CHAPTER 4 APPLICATIONS OF DERIVATIVES

Size: px
Start display at page:

Download "CHAPTER 4 APPLICATIONS OF DERIVATIVES"

Transcription

1 CHAPTER APPLICATIONS OF DERIVATIVES. EXTREME VALUES OF FUNCTIONS. A absolute miimum at c, a absolute maimum at b. Theorem guaratees the eistece of such etreme values because h is cotiuous o [aß b].. A absolute miimum at b, a absolute maimum at c. Theorem guaratees the eistece of such etreme values because f is cotiuous o [aß b].. No absolute miimum. A absolute maimum at c. Sice the fuctios domai is a ope iterval, the fuctio does ot satisfy the hypotheses of Theorem ad eed ot have absolute etreme values.. No absolute etrema. The fuctio is either cotiuous or defied o a closed iterval, so it eed ot fulfill the coclusios of Theorem. 5. A absolute miimum at a ad a absolute maimum at c. Note that y g() is ot cotiuous but still has etrema. Whe the hypothesis of Theorem is satisfied the etrema are guarateed, but he the hypothesis is ot satisfied, absolute etrema may or may ot occur. 6. Absolute miimum at c ad a absolute maimum at a. Note that y g() is ot cotiuous but still has absolute etrema. Whe the hypothesis of Theorem is satisfied the etrema are guarateed, but he the hypothesis is ot satisfied, absolute etrema may or may ot occur. 7. Local miimum at aß! b, local maimum at aß! b 8. Miima at aß! b ad aß! b, maimum at a!ß b 9. Maimum at a!ß & b. Note that there is o miimum sice the edpoit aß! b is ecluded from the graph. 0. Local maimum at aß! b, local miimum at aß! b, maimum at aß b, miimum at a!ß b. Graph (c), sice this the oly graph that has positive slope at c.. Graph (b), sice this is the oly graph that represets a differetiable fuctio at a ad b ad has egative slope at c.. Graph (d), sice this is the oly graph represetig a futio that is differetiable at b but ot at a.. Graph (a), sice this is the oly graph that represets a fuctio that is ot differetiable at a or b. 5. f has a absolute mi at 0 but does ot have a absolute ma. Sice the iterval o hich f is defied,, is a ope iterval, e do ot meet the coditios of Theorem.

2 68 Chapter Applicatios of Derivatives 6. f has a absolute ma at 0 but does ot have a absolute mi. Sice the iterval o hich f is defied,, is a ope iterval, e do ot meet the coditios of Theorem. 7. f has a absolute ma at but does ot have a absolute mi. Sice the fuctio is ot cotiuous at, e do ot meet the coditios of Theorem. 8. f has a absolute ma at but does ot have a absolute mi. Sice the fuctio is ot cotiuous at 0, e do ot meet the coditios of Theorem. 9. f has a absolute ma at ad a absolute mi at. Sice the iterval o hich f is defied, 0, is a ope iterval, e do ot meet the coditios of Theorem. 0. f has a absolute ma at 0 ad a absolute mi at ad. Sice f is cotiuous o the closed iterval o hich it is defied, Ÿ Ÿ, e do meet the coditios of Theorem. 9. f() 5 Ê f () Ê o critical poits; f( ), f() Ê the absolute maimum is at ad the absolute miimum is 9 at

3 Sectio. Etreme Values of Fuctios 69. f() Ê f () Ê o critical poits; f( ) 0, f() 5 Ê the absolute maimum is 0 at ad the absolute miimum is 5 at. f() Ê f () Ê a critical poit at 0; f( ) 0, f(0), f() Ê the absolute maimum is at ad the absolute miimum is at 0. f() % Ê f () Ê a critical poit at 0; f( ) 5, f(0), f() Ê the absolute maimum is at 0 ad the absolute miimum is 5 at 5. F() Ê F (), hoever 0 is ot a critical poit sice 0 is ot i the domai; F(0.5), F() 0.5 Ê the absolute maimum is 0.5 at ad the absolute miimum is at F() Ê F (), hoever 0 is ot a critical poit sice 0 is ot i the domai; F( ), F( ) Ê the absolute maimum is at ad the absolute miimum is at 7. h() È Î Î Ê h () Ê a critical poit at 0; h( ), h(0) 0, h(8) Ê the absolute maimum is at 8 ad the absolute miimum is at

4 70 Chapter Applicatios of Derivatives Î Î 8. h() Ê h () Ê a critical poit at 0; h( ), h(0) 0, h() Ê the absolute maimum is 0 at 0 ad the absolute miimum is at ad at 9. g() È a b Î Ê g () Î a b ( ) È Ê critical poits at ad 0, but ot at because is ot i the domai; g( ) 0, g(0), g() È Ê the absolute maimum is at 0 ad the absolute miimum is 0 at 0. g() È5 Î Î a& b a5 b ( ) Ê g () ˆ Ê critical poits at È5 È & ad 0, but ot at È 5 because È 5 is ot i the domai; f Š È5 0, f(0) È5 Ê the absolute maimum is 0 at È5 ad the absolute miimum is È5 at 0 ˆ ˆ ˆ 5 6 ) at ). f( )) si ) Ê f ()) cos ) Ê ) is a critical poit, but ) is ot a critical poit because is ot iterior to the domai; f, f, f Ê the absolute maimum is at miimum is ad the absolute. f( )) ta ) Ê f ()) sec ) Ê f has o critical poits i ˆ ß. The etreme values therefore occur at the edpoits: f ˆ È ad f ˆ Ê the absolute maimum is at ) ad the absolute miimum is È at )

