Precalculus MATH Sections 3.1, 3.2, 3.3. Exponential, Logistic and Logarithmic Functions


 Sydney Griffith
 1 years ago
 Views:
Transcription
1 Precalculus MATH 2412 Sectios 3.1, 3.2, 3.3 Epoetial, Logistic ad Logarithmic Fuctios Epoetial fuctios are used i umerous applicatios coverig may fields of study. They are probably the most importat group of fuctios i terms of their applicatio. The mai reaso for this is because their rate of chage is proportioal to their amout at ay time. Form: Let f( ) = ab. Fid ad simplify f( + 1). How is this ew fuctio related to f? b is called the growth factor Domai Rage Itercepts Asymptotes Graphs b > 0, 0< b < 1 Epoetial Growth or Decay. Let a =1. The, f( ) = b
2 Liear Data vs Epoetial Eample: Determie if the followig data defies a liear or epoetial fuctio model. (a) y (b) y Applicatio: Compoud Iterest Formula: Derived from the simple iterest formula I = Pr t Eample: Suppose $15,000 is ivested at a iterest rate of 7% compouded aually. Calculate the accout balace after 10 years. Eample: Now suppose the pricipal was compouded mothly. Calculate the accout balace for the same time period.
3 The Natural Epoetial Fuctio Cotiuous Compoudig Suppose $1 was ivested ito a accout payig 100% aual iterest. Fill i the table below where is the umber of compoudig periods i oe year ad A is the amout i the accout after 1 year This ca be epressed i the followig way: as, 1+ e Or i limit otatio as: lim 1+ = e From this limit, the cotiuous compoudig of iterest formula ca be derived Where A is the amout at ay time t, P is the pricipal or iitial deposit or amout ivested r is the aual rate of iterest ad t is the time i years Eample: Suppose you ivest $6,000 ito a accout that ears 8% iterest compouded cotiuously. How much will you have i the accout thirty years from ow?
4 Natural Epoetial Growth ad Decay Models: Applicatios: Eample: A job offer at a recet college graduates job fair offers a startig salary of $44,000 with a guarateed raise of 6% each year. Fid a fuctio f that computes the salary durig the th year. Eample: A bacteria culture iitially cotais 10,000 bacteria ad is foud to double i size every 4 hours. Fid a epoetial model of the form f ( ) = Ca that represets the amout of bacterial i the culture at ay time hours. Eample: Bacterial Growth p 263 # 37 Eample: Radioactive Decay p 271 # 33 Eample: Half Life p 272 # 40 Note: the 3 rd problem above ca be modeled with a cotiuous decay model. I order to do this we eed to be able to solve epoetial equatios of the form e = b, where b is a positive costat. We could approimate solutios usig a calculator, however, there is a better way
5 Logistic Growth Aimal populatios are ot capable of urestricted growth because of limited habitat ad food supplies. Uder such coditios the populatio follows a logistic growth model: c c Pt () = or Pt () = kt 1 + ab 1 + ae kt where c, a, ad k are positive costats. For a certai fish populatio i a small pod c = 1200, k = 11, ad a = 0.2 ad t is measured i years. The fish were itroduced ito the pod at time t = 0. Usig the secod form for logistic growth (a) How may fish were origially put ito the pod? (b) Fid the populatio after 10, 20, ad 30 years. (c) Evaluate Pt () for large values of t. What does the populatio approach as t? (d) Approimate the value of t where the rate of chage of the populatio with respect to time is the greatest. Studets try P 263 # 56 P 272 # 45
6 Sectio 3.3 The Logarithmic Fuctio A logarithmic fuctio is best thought of as the iverse of a related epoetial fuctio. For eample, sketch a graph of the epoetial fuctio iverse of this fuctio. y = 2. Now, write a equatio for the Defiitio: The logarithmic fuctio with base b Domai *Iverse Properties Commo Logarithm Natural Logarithm Evaluatig Logarithms Eample: Evaluate the followig: (a) log381 (b) log4 64 Graphs ad Iverses (c) 0.67 l e Sketch the followig epoetial fuctios with their iverse o the same set of aes. Write a logarithmic equatio for each iverse. (a) f( ) = 2, (b) 1 f( ) = 2, (c) f( ) = 10, ad (d) f( ) = e.
