polyomials... Eample.... Eample.... 4 Eample.3... 5 Eercises... 6 Eercise Solutios... 8 Taylor s Iequality... Eample.... Eample.... Eercises... 3 Eercise

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute Math, Calculus II Fial Eam Solutios. 5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute 4 d. The check your aswer usig the Evaluatio Theorem. ) ) Solutio: I this itegral,

More information

ENGI 9420 Engineering Analysis Assignment 3 Solutions

ENGI 9420 Engineering Analysis Assignment 3 Solutions ENGI 9 Egieerig Aalysis Assigmet Solutios Fall [Series solutio of ODEs, matri algebra; umerical methods; Chapters, ad ]. Fid a power series solutio about =, as far as the term i 7, to the ordiary differetial

More information

Castiel, Supernatural, Season 6, Episode 18

Castiel, Supernatural, Season 6, Episode 18 13 Differetial Equatios the aswer to your questio ca best be epressed as a series of partial differetial equatios... Castiel, Superatural, Seaso 6, Episode 18 A differetial equatio is a mathematical equatio

More information

Algebra II Notes Unit Seven: Powers, Roots, and Radicals

Algebra II Notes Unit Seven: Powers, Roots, and Radicals Syllabus Objectives: 7. The studets will use properties of ratioal epoets to simplify ad evaluate epressios. 7.8 The studet will solve equatios cotaiig radicals or ratioal epoets. b a, the b is the radical.

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

LESSON 2: SIMPLIFYING RADICALS

LESSON 2: SIMPLIFYING RADICALS High School: Workig with Epressios LESSON : SIMPLIFYING RADICALS N.RN.. C N.RN.. B 5 5 C t t t t t E a b a a b N.RN.. 4 6 N.RN. 4. N.RN. 5. N.RN. 6. 7 8 N.RN. 7. A 7 N.RN. 8. 6 80 448 4 5 6 48 00 6 6 6

More information

Calculus 2 - D. Yuen Final Exam Review (Version 11/22/2017. Please report any possible typos.)

Calculus 2 - D. Yuen Final Exam Review (Version 11/22/2017. Please report any possible typos.) Calculus - D Yue Fial Eam Review (Versio //7 Please report ay possible typos) NOTE: The review otes are oly o topics ot covered o previous eams See previous review sheets for summary of previous topics

More information

TEMASEK JUNIOR COLLEGE, SINGAPORE JC One Promotion Examination 2014 Higher 2

TEMASEK JUNIOR COLLEGE, SINGAPORE JC One Promotion Examination 2014 Higher 2 TEMASEK JUNIOR COLLEGE, SINGAPORE JC Oe Promotio Eamiatio 04 Higher MATHEMATICS 9740 9 Septemer 04 Additioal Materials: Aswer paper 3 hours List of Formulae (MF5) READ THESE INSTRUCTIONS FIRST Write your

More information

AP Calculus BC 2007 Scoring Guidelines Form B

AP Calculus BC 2007 Scoring Guidelines Form B AP Calculus BC 7 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

More information

NATIONAL JUNIOR COLLEGE SENIOR HIGH 1 PROMOTIONAL EXAMINATIONS Higher 2

NATIONAL JUNIOR COLLEGE SENIOR HIGH 1 PROMOTIONAL EXAMINATIONS Higher 2 NATIONAL JUNIOR COLLEGE SENIOR HIGH PROMOTIONAL EXAMINATIONS Higher MATHEMATICS 9758 9 September 06 hours Additioal Materials: Aswer Paper List of Formulae (MF6) Cover Sheet READ THESE INSTRUCTIONS FIRST

More information

MATH spring 2008 lecture 3 Answers to selected problems. 0 sin14 xdx = x dx. ; (iv) x +

MATH spring 2008 lecture 3 Answers to selected problems. 0 sin14 xdx = x dx. ; (iv) x + MATH - sprig 008 lecture Aswers to selected problems INTEGRALS. f =? For atiderivatives i geeral see the itegrals website at http://itegrals.wolfram.com. (5-vi (0 i ( ( i ( π ; (v π a. This is example