5 Sectio. Etreme Values of Fuctios 7. g() csc Ê g () (csc )(cot ) Ê a critical poit at ; g ˆ, g ˆ, g ˆ Ê the È È È absolute maimum is at ad, ad the absolute miimum is at. g() sec Ê g () (sec )(ta ) Ê a critical poit at 0; g ˆ, g(0), g ˆ Ê the absolute 6 maimum is at ad the absolute miimum is at 0 È È Î 5. f(t) kk t t at b Ê f (t) t t t a b (t) Î Èt Ê a critical poit at t 0; f( ), f(0), f() Ê the absolute maimum is at t 0 ad the absolute miimum is at t kk t È Î 6. f(t) kt 5 k (t 5) a(t 5) b Ê f (t) a (t 5) b ((t 5)) t5 t5 Î È(t 5) kt5k Ê a critical poit at t 5; f(), f(5) 0, f(7) Ê the absolute maimum is at t 7 ad the absolute miimum is 0 at t 5 %Î Î 7. f() Ê f () Ê a critical poit at 0; f( ), f(0) 0, f(8) 6 Ê the absolute maimum is 6 at 8 ad the absolute miimum is 0 at 0 &Î 5 Î 8. f() Ê f () Ê a critical poit at 0; f( ), f(0) 0, f(8) Ê the absolute maimum is at 8 ad the absolute miimum is at Î& Î& 9. g( )) ) Ê g ()) 5 ) Ê a critical poit at ) 0; g( ) 8, g(0) 0, g() Ê the absolute maimum is at ) ad the absolute miimum is 8 at ) Î Î 0. h( )) ) Ê h ()) ) Ê a critical poit at ) 0; h( 7) 7, h(0) 0, h(8) Ê the absolute maimum is 7 at ) 7 ad the absolute miimum is 0 at ) 0. y 6 7 Ê y 6 Ê 6 0 Ê. The critical poit is.. fab 6 Ê f ab Ê 0 Ê a b 0 Ê 0 or. The critical poitss are 0 ad.

6 7 Chapter Applicatios of Derivatives. fab a b Êf ab a b ab a b a b a b a b a b a b a b Ê a b a b 0 Ê or. The critical poits are ad.. gab a b a b Êg ab a b a baba bab a b a ba b a ba b a ba ba b Ê a ba ba b 0 Ê or or. The critical poits are,, ad. 5. y Êy Ê!Ê!Ê ; udefied Ê 0 Ê 0. The domai of the fuctio is a_, 0b a0, _ b, thus 0 is ot i the domai, so the oly critical poit is. a b ab ab ab ab ab 6. fab Êf ab Ê!Ê!Ê 0 or ; udefied Ê a b 0 Ê. The domai of the fuctio is a_, b a, _ b, thus is ot i the domai, so the oly critical poits are 0 ad È Î 6 È È È È Î Î Î 7. y Ê y Ê! Ê 6 0 Ê ; udefied Ê È 0 Ê 0. The critical poits are ad gab È Êg ab Ê 0 Ê 0 Ê ; udefied Ê È 0 È È È 0 Ê 0 or. The critical poits are 0,, ad. 9. Miimum value is at. 50. To fid the eact values, ote that y, hich is zero he È6 9. Local maimum at É Š É ß a0þ86ß 5Þ089 b; local % È * miimum at Š É ß% a0.86ß.9b

7 Sectio. Etreme Values of Fuctios 7 5. To fid the eact values, ote that that y 8 % a ba b, hich is zero he or. Local maimum at aß 7 b; local miimum at ˆ % ß % ( 5. Note that y 5 a 5ba b, hich is zero at 0,, ad 5. Local maimum at a, 08 b; local miimum at a5, 0 b; a0, 0 b is either a maimum or a miimum. 5. Miimum value is 0 he or. È È 5. Note that y, hich is zero at ad is udefied he 0. Local maimum at a0, 0 b; absolute miimum at a, b 55. The actual graph of the fuctio has asymptotes at, so there are o etrema ear these values. (This is a eample of grapher failure.) There is a local miimum at a!ß b.

8 7 Chapter Applicatios of Derivatives 56. Maimum value is at ; miimum value is 0 at ad. 57. Maimum value is at à miimum value is as. 58. Maimum value is at 0à miimum value is as. & % È Î Î 59. y a b a b crit. pt. derivative etremum value % Î &! local ma &! Þ!%! udefied local mi 0

9 Sectio. Etreme Values of Fuctios 75 ) ) È Î Î 60. y a b a % b crit. pt. derivative etremum value! miimum! udefied local ma 0! miimum % 6. y È a b a bè % a% b È% % È% crit. pt. derivative etremum value udefied local ma! È! miimum È! maimum udefied local mi! 6. y È ab È a% bab _5 È È crit. pt. derivative etremum value 0! miimum! %% Î &! local ma && %Þ% udefied miimum! 6. y,, crit. pt. derivative etremum value udefied miimum 6. y,!,! crit. pt. derivative etremum value! udefied local mi! local ma %

10 76 Chapter Applicatios of Derivatives 65. y, 6, crit. pt. derivative etremum value! maimum 5 udefied local mi! maimum 5 &, 66. We begi by determiig hether f is defied at, here f % % Ÿ a b a b ), hä! c Clearly, f a b if, ad lim f a h b. Also, f a b ) if, ad lim f a h b. Sice f is cotiuous at, e have that f a b. Thus, b hä!, f Ÿ a b ), È % a ba) b È%) È a b È È Note that! he, ad )! he. But!Þ)%&, so the critical poits occur at ad Þ&&. crit. pt. derivative etremum value! local ma Þ&&! local mi Þ!(* Î 67. (a) No, sice f ab a b, hich is udefied at. (b) The derivative is defied ad ozero for all Á. Also, f a b! ad fa b! for all Á. (c) No, fa beed ot have a global maimum because its domai is all real umbers. Ay restrictio of f to a closed iterval of the form Òa, b Ó ould have both a maimum value ad miimum value o the iterval. (d) The asers are the same as (a) ad (b) ith replaced by a. *, Ÿ or! Ÿ *, or! 68. Note that fa b. Therefore, f a b. *,! or *,! or (a) No, sice the left- ad right-had derivatives at!, are * ad *, respectively. (b) No, sice the left- ad right-had derivatives at, are ) ad ), respectively. (c) No, sice the left- ad right-had derivatives at, are ) ad ), respectively. (d) The critical poits occur he f a b! (at È ) ad he f a bis udefied (at! ad ). The miimum value is! at, at!, ad at ; local maima occur at Š Èß È ad Š Èß È.