7 Solvig Epoetial ad Logarithmic Equatios Eample: Usig the iverse property, covertig to logarithmic form, or equivalet base property, solve each of the followig epoetial equatios (a) 1 2 = (b) 2e = 7 (c) = Eample: Covertig to epoetial form or usig the iverse property, solve each of the followig logarithmic equatios (a) log6 = 3 (b) log3 = 4 (c) l = 6.2 (d) 6log2 3 = 12 Chage of Base Formula: log a log = log b b a
Algebra II Notes Unit Seven: Powers, Roots, and Radicals
Syllabus Objectives: 7. The studets will use properties of ratioal epoets to simplify ad evaluate epressios. 7.8 The studet will solve equatios cotaiig radicals or ratioal epoets. b a, the b is the radical.
More informationUNIT #5. Lesson #2 Arithmetic and Geometric Sequences. Lesson #3 Summation Notation. Lesson #4 Arithmetic Series. Lesson #5 Geometric Series
UNIT #5 SEQUENCES AND SERIES Lesso # Sequeces Lesso # Arithmetic ad Geometric Sequeces Lesso #3 Summatio Notatio Lesso #4 Arithmetic Series Lesso #5 Geometric Series Lesso #6 Mortgage Paymets COMMON CORE
More informationEnd of year exam. Final Exam Review. 1.What is the inverse of the function Which transformations of the graph of. x will produce the graph of
Name Date lass 1.What is the iverse of the fuctio f ( )? f 1 ( ) f 1 ( ) f ( ) ( ) 1 1. What trasformatios o the graph of f ( ) result i the graph of g( )? Traslate right by uits ad dow by uits. Stretch
More informationMath 1030Q Spring Exam #2 Review. (9.2) 8x = log (9.2) 8x = log.32 8x log 9.2 log log log 9.2. x =.06418
Math 1030Q Sprig 2013 Exam #2 Review 1. Solve for x: 2 + 9.2 8x = 2.32 Solutio: 2 + 9.2 8x = 2.32 9.2 8x = 2.32 2 log 9.2 8x = log.32 8x log 9.2 = log.32 8x log 9.2 log.32 = 8 log 9.2 8 log 9.2 x =.06418
More informationLesson 1.1 Recursively Defined Sequences
Lesso 1.1 Recursively Defied Sequeces 1. Tell whether each sequece is arithmetic, geometric, or either. a. 1,, 9, 13,... b. 2, 6, 18, 4,... c. 1, 1, 2, 3,, 8,... d. 16, 4, 1,.2,... e. 1, 1, 1, 1,... f..6,
More informationP.3 Polynomials and Special products
Precalc Fall 2016 Sectios P.3, 1.2, 1.3, P.4, 1.4, P.2 (radicals/ratioal expoets), 1.5, 1.6, 1.7, 1.8, 1.1, 2.1, 2.2 I Polyomial defiitio (p. 28) a x + a x +... + a x + a x 1 1 0 1 1 0 a x + a x +... +
More informationSection 7 Fundamentals of Sequences and Series
ectio Fudametals of equeces ad eries. Defiitio ad examples of sequeces A sequece ca be thought of as a ifiite list of umbers. 0, , 0, , 0...,,,,,,. (iii),,,,... Defiitio: A sequece is a fuctio which
More informationMaximum and Minimum Values
Sec 4.1 Maimum ad Miimum Values A. Absolute Maimum or Miimum / Etreme Values A fuctio Similarly, f has a Absolute Maimum at c if c f f has a Absolute Miimum at c if c f f for every poit i the domai. f
More informationExample 2. Find the upper bound for the remainder for the approximation from Example 1.