More information

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t Itroductio to Differetial Equatios Defiitios ad Termiolog Differetial Equatio: A equatio cotaiig the derivatives of oe or more depedet variables, with respect to oe or more idepedet variables, is said

More information

Mth 95 Notes Module 1 Spring Section 4.1- Solving Systems of Linear Equations in Two Variables by Graphing, Substitution, and Elimination

Mth 95 Notes Module 1 Spring Section 4.1- Solving Systems of Linear Equations in Two Variables by Graphing, Substitution, and Elimination Mth 9 Notes Module Sprig 4 Sectio 4.- Solvig Sstems of Liear Equatios i Two Variales Graphig, Sustitutio, ad Elimiatio A Solutio to a Sstem of Two (or more) Liear Equatios is the commo poit(s) of itersectio

More information

Calculus. Ramanasri. Previous year Questions from 2016 to

Calculus. Ramanasri. Previous year Questions from 2016 to ++++++++++ Calculus Previous ear Questios from 6 to 99 Ramaasri 7 S H O P NO- 4, S T F L O O R, N E A R R A P I D F L O U R M I L L S, O L D R A J E N D E R N A G A R, N E W D E L H I. W E B S I T E :

More information

MATHEMATICS. 61. The differential equation representing the family of curves where c is a positive parameter, is of

MATHEMATICS. 61. The differential equation representing the family of curves where c is a positive parameter, is of MATHEMATICS 6 The differetial equatio represetig the family of curves where c is a positive parameter, is of Order Order Degree (d) Degree (a,c) Give curve is y c ( c) Differetiate wrt, y c c y Hece differetial

More information

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim Math 3, Sectio 2. (25 poits) Why we defie f(x) dx as we do. (a) Show that the improper itegral diverges. Hece the improper itegral x 2 + x 2 + b also diverges. Solutio: We compute x 2 + = lim b x 2 + =

More information

JEE ADVANCED 2013 PAPER 1 MATHEMATICS

JEE ADVANCED 2013 PAPER 1 MATHEMATICS Oly Oe Optio Correct Type JEE ADVANCED 0 PAPER MATHEMATICS This sectio cotais TEN questios. Each has FOUR optios (A), (B), (C) ad (D) out of which ONLY ONE is correct.. The value of (A) 5 (C) 4 cot cot

More information

CHAPTER 11 Limits and an Introduction to Calculus

CHAPTER 11 Limits and an Introduction to Calculus CHAPTER Limits ad a Itroductio to Calculus Sectio. Itroductio to Limits................... 50 Sectio. Teciques for Evaluatig Limits............. 5 Sectio. Te Taget Lie Problem................. 50 Sectio.

More information

CHAPTER 10 INFINITE SEQUENCES AND SERIES

CHAPTER 10 INFINITE SEQUENCES AND SERIES CHAPTER 10 INFINITE SEQUENCES AND SERIES 10.1 Sequeces 10.2 Ifiite Series 10.3 The Itegral Tests 10.4 Compariso Tests 10.5 The Ratio ad Root Tests 10.6 Alteratig Series: Absolute ad Coditioal Covergece

More information

(a) (b) All real numbers. (c) All real numbers. (d) None. to show the. (a) 3. (b) [ 7, 1) (c) ( 7, 1) (d) At x = 7. (a) (b)

(a) (b) All real numbers. (c) All real numbers. (d) None. to show the. (a) 3. (b) [ 7, 1) (c) ( 7, 1) (d) At x = 7. (a) (b) Chapter 0 Review 597. E; a ( + )( + ) + + S S + S + + + + + + S lim + l. D; a diverges by the Itegral l k Test sice d lim [(l ) ], so k l ( ) does ot coverge absolutely. But it coverges by the Alteratig