11 È Î Î Sectio. Etreme Values of Fuctios 77 a b Î kk 69. Yes, sice f() kk a b Ê f () a b () is ot defied at 0. Thus it is ot required that f be zero at a local etreme poit sice f may be udefied there. 70. If f(c) is a local maimum value of f, the f() Ÿ f(c) for all i some ope iterval (aßb) cotaiig c. Sice f is eve, f( ) f() Ÿ f(c) f( c) for all i the ope iterval ( bßa) cotaiig c. That is, f assumesa local maimum at the poit c. This is also clear from the graph of f because the graph of a eve fuctio is symmetric about the y-ais. 7. If g(c) is a local miimum value of g, the g() g(c) for all i some ope iterval (aßb) cotaiig c. Sice g is odd, g( ) g() Ÿ g(c) g( c) for all i the ope iterval ( bßa) cotaiig c. That is, g assumes a local maimum at the poit c. This is also clear from the graph of g because the graph of a odd fuctio is symmetric about the origi. 7. If there are o boudary poits or critical poits the fuctio ill have o etreme values i its domai. Such fuctios do ideed eist, for eample f() for. (Ay other liear fuctio f() m b ith m Á 0 ill do as ell.) 7. (a) Vab! & % Vab!!% % a ba! b The oly critical poit i the iterval a!ß & bis at. The maimum value of Va bis at. (b) The largest possible volume of the bo is cubic uits, ad it occurs he uits. 7. (a) f ab a b c is a quadratic, so it ca have 0,, or zeros, hich ould be the critical poits of f. The fuctio fab has to critical poits at ad. The fuctio fab has oe critical poit at!þthe fuctio fab has o critical poits. (b) The fuctio ca have either to local etreme values or o etreme values. (If there is oly oe critical poit, the cubic fuctio has o etreme values.) ds v gt v!! dt! g 0 0 g v! v! v! v! v0 g g 0 g 0 g 0 0 maimum Ÿ Ÿ g! 75. s gt v t s Ê gt v!êt. No sab t s Ítˆ v 0 0 Ít 0 or t. Thus sš gš v Š s s s is the height over the iterval 0 t. di di % 76. dt si t cos t, solvig dt!êta t Êt here is a oegative iteger (i this eercise t is ever egative) Ê the peak curret is È amps. 77. Maimum value is at 5; miimum value is 5 o the iterval Òß Ó; local maimum at a5ß 9b

12 78 Chapter Applicatios of Derivatives 78. Maimum value is o the iterval Ò5ß 7 Ó; miimum value is o the iterval Òß Ó. 79. Maimum value is 5 o the iterval Ò ß _Ñ; miimum value is 5 o the iterval Ð_ß Ó. 80. Miimum value is o the iterval Òß Ó Eample CAS commads: Maple: ith(studet): f := -> ^ - 8*^ + * + ; domai := =-0/5..6/5; plot( f(), domai, color=black, title=sectio. 8(a) ); Df := D(f); plot( Df(), domai, color=black, title=sectio. 8(b) ) StatPt := fsolve( Df()=0, domai ) SigPt := NULL; EdPt := op(rhs(domai)); Pts :=evalf([edpt,statpt,sigpt]); Values := [seq( f(), =Pts )]; Maimum value is.7608 ad occurs at =.56 (right edpoit). Miimum value % is ad occurs at =.8608 (sigular poit). Mathematica: (fuctios may vary) (see sectio.5 re. RealsOly ): <<Miscellaeous `RealOly` Clear[f,] a = ; b = 0/;

13 Sectio. The Mea Value Theorem 79 f[_] = / f[] Plot[{f[], f[]}, {, a, b}] NSolve[f[]==0, ] {f[a], f[0], f[]/.%, f[b]//n I more complicated epressios, NSolve may ot yield results. I this case, a approimate solutio (say. here) is observed from the graph ad the folloig commad is used: FidRoot[f[]==0,{,.}]. THE MEAN VALUE THEOREM f a b f0 a b 0. Whe f() for 0 Ÿ Ÿ, the f ab c Ê c Ê c. Î f a b f0 a b Î 8. Whe f() for 0 Ÿ Ÿ, the f ab c Ê ˆ c Ê c. 0 7 f a bf a Îb Î c. Whe f() for Ÿ Ÿ, the f ab c Ê 0 Ê c.. Whe f() È f f for Ÿ Ÿ, the f ab c Ê Ê c. a b a b È Èc f a bfab È7 ab È7 È7. ad 0.59 are both i the iterval Ÿ Ÿ. 5. Whe f() for Ÿ Ÿ, the f ab c Ê c c Ê c. 6. Whe g() Ÿ Ÿ 0 g a bgab, the g c g c. If 0, the g () g c! Ÿ abê ab Ÿ a b Ê ab Ê c Ê c. Oly c is i the iterval. If! Ÿ, the g () Ê g ab c Ê c Ê c. 7. Does ot; f() is ot differetiable at 0 i ( ß8). 8. Does; f() is cotiuous for every poit of [0ß] ad differetiable for every poit i (0ß). 9. Does; f() is cotiuous for every poit of [0ß] ad differetiable for every poit i (0ß). 0. Does ot; f() is ot cotiuous at 0 because lim f() Á 0 f(0). Ä! c. Does ot; f is ot differetiable at i ( ß0).. Does; f() is cotiuous for every poit of [0ß] ad differetiable for every poit i (0ß).. Sice f() is ot cotiuous o 0 Ÿ Ÿ, Rolles Theorem does ot apply: lim f() lim Á 0 f(). Ä c Ä c. Sice f() must be cotiuous at 0 ad e have lim f() a f(0) Ê a ad Ä! b lim f() lim f() a m b 5 m b. Sice f() must also be differetiable at Ä c Ê Ê Ä b e have lim f () lim f () Ê m Ê m. Therefore, a, m ad b. Ä c k k Ä b = =