Lesso 8 Error Approimatios 0 Alteratig Series Remaider: For a coverget alteratig series whe approimatig the sum of a series by usig oly the first terms, the error will be less tha or equal to the absolute
More informationSection 1 of Unit 03 (Pure Mathematics 3) Algebra
Sectio 1 of Uit 0 (Pure Mathematics ) Algebra Recommeded Prior Kowledge Studets should have studied the algebraic techiques i Pure Mathematics 1. Cotet This Sectio should be studied early i the course
More informationJohn Riley 30 August 2016
Joh Riley 3 August 6 Basic mathematics of ecoomic models Fuctios ad derivatives Limit of a fuctio Cotiuity 3 Level ad superlevel sets 3 4 Cost fuctio ad margial cost 4 5 Derivative of a fuctio 5 6 Higher
More informationMost text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t
Itroductio to Differetial Equatios Defiitios ad Termiolog Differetial Equatio: A equatio cotaiig the derivatives of oe or more depedet variables, with respect to oe or more idepedet variables, is said
More informationComparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series
Applied Mathematical Scieces, Vol. 7, 03, o. 6, 3337 HIKARI Ltd, www.mhikari.com http://d.doi.org/0.988/ams.03.3430 Compariso Study of Series Approimatio ad Covergece betwee Chebyshev ad Legedre Series
More informationOnce we have a sequence of numbers, the next thing to do is to sum them up. Given a sequence (a n ) n=1
. Ifiite Series Oce we have a sequece of umbers, the ext thig to do is to sum them up. Give a sequece a be a sequece: ca we give a sesible meaig to the followig expressio? a = a a a a While summig ifiitely
More informationZeros of Polynomials
Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree
More information62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +
62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of
More informationMth 95 Notes Module 1 Spring Section 4.1 Solving Systems of Linear Equations in Two Variables by Graphing, Substitution, and Elimination
Mth 9 Notes Module Sprig 4 Sectio 4. Solvig Sstems of Liear Equatios i Two Variales Graphig, Sustitutio, ad Elimiatio A Solutio to a Sstem of Two (or more) Liear Equatios is the commo poit(s) of itersectio
More informationRecurrence Relations
Recurrece Relatios Aalysis of recursive algorithms, such as: it factorial (it ) { if (==0) retur ; else retur ( * factorial()); } Let t be the umber of multiplicatios eeded to calculate factorial(). The
More informationa 3, a 4, ... are the terms of the sequence. The number a n is the nth term of the sequence, and the entire sequence is denoted by a n
60_090.qxd //0 : PM Page 59 59 CHAPTER 9 Ifiite Series Sectio 9. EXPLORATION Fidig Patters Describe a patter for each of the followig sequeces. The use your descriptio to write a formula for the th term
More information10.1 Sequences. n term. We will deal a. a n or a n n. ( 1) n ( 1) n 1 2 ( 1) a =, 0 0,,,,, ln n. n an 2. n term.
0. Sequeces A sequece is a list of umbers writte i a defiite order: a, a,, a, a is called the first term, a is the secod term, ad i geeral eclusively with ifiite sequeces ad so each term Notatio: the sequece
More informationA sequence of numbers is a function whose domain is the positive integers. We can see that the sequence
Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as
More informationSummary: CORRELATION & LINEAR REGRESSION. GC. Students are advised to refer to lecture notes for the GC operations to obtain scatter diagram.