More information

Curve Sketching Handout #5 Topic Interpretation Rational Functions

Curve Sketching Handout #5 Topic Interpretation Rational Functions Curve Sketchig Hadout #5 Topic Iterpretatio Ratioal Fuctios A ratioal fuctio is a fuctio f that is a quotiet of two polyomials. I other words, p ( ) ( ) f is a ratioal fuctio if p ( ) ad q ( ) are polyomials

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

Precalculus MATH Sections 3.1, 3.2, 3.3. Exponential, Logistic and Logarithmic Functions

Precalculus MATH Sections 3.1, 3.2, 3.3. Exponential, Logistic and Logarithmic Functions Precalculus MATH 2412 Sectios 3.1, 3.2, 3.3 Epoetial, Logistic ad Logarithmic Fuctios Epoetial fuctios are used i umerous applicatios coverig may fields of study. They are probably the most importat group

More information

1988 AP Calculus BC: Section I

1988 AP Calculus BC: Section I 988 AP Calculus BC: Sectio I 9 Miutes No Calculator Notes: () I this eamiatio, l deotes the atural logarithm of (that is, logarithm to the base e). () Uless otherwise specified, the domai of a fuctio f

More information

Exponential and Trigonometric Functions Lesson #1

Exponential and Trigonometric Functions Lesson #1 Epoetial ad Trigoometric Fuctios Lesso # Itroductio To Epoetial Fuctios Cosider a populatio of 00 mice which is growig uder plague coditios. If the mouse populatio doubles each week we ca costruct a table

More information

Quiz. Use either the RATIO or ROOT TEST to determine whether the series is convergent or not.

Quiz. Use either the RATIO or ROOT TEST to determine whether the series is convergent or not. Quiz. Use either the RATIO or ROOT TEST to determie whether the series is coverget or ot. e .6 POWER SERIES Defiitio. A power series i about is a series of the form c 0 c a c a... c a... a 0 c a where

More information

2018 MAΘ National Convention Mu Individual Solutions ( ) ( ) + + +

2018 MAΘ National Convention Mu Individual Solutions ( ) ( ) + + + 8 MΘ Natioal ovetio Mu Idividual Solutios b a f + f + + f + + + ) (... ) ( l ( ) l ( ) l ( 7) l ( ) ) l ( 8) ) a( ) cos + si ( ) a' ( ) cos ( ) a" ( ) si ( ) ) For a fuctio to be differetiable at c, it

More information

Solutions to quizzes Math Spring 2007

Solutions to quizzes Math Spring 2007 to quizzes Math 4- Sprig 7 Name: Sectio:. Quiz a) x + x dx b) l x dx a) x + dx x x / + x / dx (/3)x 3/ + x / + c. b) Set u l x, dv dx. The du /x ad v x. By Itegratio by Parts, x(/x)dx x l x x + c. l x

More information

U8L1: Sec Equations of Lines in R 2

U8L1: Sec Equations of Lines in R 2 MCVU U8L: Sec. 8.9. Equatios of Lies i R Review of Equatios of a Straight Lie (-D) Cosider the lie passig through A (-,) with slope, as show i the diagram below. I poit slope form, the equatio of the lie

More information

Objective Mathematics

Objective Mathematics 6. If si () + cos () =, the is equal to :. If <

More information

Ma 530 Infinite Series I

Ma 530 Infinite Series I Ma 50 Ifiite Series I Please ote that i additio to the material below this lecture icorporated material from the Visual Calculus web site. The material o sequeces is at Visual Sequeces. (To use this li

More information

7 Sequences of real numbers

7 Sequences of real numbers 40 7 Sequeces of real umbers 7. Defiitios ad examples Defiitio 7... A sequece of real umbers is a real fuctio whose domai is the set N of atural umbers. Let s : N R be a sequece. The the values of s are

More information

MA131 - Analysis 1. Workbook 2 Sequences I

MA131 - Analysis 1. Workbook 2 Sequences I MA3 - Aalysis Workbook 2 Sequeces I Autum 203 Cotets 2 Sequeces I 2. Itroductio.............................. 2.2 Icreasig ad Decreasig Sequeces................ 2 2.3 Bouded Sequeces..........................

More information