14 80 Chapter Applicatios of Derivatives 5. (a) i ii iii iv - (b) Let r ad r be zeros of the polyomial P() a- á a a!, the P(r ) P(r ) 0. Sice polyomials are everyhere cotiuous ad differetiable, by Rolles Theorem P (r) 0 for some r - - betee r ad r, here P () ( ) a á a With f both differetiable ad cotiuous o [aßb] ad f(r ) f(r ) f(r ) 0 here r, r ad r are i [aßb], the by Rolles Theorem there eists a c betee r ad r such that f (c) 0 ad a c betee r ad r such that f (c) 0. Sice f is both differetiable ad cotiuous o [aßb], Rolles Theorem agai applies ad ÐÑ e have a c betee c ad c such that f (c ) 0. To geeralize, if f has zeros i [aßb] ad f is ÐÑ cotiuous o [aß b], the f has at least oe zero betee a ad b. 7. Sice f eists throughout [aß b] the derivative fuctio f is cotiuous there. If f has more tha oe zero i [aß b], say f (r) f (r) 0 for r Á r, the by Rolles Theorem there is a c betee r ad r such that f (c) 0, cotrary to f 0 throughout [aßb]. Therefore f has at most oe zero i [aßb]. The same argumet holds if f 0 throughout [aßb]. r 8. If f() is a cubic polyomial ith four or more zeros, the by Rolles Theorem f () has three or more zeros, f () has o more zeros ad f () has at least oe zero. This is a cotradictio sice f () is a o-zero costat he f() is a cubic polyomial. 9. With f( ) 0 ad f( ) 0 e coclude from the Itermediate Value Theorem that f() has at least oe zero betee ad. The Ê) Ê Ê9 Ê f () 0 for Ê f() is decreasig o [ ß] Êf() 0 has eactly oe solutio i the iterval ( ß ) f() 7 Ê f () 0 o ( _ß 0) Ê f() is icreasig o ( _ß 0). Also, f() 0 if ad f() 0 if 0 Ê f() has eactly oe zero i ( _ß!).. g(t) Èt È t Ê g (t) 0 Ê g(t) is icreasig for t i (!ß_); g() È 0 ad Èt Èt g(5) È5 0 Ê g(t) has eactly oe zero i (!ß_) Þ È t (t) Èt. g(t) t. Ê g (t) 0 Ê g(t) is icreasig for t i ( ß); g( 0.99).5 ad g(0.99) 98. Ê g(t) has eactly oe zero i ( ß).. r( )) ) si ˆ ) 8 Ê r ()) si ˆ ) cos ˆ ) si ˆ ) 0 o ( _ß_ ) Ê r( )) is icreasig o ( _ß _); r(0) 8 ad r(8) si ˆ 8 0 Ê r( ) has eactly oe zero i ( _ß _). ). r( )) ) cos ) È Ê r ()) si ) cos ) si ) 0 o ( _ß_ ) Ê r( )) is icreasig o ( _ß_ ); r( ) cos ( ) È È 0 ad r( ) È 0 Êr( )) has eactly oe zero i ( _ß _). 5. r( )) sec ) 5 Ê r ()) (sec ))(ta )) 0 o ˆ!ß Ê r( )) is icreasig o ˆ!ß ) ; r(0.) 99 ad )% r(.57) 60.5 Ê r( )) has eactly oe zero i ˆ!ß. %

15 Sectio. The Mea Value Theorem 8 6. r( )) ta ) cot ) ) Ê r ()) sec ) csc ) sec ) cot ) 0 o ˆ!ß Ê r( )) is icreasig o ˆ 0 ß ; r ˆ 0 ad r(.57) 5. r( ) has eactly oe zero i ˆ Ê!ß. ) 7. By Corollary, f () 0 for all Ê f() C, here C is a costat. Sice f( ) e have C Ê f() for all. 8. g() 5 Ê g () f () for all. By Corollary, f() g() C for some costat C. The f(0) g(0) C Ê 5 5 C Ê C 0 Ê f() g() 5 for all. 9. g() Ê g () f () for all. By Corollary, f() g() C. (a) f(0) 0 Ê 0 g(0) C 0 C Ê C 0 Ê f() Ê f() (b) f() 0 Ê 0 g() C C Ê C Ê f() Ê f() (c) f( ) Ê g( ) C Ê C Ê C Ê f() Ê f() 0. g() m Ê g () m, a costat. If f () m, the by Corollary, f() g() b m b here b is a costat. Therefore all fuctios hose derivatives are costat ca be graphed as straight lies y m b. %. (a) y C (b) y C (c) y C. (a) y C (b) y C (c) y C. (a) y Ê y C (b) y C (c) y 5 C Î Î. (a) y Ê y C Ê y È C (b) y È C È (c) y C t t 5. (a) y cos t C (b) y si C (c) y cos t si C Î Î Î 6. (a) y ta ) C (b) y ) Ê y ) C (c) y ) ta ) C 7. f() C; 0 f(0) 0 0 C Ê C 0 Ê f() 8. g() C; g( ) ( ) C Ê C Ê g() 9. r( )) 8) cot ) C; 0 r ˆ 8 ˆ cot ˆ C Ê 0 C Ê C Ê r( )) 8) cot ) 0. r(t) sec t t C; 0 r(0) sec (0) 0 C Ê C Ê r(t) sec t t ds dt. v *Þ) t &Ês%Þ* t & t C; at s! ad t! e have C!Ês%Þ* t & t! ds dt. v t Ês t t C; at s % ad t e have C Ês t t ds dt cosatb. v siatb Ês cosatbc; at s! ad t! e have C Ês ds. v cosˆ t Ê s siˆ t t C; at s ad t e have C Ê s siˆ dt