Key Cocepts: 1) Sketchig of scatter diagram The scatter diagram of bivariate (i.e. cotaiig two variables) data ca be easily obtaied usig GC. Studets are advised to refer to lecture otes for the GC operatios
More informationMATH 10550, EXAM 3 SOLUTIONS
MATH 155, EXAM 3 SOLUTIONS 1. I fidig a approximate solutio to the equatio x 3 +x 4 = usig Newto s method with iitial approximatio x 1 = 1, what is x? Solutio. Recall that x +1 = x f(x ) f (x ). Hece,
More information4.1 Sigma Notation and Riemann Sums
0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas
More informationNotes on iteration and Newton s method. Iteration
Notes o iteratio ad Newto s method Iteratio Iteratio meas doig somethig over ad over. I our cotet, a iteratio is a sequece of umbers, vectors, fuctios, etc. geerated by a iteratio rule of the type 1 f
More informationTable 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab
Sectio 12 Tests of idepedece ad homogeeity I this lecture we will cosider a situatio whe our observatios are classified by two differet features ad we would like to test if these features are idepedet
More informationBHW #13 1/ Cooper. ENGR 323 Probabilistic Analysis Beautiful Homework # 13
BHW # /5 ENGR Probabilistic Aalysis Beautiful Homework # Three differet roads feed ito a particular freeway etrace. Suppose that durig a fixed time period, the umber of cars comig from each road oto the
More informationDiscrete probability distributions
Discrete probability distributios I the chapter o probability we used the classical method to calculate the probability of various values of a radom variable. I some cases, however, we may be able to develop
More informationFinal Examination Solutions 17/6/2010
The Islamic Uiversity of Gaza Faculty of Commerce epartmet of Ecoomics ad Political Scieces A Itroductio to Statistics Course (ECOE 30) Sprig Semester 00900 Fial Eamiatio Solutios 7/6/00 Name: I: Istructor:
More informationParameter, Statistic and Random Samples
Parameter, Statistic ad Radom Samples A parameter is a umber that describes the populatio. It is a fixed umber, but i practice we do ot kow its value. A statistic is a fuctio of the sample data, i.e.,
More informationArea As A Limit & Sigma Notation
Area As A Limit & Sigma Notatio SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should referece Chapter 5.4 of the recommeded textbook (or the equivalet chapter i your
More informationARITHMETIC PROGRESSION
CHAPTER 5 ARITHMETIC PROGRESSION Poits to Remember :. A sequece is a arragemet of umbers or objects i a defiite order.. A sequece a, a, a 3,..., a,... is called a Arithmetic Progressio (A.P) if there exists
More informationChapter 6 Principles of Data Reduction
Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a
More informationMISCELLANEOUS SEQUENCES & SERIES QUESTIONS
MISCELLANEOUS SEQUENCES & SERIES QUESTIONS Questio (***+) Evaluate the followig sum 30 r ( 2) 4r 78. 3 MP2V, 75,822,200 Questio 2 (***+) Three umbers, A, B, C i that order, are i geometric progressio
More informationSECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES
SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,
More information(A) 0 (B) (C) (D) (E) 2.703
Class Questios 007 BC Calculus Istitute Questios for 007 BC Calculus Istitutes CALCULATOR. How may zeros does the fuctio f ( x) si ( l ( x) ) Explai how you kow. = have i the iterval (0,]? LIMITS. 00 Released
More informationIn number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play.
Number Theory Math 5840 otes. Sectio 1: Axioms. I umber theory we will geerally be workig with itegers, though occasioally fractios ad irratioals will come ito play. Notatio: Z deotes the set of all itegers
More informationPOWER SERIES SOLUTION OF FIRST ORDER MATRIX DIFFERENTIAL EQUATIONS
Joural of Applied Mathematics ad Computatioal Mechaics 4 3(3) 38 POWER SERIES SOLUION OF FIRS ORDER MARIX DIFFERENIAL EQUAIONS Staisław Kukla Izabela Zamorska Istitute of Mathematics Czestochowa Uiversity
More informationLecture 4 Conformal Mapping and Green s Theorem. 1. Let s try to solve the following problem by separation of variables
Lecture 4 Coformal Mappig ad Gree s Theorem Today s topics. Solvig electrostatic problems cotiued. Why separatio of variables does t always work 3. Coformal mappig 4. Gree s theorem The failure of separatio
More informationLesson 10: Limits and Continuity
www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals
More information*X203/701* X203/701. APPLIED MATHEMATICS ADVANCED HIGHER Numerical Analysis. Read carefully
X0/70 NATIONAL QUALIFICATIONS 006 MONDAY, MAY.00 PM.00 PM APPLIED MATHEMATICS ADVANCED HIGHER Numerical Aalysis Read carefully. Calculators may be used i this paper.. Cadidates should aswer all questios.
More information2.4  Sequences and Series
2.4  Sequeces ad Series Sequeces A sequece is a ordered list of elemets. Defiitio 1 A sequece is a fuctio from a subset of the set of itegers (usually either the set 80, 1, 2, 3,... < or the set 81, 2,
More informationQBINOMIALS AND THE GREATEST COMMON DIVISOR. Keith R. Slavin 8474 SW Chevy Place, Beaverton, Oregon 97008, USA.
INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 2008, #A05 QBINOMIALS AND THE GREATEST COMMON DIVISOR Keith R. Slavi 8474 SW Chevy Place, Beaverto, Orego 97008, USA slavi@dsloly.et Received:
More informationFundamental Concepts: Surfaces and Curves
UNDAMENTAL CONCEPTS: SURACES AND CURVES CHAPTER udametal Cocepts: Surfaces ad Curves. INTRODUCTION This chapter describes two geometrical objects, vi., surfaces ad curves because the pla a ver importat
More informationSection 11.8: Power Series
Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i
More informationSubject: Differential Equations & Mathematical ModelingIII
Power Series Solutios of Differetial Equatios about Sigular poits Subject: Differetial Equatios & Mathematical ModeligIII Lesso: Power series solutios of differetial equatios about Sigular poits Lesso
More informationAnalysis of Algorithms. Introduction. Contents
Itroductio The focus of this module is mathematical aspects of algorithms. Our mai focus is aalysis of algorithms, which meas evaluatig efficiecy of algorithms by aalytical ad mathematical methods. We
More informatione to approximate (using 4
Review: Taylor Polyomials ad Power Series Fid the iterval of covergece for the series Fid a series for f ( ) d ad fid its iterval of covergece Let f( ) Let f arcta a) Fid the rd degree Maclauri polyomial
More informationDefinitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients.
Defiitios ad Theorems Remember the scalar form of the liear programmig problem, Miimize, Subject to, f(x) = c i x i a 1i x i = b 1 a mi x i = b m x i 0 i = 1,2,, where x are the decisio variables. c, b,
More informationAddition: Property Name Property Description Examples. a+b = b+a. a+(b+c) = (a+b)+c
Notes for March 31 Fields: A field is a set of umbers with two (biary) operatios (usually called additio [+] ad multiplicatio [ ]) such that the followig properties hold: Additio: Name Descriptio Commutativity
More informationUNIT #8 QUADRATIC FUNCTIONS AND THEIR ALGEBRA REVIEW QUESTIONS
Name: Date: UNIT #8 QUADRATIC FUNCTIONS AND THEIR ALGEBRA REVIEW QUESTIONS Part I Questios. For the quadratic fuctio show below, the coordiates of its verte are () 0, (), 7 (3) 6, (4) 3, 6. A quadratic
More informationJANE PROFESSOR WW Prob Lib1 Summer 2000
JANE PROFESSOR WW Prob Lib Summer 000 Sample WeBWorK problems. WeBWorK assigmet Series6CompTests due /6/06 at :00 AM..( pt) Test each of the followig series for covergece by either the Compariso Test or
More informationTeaching Mathematics Concepts via Computer Algebra Systems
Iteratioal Joural of Mathematics ad Statistics Ivetio (IJMSI) EISSN: 4767 PISSN:  4759 Volume 4 Issue 7 September. 6 PP Teachig Mathematics Cocepts via Computer Algebra Systems Osama Ajami Rashaw,
More informationBinomial Distribution
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible
More informationThe Ratio Test. THEOREM 9.17 Ratio Test Let a n be a series with nonzero terms. 1. a. n converges absolutely if lim. n 1
460_0906.qxd //04 :8 PM Page 69 SECTION 9.6 The Ratio ad Root Tests 69 Sectio 9.6 EXPLORATION Writig a Series Oe of the followig coditios guaratees that a series will diverge, two coditios guaratee that
More information11.1 Radical Expressions and Rational Exponents
Name Class Date 11.1 Radical Expressios ad Ratioal Expoets Essetial Questio: How are ratioal expoets related to radicals ad roots? Resource Locker Explore Defiig Ratioal Expoets i Terms of Roots Remember
More informationInstructor: Judith Canner Spring 2010 CONFIDENCE INTERVALS How do we make inferences about the population parameters?