16 8 Chapter Applicatios of Derivatives 5. a Êv t C ; at v! ad t! e have C!Êv t!ês t! t C ; at s & ad t! e have C &Ês t! t & 6. a 9.8 Êv 9.8t C ; at v ad t! e have C Êv*Þ) t Ês%Þ* t t C ; at s! ad t! e have C!Ês%Þ* t t 7. a % sia tb Êv cosa tbc ; at v ad t! e have C!Êv cosa tb Ês sia tbc ; at s ad t! e have C Ês sia tb * 8. a cosˆ t Êv siˆ t C ; at v! ad t! e have C!Êv siˆ t Ês cosˆ t C ; at s ad t! e have C!Êscosˆ t 9. If T(t) is the temperature of the thermometer at time t, the T(0) 9 C ad T() 00 C. From the Mea Value T() T(0) Theorem there eists a 0 t! such that C/sec T (t!), the rate at hich the temperature as chagig at t t as measured by the risig mercury o the thermometer.! 50. Because the truckers average speed as 79.5 mph, by the Mea Value Theorem, the trucker must have bee goig that speed at least oce durig the trip. 5. Because its average speed as approimately kots, ad by the Mea Value Theorem, it must have bee goig that speed at least oce durig the trip. 5. The ruers average speed for the maratho as approimately.909 mph. Therefore, by the Mea Value Theorem, the ruer must have bee goig that speed at least oce durig the maratho. Sice the iitial speed ad fial speed are both 0 mph ad the ruers speed is cotiuous, by the Itermediate Value Theorem, the ruers speed must have bee mph at least tice. d() d(0) 0 d() d(0)!! 0!! 5. Let d(t) represet the distace the automobile traveled i time t. The average speed over 0 Ÿ t Ÿ is. The Mea Value Theorem says that for some 0 t, d (t ). The value d (t ) is the speed of the automobile at time t (hich is read o the speedometer). 5. aab t v ab t Þ Ê vab t Þ t C; at a!ß! be have C! Ê vab t Þ t. Whe t!, the v a! b %) m/sec. b a ab 55. The coclusio of the Mea Value Theorem yields Ê c ˆ a b Ê c Èab. b a c ab b a ab b a 56. The coclusio of the Mea Value Theorem yields c Ê c. 57. f () [cos si ( ) si cos ( )] si ( ) cos ( ) si ( ) si ( ) si ( ) si ( ) 0. Therefore, the fuctio has the costat value f(0) si hich eplais hy the graph is a horizotal lie. & 58. (a) fab a ba ba ba b & % is oe possibility.

17 & % Sectio. The Mea Value Theorem 8 (b) Graphig fab & % ad f ab & & % o Òß Ó by Ò(ß (Ó e see that each -itercept of f a b lies betee a pair of -itercepts of fa b, as epected by Rolles Theorem. (c) Yes, sice si is cotiuous ad differetiable o a_ß_ b. 59. fa b must be zero at least oce betee a ad b by the Itermediate Value Theorem. No suppose that fa b is zero tice betee a ad b. The by the Mea Value Theorem, f a bould have to be zero at least oce betee the to zeros of fa b, but this cat be true sice e are give that f a b Á! o this iterval. Therefore, fa bis zero oce ad oly oce betee a ad b. 60. Cosider the fuctio kab fabga b. ka b is cotiuous ad differetiable o Òa, b Ó, ad sice kab a fab a gab a ad kabb fabbgab b, by the Mea Value Theorem, there must be a poit c i aa, b bhere k ac b!. But sice k ab c f ab c g ab c, this meas that f ab c g ab c, ad c is a poit here the graphs of f ad g have taget lies ith the same slope, so these lies are either parallel or are the same lie. 6. f ab Ÿ for Ÿ Ÿ Ê fa bis differetiable o Ÿ Ÿ Ê f is cotiuous o Ÿ Ÿ Ê f satisfies the f a b f a b f a b f a b coditios of the Mea Value Theorem Ê f ab c for some c i Ê f ab c Ÿ Ê Ÿ Ê f a bf a b Ÿ 6. 0 f a b for all Ê f a beists for all, thus f is differetiable o a, b Ê f is cotiuous o Ò, Ó f a b f a b f a b f a b Ê f satisfies the coditios of the Mea Value Theorem Ê a b f ab c for some c i Ò, Ó Ê 0 Ê 0 fabfab. Sice fabfab Ê fab fab fa b, ad sice 0 fabfab e have fab fa b. Together e have fab fab fa b. 6. Let fab t cos t ad cosider the iterval Ò0, Óhere is a real umber. f is cotiuous o Ò0, Óad f is differetiable o f a b f0 a b a0, b sice f atb si t Êf satisfies the coditios of the Mea Value Theorem Ê f ab c for some c i a0b cos cos cos cos Ò0, Ó Ê si c. Sice Ÿ si c Ÿ Ê Ÿ si c Ÿ Ê Ÿ Ÿ. If 0, Ÿ Ÿ ÊŸ cos Ÿ Êlcos lÿl l. If 0, Ÿ Ÿ Ê cos ÊŸ cos ŸÊ a b Ÿcos ŸÊlcos lÿ l l. Thus, i both cases, e have lcos lÿl l. If 0, the lcos 0 llll0lÿl0 l, thus lcos lÿl lis true for all. 6. Let f() si for a Ÿ Ÿ b. From the Mea Value Theorem there eists a c betee a ad b such that si b si a si b si a si b si a cos c Ê Ÿ Ÿ Ê Ÿ Ê ksi b si ak Ÿ kb a k. ba ba ba 65. Yes. By Corollary e have f() g() c sice f () g (). If the graphs start at the same poit a, the f(a) g(a) Ê c 0 Ê f() g().