CONFIDENCE INTERVALS How do we make ifereces about the populatio parameters? The samplig distributio allows us to quatify the variability i sample statistics icludig how they differ from the parameter
More information9.3 Power Series: Taylor & Maclaurin Series
9.3 Power Series: Taylor & Maclauri Series If is a variable, the a ifiite series of the form 0 is called a power series (cetered at 0 ). a a a a a 0 1 0 is a power series cetered at a c a a c a c a c 0
More informationRiemann Sums y = f (x)
Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, oegative fuctio o the closed iterval [a, b] Fid
More informationT1.1 Lesson 3  Arithmetic & Geometric Series & Summation Notation
Fast Five T. Lesso 3  Arithmetic & Geometric eries & ummatio Notatio Math L  atowski Fid the sum of the first 00 umbers Outlie a way to solve this problem ad the carry out your pla Fid the sum of the
More informationSection 5.1 The Basics of Counting
1 Sectio 5.1 The Basics of Coutig Combiatorics, the study of arragemets of objects, is a importat part of discrete mathematics. I this chapter, we will lear basic techiques of coutig which has a lot of
More informationSeries. 4 Sequences and. Introduction. 4.1 Sequences
4 Sequeces ad Series Assessmet statemets. Arithmetic sequeces ad series; sum of fiite arithmetic sequeces; geometric sequeces ad series; sum of fiite ad ifiite geometric series. Sigma otatio..3 Coutig
More informationCALCULATION OF FIBONACCI VECTORS
CALCULATION OF FIBONACCI VECTORS Stuart D. Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithaca.edu ad Dai Novak Departmet of Mathematics, Ithaca College
More informationJoint Probability Distributions and Random Samples. Jointly Distributed Random Variables. Chapter { }
UCLA STAT A Applied Probability & Statistics for Egieers Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistat: Neda Farziia, UCLA Statistics Uiversity of Califoria, Los Ageles, Sprig
More informationCHAPTER 8 SYSTEMS OF PARTICLES
CHAPTER 8 SYSTES OF PARTICLES CHAPTER 8 COLLISIONS 45 8. CENTER OF ASS The ceter of mass of a system of particles or a rigid body is the poit at which all of the mass are cosidered to be cocetrated there
More informationHalf Life Worksheet Extra Practice
Half Life Worksheet Extra Practice ) Fluorie has a half life of approximately 5 secods. What fractio of the origial uclei would remai after miute? ) Iodie3 has a half life of 8 days. What fractio of
More informationREVIEW 1, MATH n=1 is convergent. (b) Determine whether a n is convergent.
REVIEW, MATH 00. Let a = +. a) Determie whether the sequece a ) is coverget. b) Determie whether a is coverget.. Determie whether the series is coverget or diverget. If it is coverget, fid its sum. a)
More informationSeunghee Ye Ma 8: Week 5 Oct 28
Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value
More informationDefinition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4.
4. BASES I BAACH SPACES 39 4. BASES I BAACH SPACES Sice a Baach space X is a vector space, it must possess a Hamel, or vector space, basis, i.e., a subset {x γ } γ Γ whose fiite liear spa is all of X ad
More informationA PROOF OF THE TWIN PRIME CONJECTURE AND OTHER POSSIBLE APPLICATIONS
A PROOF OF THE TWI PRIME COJECTURE AD OTHER POSSIBLE APPLICATIOS by PAUL S. BRUCKMA 38 Frot Street, #3 aaimo, BC V9R B8 (Caada) email : pbruckma@hotmail.com ABSTRACT : A elemetary proof of the Twi Prime
More informationNernst Equation. Nernst Equation. Electric Work and Gibb's Free Energy. Skills to develop. Electric Work. Gibb's Free Energy
Nerst Equatio Skills to develop Eplai ad distiguish the cell potetial ad stadard cell potetial. Calculate cell potetials from kow coditios (Nerst Equatio). Calculate the equilibrium costat from cell potetials.
More informationIP Reference guide for integer programming formulations.