18 8 Chapter Applicatios of Derivatives 66. Assume f is differetiable ad lfabfablÿl lfor all values of ad. Sice f is differetiable, f a b eists ad f a b f a b f a b lim usig the alterative formula for the derivative. Let g, hich is cotiuous for all. a b l l Ä By Theorem 0 from Chapter, f a bf a b f a bf a b lf a bf a bl f a b º lim lim lim. Sice º ¹ ¹ Ä Ä Ä ll lf a bf a bl ll lfabfablÿl lfor all ad Ê Ÿ as log as Á. By Theorem 5 from Chapter, f a b lf a bf a bl lim lim f f. a b l l Ÿ Ê Ÿ Ê Ÿ a b Ä Ä Ÿ f(b) f(a) 67. By the Mea Value Theorem e have b a f (c) for some poit c betee a ad b. Sice b a 0 ad f(b) f(a), e have f(b) f(a) 0 Ê f (c) The coditio is that f should be cotiuous over [aß b]. The Mea Value Theorem the guaratees the eistece of a poit c i (aßb) such that f(b) f(a) b a maimum value o [aßb], ad mi f Ÿ f (c) Ÿ ma f, as required. % % % f (c). If f is cotiuous, the it has a miimum ad 69. f () a cos b Ê f () a cos b a cos si b % a cos b ( cos si ) 0 for 0 Ÿ Ÿ0. Ê f () is decreasig he 0 Ÿ Ÿ0. f(0.) Ê mi f ad ma f. No e have Ÿ 0. Ÿ Ê Ÿ f(0.) Ÿ 0. Ê Ÿ f(0.) Ÿ.. a % b f(0.) 0. % % 70. f () a b Ê f () a b a b 0 for 0 Ÿ 0. Ê f () is icreasig he 0 Ÿ Ÿ 0. Ê mi f ad ma f.000. No e have Ÿ Ÿ.000 Ê 0. Ÿ f(0.) Ÿ Ê. Ÿ f(0.) Ÿ.000. f() f() 7. (a) Suppose, the by the Mea Value Theorem 0 Ê f() f(). Suppose, the by the f() f() Mea Value Theorem 0 Ê f() f(). Therefore f() for all sice f(). f() f() f() f() (b) Yes. From part (a), lim 0 ad lim 0. Sice f () eists, these to oe-sided Ä c Ÿ Ä b limits are equal ad have the value f () Ê f () Ÿ 0 ad f () 0 Ê f () 0. f(b) f(a) b a 7. From the Mea Value Theorem e have f (c) here c is betee a ad b. But f (c) pc q 0 q p has oly oe solutio c. (Note: p Á0 sice f is a quadratic fuctio.). MONOTONIC FUNCTIONS AND THE FIRST DERIVATIVE TEST. (a) f () ( ) Ê critical poits at 0 ad (b) f ± ± Ê icreasig o ( _ß!) ad (ß _), decreasig o (!ß )! (c) Local maimum at 0 ad a local miimum at. (a) f () ( )( ) Ê critical poits at ad (b) f ± ± Ê icreasig o ( _ß ) ad (ß _), decreasig o ( ß ) (c) Local maimum at ad a local miimum at. (a) f () ( ) ( ) Ê critical poits at ad (b) f ± ± Ê icreasig o ( ß ) ad (ß _), decreasig o ( _ß )

19 (c) No local maimum ad a local miimum at Sectio. Mootoic Fuctios ad the First Derivative Test 85. (a) f () ( ) ( ) Ê critical poits at ad (b) f ± ± Ê icreasig o ( _ß ) ( ß ) (ß _), ever decreasig (c) No local etrema 5. (a) f () ( )( )( ) Ê critical poits at, ad (b) f ± ± ± Ê icreasig o ( ß ) ad ( ß _), decreasig o ( _ß ) ad (ß ) (c) Local maimum at, local miima at ad 6. (a) f () ( 7)( )( 5) Ê critical poits at 5, ad 7 (b) f ± ± ± Ê icreasig o ( 5ß ) ad (7 ß _), decreasig o ( _ß 5) ad ( ß 7) & ( (c) Local maimum at, local miima at 5 ad 7 a b 7. (a) f () a b Ê critical poits at 0, ad (b) f )( ± ± Ê icreasig o a_ß bad a ß _ b, decreasig o aß 0 b ad a0ß b 0 (c) Local miimum at abab 8. (a) f () abab Ê critical poits at,,, ad (b) f ± )( ± )( Ê icreasig o a_ß b, aß bad a ß _ b, decreasig o aß b ad aßb (c) Local maimum at ad 9. (a) f () Ê critical poits at, ad 0. (b) f ± )( ± Ê icreasig o a_ß bad a ß _ b, decreasig o aß 0 b ad a0ß b 0 (c) Local maimum at, local miimum at 6 È È 6 È 0. (a) f () Ê critical poits at ad 0 (b) f ( ± Ê icreasig o a ß _ b, decreasig o a0ß b 0 (c) Local miimum at Î. (a) f () ( ) Ê critical poits at ad 0 (b) f ± )( Ê icreasig o ( _ß ) ad (0 ß _), decreasig o ( ß 0) 0 (c) Local maimum at, local miimum at 0 Î. (a) f () ( ) Ê critical poits at 0 ad (b) f ( ± Ê icreasig o ( ß _), decreasig o (0ß ) 0 (c) No local maimum ad a local miimum at. (a) f () asi bacos b, 0 Ÿ Ÿ Ê critical poits at,, ad (b) f Ò ± ± ± Ó Ê icreasig o ˆ ß, decreasig o ˆ 0 ß, ˆ ß ad ˆ ß 0

20 86 Chapter Applicatios of Derivatives (c) Local maimum at ad 0, local miimum at ad 5 7. (a) f () asi cos basi cos b, 0 Ÿ Ÿ Ê critical poits at,,, ad (b) f Ò ± ± ± ± Ó Ê icreasig o ˆ ß ad ˆ 5 7 ß, decreasig o ˆ 0 ß, ˆ ß ad ˆ ß 7 5 (c) Local maimum at 0, ad, local miimum at, ad 5. (a) Icreasig o aß0 bad aß b, decreasig o aß b ad a0ßb (b) Absolute maimum at aß b, local maimum at a0ß b ad aß b; Absolute miimum at aß b, local miimum at a0 ß b 6. (a) Icreasig o aß.5 b, a.5ß b, ad aß b, decreasig o a.5ß.5 b ad aßb (b) Absolute maimum at aß b, local maimum at a.5ß b ad aß b; Absolute miimum at a.5ß b, local miimum at aß0 b ad aß0b 7. (a) Icreasig o aß b, a0.5ß b, ad aß b, decreasig o aß0.5b (b) Absolute maimum at aß b, local maimum at aß b ad aß b; No absolute miimum, local miimum at aßbad a0.5ßb 8. (a) Icreasig o aß.5 b, aß b, ad aß b, decreasig o a.5ß b ad aßb (b) No absolute maimum, local maimum at a.5ß b, aß b ad aß b; No absolute miimum, local miimum at aß0 b ad aßb 9. (a) g(t) t t Ê g (t) t Ê a critical poit at t ; g ±, icreasig o Î ˆ _ß, decreasig o ˆ ß _ (b) local maimum value of g ˆ at t, absolute maimum is at t 0. (a) g(t) t 9t 5 Ê g (t) 6t 9 Ê a critical poit at t ; g ±, icreasig o ˆ _ß, Î decreasig o ˆ ß_ (b) local maimum value of g ˆ 7 7 at t, absolute maimum is at t. (a) h() Ê h () ( ) Ê critical poits at 0, Ê h ± ±, icreasig o ˆ 0 ß, decreasig o ( _ß!) ad ˆ ß _! %Î (b) local maimum value of h ˆ at ; local miimum value of h(0) 0 at 0, o absolute etrema 7. (a) h() 8 Ê h () Š È Š È Ê critical poits at È Ê h, icreasig o Š _ß È ad Š Èß _, decreasig o Š Èß È È È (b) a local maimum is h Š È È at È; local miimum is h Š È È at È, o absolute etrema