IP Referece guide for iteger programmig formulatios. by James B. Orli for 15.053 ad 15.058 This documet is iteded as a compact (or relatively compact) guide to the formulatio of iteger programs. For more
More informationMath 508 Exam 2 Jerry L. Kazdan December 9, :00 10:20
Math 58 Eam 2 Jerry L. Kazda December 9, 24 9: :2 Directios This eam has three parts. Part A has 8 True/False questio (2 poits each so total 6 poits), Part B has 5 shorter problems (6 poits each, so 3
More informationSection A assesses the Units Numerical Analysis 1 and 2 Section B assesses the Unit Mathematics for Applied Mathematics
X0/70 NATIONAL QUALIFICATIONS 005 MONDAY, MAY.00 PM 4.00 PM APPLIED MATHEMATICS ADVANCED HIGHER Numerical Aalysis Read carefully. Calculators may be used i this paper.. Cadidates should aswer all questios.
More informationROLL CUTTING PROBLEMS UNDER STOCHASTIC DEMAND
PacificAsia Joural of Mathematics, Volume 5, No., JauaryJue 20 ROLL CUTTING PROBLEMS UNDER STOCHASTIC DEMAND SHAKEEL JAVAID, Z. H. BAKHSHI & M. M. KHALID ABSTRACT: I this paper, the roll cuttig problem
More informationComplex Numbers Solutions
Complex Numbers Solutios Joseph Zoller February 7, 06 Solutios. (009 AIME I Problem ) There is a complex umber with imagiary part 64 ad a positive iteger such that Fid. [Solutio: 697] 4i + + 4i. 4i 4i
More informationMarkov Decision Processes
Markov Decisio Processes Defiitios; Statioary policies; Value improvemet algorithm, Policy improvemet algorithm, ad liear programmig for discouted cost ad average cost criteria. Markov Decisio Processes
More information(a) (b) All real numbers. (c) All real numbers. (d) None. to show the. (a) 3. (b) [ 7, 1) (c) ( 7, 1) (d) At x = 7. (a) (b)
Chapter 0 Review 597. E; a ( + )( + ) + + S S + S + + + + + + S lim + l. D; a diverges by the Itegral l k Test sice d lim [(l ) ], so k l ( ) does ot coverge absolutely. But it coverges by the Alteratig
More information5.6 Absolute Convergence and The Ratio and Root Tests
5.6 Absolute Covergece ad The Ratio ad Root Tests Bria E. Veitch 5.6 Absolute Covergece ad The Ratio ad Root Tests Recall from our previous sectio that diverged but ( ) coverged. Both of these sequeces
More informationSection 14. Simple linear regression.
Sectio 14 Simple liear regressio. Let us look at the cigarette dataset from [1] (available to dowload from joural s website) ad []. The cigarette dataset cotais measuremets of tar, icotie, weight ad carbo
More informationWW Prob Lib1 WeBWorK, Version Demo Course
Tom Robbis WW Prob Lib WeBWorK, Versio.7  Demo Course.( pt) If f x 5 xl x, fid f x. Fid f..( pt) If f x 8log 6 x, fid f 5. 3.( pt) Let f x.( pt) Let f x l si x f x Use logarithmic differetiatio to determie
More informationMath 475, Problem Set #12: Answers
Math 475, Problem Set #12: Aswers A. Chapter 8, problem 12, parts (b) ad (d). (b) S # (, 2) = 2 2, sice, from amog the 2 ways of puttig elemets ito 2 distiguishable boxes, exactly 2 of them result i oe
More informationENG 209 Engineering Economy Lecture 9, Sections
ENG 29 Egieerig Ecoomy Lecture 9, Sectios 6.1 6.8 6.1) Preset Worth (PW) 6.2) Aual Equivalet (AE) 6.3) Future Worth (FW) 6.4) Iteral Rate of Retur (IRR) 6.5) Payback Period (PP) 6.6) Capitalized Equivalet
More informationTopics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion
.87 Machie learig: lecture Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu Topics The learig problem hypothesis class, estimatio algorithm loss ad estimatio criterio samplig, empirical ad epected losses
More informationChapter 6: Determinants and the Inverse Matrix 1
Chapter 6: Determiats ad the Iverse Matrix SECTION E pplicatios of Determiat By the ed of this sectio you will e ale to apply Cramer s rule to solve liear equatios ermie the umer of solutios of a give
More informationState space systems analysis
State pace ytem aalyi Repreetatio of a ytem i tatepace (tatepace model of a ytem To itroduce the tate pace formalim let u tart with a eample i which the ytem i dicuio i a imple electrical circuit with
More informationOn the Linear Complexity of Feedback Registers
O the Liear Complexity of Feedback Registers A. H. Cha M. Goresky A. Klapper Northeaster Uiversity Abstract I this paper, we study sequeces geerated by arbitrary feedback registers (ot ecessarily feedback
More informationThe Sample Variance Formula: A Detailed Study of an Old Controversy
The Sample Variace Formula: A Detailed Study of a Old Cotroversy Ky M. Vu PhD. AuLac Techologies Ic. c 00 Email: kymvu@aulactechologies.com Abstract The two biased ad ubiased formulae for the sample variace
More informationConfidence Intervals for the Population Proportion p
Cofidece Itervals for the Populatio Proportio p The cocept of cofidece itervals for the populatio proportio p is the same as the oe for, the samplig distributio of the mea, x. The structure is idetical:
More informationB Supplemental Notes 2 Hypergeometric, Binomial, Poisson and Multinomial Random Variables and Borel Sets
B671672 Supplemetal otes 2 Hypergeometric, Biomial, Poisso ad Multiomial Radom Variables ad Borel Sets 1 Biomial Approximatio to the Hypergeometric Recall that the Hypergeometric istributio is fx = x
More information( a) ( ) 1 ( ) 2 ( ) ( ) 3 3 ( ) =!
.8,.9: Taylor ad Maclauri Series.8. Although we were able to fid power series represetatios for a limited group of fuctios i the previous sectio, it is ot immediately obvious whether ay give fuctio has
More informationChapter 3. Strong convergence. 3.1 Definition of almost sure convergence
Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i
More informationResearch Article A New SecondOrder Iteration Method for Solving Nonlinear Equations
Abstract ad Applied Aalysis Volume 2013, Article ID 487062, 4 pages http://dx.doi.org/10.1155/2013/487062 Research Article A New SecodOrder Iteratio Method for Solvig Noliear Equatios Shi Mi Kag, 1 Arif
More informationCALCULATING FIBONACCI VECTORS
THE GENERALIZED BINET FORMULA FOR CALCULATING FIBONACCI VECTORS Stuart D Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithacaedu ad Dai Novak Departmet
More informationBasic Sets. Functions. MTH299  Examples. Example 1. Let S = {1, {2, 3}, 4}. Indicate whether each statement is true or false. (a) S = 4. (e) 2 S.
Basic Sets Example 1. Let S = {1, {2, 3}, 4}. Idicate whether each statemet is true or false. (a) S = 4 (b) {1} S (c) {2, 3} S (d) {1, 4} S (e) 2 S. (f) S = {1, 4, {2, 3}} (g) S Example 2. Compute the
More informationNumerical Methods in Fourier Series Applications
Numerical Methods i Fourier Series Applicatios Recall that the basic relatios i usig the Trigoometric Fourier Series represetatio were give by f ( x) a o ( a x cos b x si ) () where the Fourier coefficiets
More information14.1 Understanding Rational Exponents and Radicals
Name Class Date 14.1 Uderstadig Ratioal Expoets ad Radicals Essetial Questio: How are radicals ad ratioal expoets related? Resource Locker Explore 1 Uderstadig Iteger Expoets Recall that powers like are
More informationCALCULUS II. Sequences and Series. Paul Dawkins
CALCULUS II Sequeces ad Series Paul Dawkis Table of Cotets Preface... ii Sequeces ad Series... 3 Itroductio... 3 Sequeces... 5 More o Sequeces...5 Series The Basics... Series Covergece/Divergece...7 Series
More information