21 Sectio. Mootoic Fuctios ad the First Derivative Test 87. (a) f( )) ) ) Ê f ()) 6) ) 6 )( )) Ê critical poits at ) 0, Ê f ± ±,! Î icreasig o ˆ 0 ß, decreasig o ( _ß!) ad ˆ ß _ (b) a local maimum is f ˆ at ), a local miimum is f(0) 0 at ) 0, o absolute etrema. (a) f( )) 6 ) ) Ê f ()) 6 ) Š È ) Š È ) Ê critical poits at ) È Ê f ± ±, icreasig o Š Èß È, decreasig o Š _ß È ad Š Èß _ È È (b) a local maimum is f Š È È at ) È, a local miimum is f Š È % È at ) È, o absolute etrema 5. (a) f(r) r 6r Ê f (r) 9r 6 Ê o critical poits Ê f, icreasig o ( _ß _), ever decreasig (b) o local etrema, o absolute etrema 6. (a) h(r) (r 7) Ê h (r) (r 7) Ê a critical poit at r 7 Ê h ±, icreasig o ( ( _ß 7) ( (ß _), ever decreasig (b) o local etrema, o absolute etrema % 7. (a) f() 8 6 Ê f () 6 ( )( ) Ê critical poits at 0 ad Ê f ± ± ±, icreasig o ( ß!) ad (ß _), decreasig o ( _ß ) ad (!ß )! (b) a local maimum is f(0) 6 at 0, local miima are f a b 0 at, o absolute maimum; absolute miimum is 0 at % 8. (a) g() Ê g () ) ( )( ) Ê critical poits at 0,, Ê g ± ± ±, icreasig o (0ß ) ad (ß _), decreasig o ( _ß 0) ad ( ß )! (b) a local maimum is g() at, local miima are g(0) 0 at 0 ad g() 0 at, o absolute maimum; absolute miimum is 0 at 0, % & 9. (a) H(t) t t Ê H (t) 6t 6t 6t ( t)( t) Ê critical poits at t 0, Ê H ± ± ±, icreasig o ( _ß ) ad (0ß ), decreasig o ( ß 0) ad (ß _)! (b) the local maima are H( ) at t ad H() at t, the local miimum is H(0) 0 at t 0, absolute maimum is at t ; o absolute miimum & % 0. (a) K(t) 5t t Ê K (t) 5t 5t 5t ( t)( t) Ê critical poits at t 0, Ê K ± ± ±, icreasig o ( ß 0) (0ß ), decreasig o ( _ß ) ad ( ß _)! (b) a local maimum is K() 6 at t, a local miimum is K( ) 6 at t, o absolute etrema È È È. (a) f() 6È Ê f () Ê critical poits at ad 0 Ê f ( ±, icreasig o a0, _ b, decreasig o a, 0b 0 (b) a local miimum is fa0b 8, a local ad absolute maimum is fab, absolute miimum of 8 at 0

22 88 Chapter Applicatios of Derivatives È È È. (a) g() Ê g () Ê critical poits at ad 0 Ê g Ð ±, icreasig o 0,, decreasig o, _ 0 a b a b (b) a local miimum is fa0b, a local maimum is fab 6, absolute maimum of 6 at. (a) g() È8 Î Î a8 b Ê g () a8 b ˆ Î a) b ( ) Î ( )( ) ÊŠ È Š È Ê critical poits at, È Ê g ( ± ± Ñ, icreasig o ( ß ), decreasig o È È Š È ß ad Š ß È (b) local maima are g() at ad g Š È 0 at È, local miima are g( ) at ad g Š È 0 at È, absolute maimum is at ; absolute miimum is at. (a) g() È Î Î 5 (5 ) Ê g () (5 ) ˆ Î (5 ) ( ) 5( ) Ê critical poits at È5 0, ad 5 Ê g ± ± Ñ, icreasig o (0ß ), decreasig o ( _ß!) ad (%ß &)! % & (b) a local maimum is g() 6 at, a local miimum is 0 at 0 ad 5, o absolute maimum; absolute miimum is 0 at 0, 5 ( ) a b() ( )( ) () ( ) 5. (a) f() Ê f () Ê critical poits at, Ê f ± )( ±, icreasig o ( _ß ) ad ( ß _), decreasig o (ß ) ad (ß ), discotiuous at (b) a local maimum is f() at, a local miimum is f() 6 at, o absolute etrema a b (6) a b a b a b 6. (a) f() Ê f () Ê a critical poit at 0 Ê f ±, icreasig o ( _ß!) (!ß _), ad ever decreasig! (b) o local etrema, o absolute etrema Î %Î Î Î 8 Î ( ) 7. (a) f() ( 8) 8 Ê f () Ê critical poits at 0, Ê f ± )(, icreasig o ( ß!) (!ß _), decreasig o ( _ß )! (b) o local maimum, a local miimum is f( ) 6 È 7.56 at, o absolute maimum; absolute miimum is 6 È at Î Î &Î Î 5 Î 0 Î 5( ) È 8. (a) g() ( 5) 5 Ê g () Ê critical poits at ad 0 Ê g ± )(, icreasig o ( _ß ) ad (!ß _), decreasig o ( ß!)! (b) local maimum is g( ) È.76 at, a local miimum is g(0) 0 at 0, o absolute etrema Š È7 Š È7 Î (Î Î 7 %Î Î 9. (a) h() a b Ê h () Ê critical poits at 0, È Ê h ± )( ±, icreasig o Š _ß ad ß _, decreasig o 7 È Š 7 È 7 Î È(! Î È( È7 È7 Š ß! ad Š!ß È

23 Sectio. Mootoic Fuctios ad the First Derivative Test 89 È È È7 7(Î È7 È7 7(Î (b) local maimum is h Š. at, the local miimum is h Š., o absolute etrema Î )Î Î &Î Î 8( )( ) È (a) k() a b Ê k () Ê critical poits at 0, Ê k ± )( ±, icreasig o ( ß!) ad (ß _), decreasig o ( _ß )! ad (!ß ) (b) local maimum is k(0) 0 at 0, local miima are k a b at, o absolute maimum; absolute miimum is at. (a) f() Ê f () Ê a critical poit at Ê f ± ] ad fab ad fab 0 a local maimum is at, a local miimum is 0 at. (b) There is a absolute maimum of at ; o absolute miimum. (c). (a) f() ( ) Ê f () ( ) Ê a critical poit at Ê f ± ] ad f( ) 0, f(0)! Ê a local maimum is at 0, a local miimum is 0 at (b) o absolute maimum; absolute miimum is 0 at (c). (a) g() Ê g () ( ) Ê a critical poit at Ê g [ ± ad g(), g() 0 Ê a local maimum is at, a local miimum is g() 0 at (b) o absolute maimum; absolute miimum is 0 at (c). (a) g() 6 9 Êg () 6 ( ) Ê a critical poit at Ê g [ ± ad % g( ), g( ) 0 Ê a local maimum is 0 at, a local miimum is at

24 90 Chapter Applicatios of Derivatives (b) absolute maimum is 0 at ; o absolute miimum (c) 5. (a) f(t) t t Ê f (t) t ( t)( t) Ê critical poits at t Ê f [ ± ± ad f( ) 9, f( ) 6, f() 6 Ê local maima are 9 at t ad 6 at t, a local miimum is 6 at t (b) absolute maimum is 6 at t ; o absolute miimum (c) 6. (a) f(t) t t Ê f (t) t 6t t(t ) Ê critical poits at t 0 ad t Ê f ± ± ] ad f(0) 0, f(), f() 0 Ê a local maimum is 0 at t 0 ad t, a! local miimum is at t (b) absolute maimum is 0 at t 0, ; o absolute miimum (c) 7. (a) h() Ê h () ( ) Ê a critical poit at Ê h [ ± ad! h(0) 0 Ê o local maimum, a local miimum is 0 at 0 (b) o absolute maimum; absolute miimum is 0 at 0 (c)

25 Sectio. Mootoic Fuctios ad the First Derivative Test 9 8. (a) k() Ê k () 6 ( ) Ê a critical poit at Ê k ± ] ad k( ) 0, k(0) Ê a local maimum is at 0, o local miimum! (b) absolute maimum is at 0; o absolute miimum (c) 9. (a) fab È5 Ê f ab Ê critical poits at 0, 5, ad 5 È5 Ê f Ð ± Ñ, fa5b 0, fa0b 5, fa5b 0 Ê local maimum is 5 at 0; local miimum of 0 at ad 5 (b) absolute maimum is 5 at 0; absolute miimum of 0 at 5 ad 5 (c) 50. (a) fab È, Ÿ _Êf ab Êoly critical poit i Ÿ _ is at È Ê f [, fab 0 Ê local miimum of 0 at, o local maimum (b) absolute miimum of 0 at, o absolute maimum (c) 5. (a) ga b, 0 Ÿ Ê g ab Ê oly critical poit i 0 Ÿ is È 0.68 a b È Ê g [ ), g.866 local miimum of at, local l Š È Ê È È6 È6 maimum at 0. È È 6 (b) absolute miimum of at È, o absolute maimum È

26 9 Chapter Applicatios of Derivatives (c) 8 a b 5. (a) ga b, Ÿ Ê g ab Ê oly critical poit i Ÿ is 0 Ê g ( l ], ga0b 0 Ê local miimum of 0 at 0, local maimum of at. 0 (b) absolute miimum of 0 at 0, o absolute maimum (c) 5. (a) fab si, 0 Ÿ Ÿ Ê f ab cos, f () 0 Ê cos 0 Ê critical poits are ad Ê f [ ± ± ], fa0b 0, fˆ, fˆ, f 0 Ê local maima are at ad 0 0 ab at, ad local miima are at ad 0 at 0. (b) The graph of f rises he f 0, falls he f 0, ad has local etreme values here f 0. The fuctio f has a local miimum value at 0 ad, here the values of f chage from egative to positive. The fuctio f has a local maimum value at ad egative., here the values of f chage from positive to 5. (a) fab si cos, 0 Ÿ Ÿ Ê f ab cos si, f () 0 Ê ta Ê critical poits are ad 7 Ê f [ ], f 0, f, f, f local maima are 0 ± ± 7 a b ˆ È ˆ È a b Ê 7 È 7 È at ad at, ad local miima are at ad at 0. (b) The graph of f rises he f 0, falls he f 0, ad has local etreme values here f 0. The fuctio f has a local miimum value at 0 ad 7, here the values of f chage from egative to positive. The fuctio f has a local maimum value at ad egative., here the values of f chage from positive to

27 Sectio. Mootoic Fuctios ad the First Derivative Test (a) fab È cos si, 0 f ab È Ÿ Ÿ Ê si cos, f () 0 Ê ta Ê critical poits are ad 6 Ê f [ ± ± ], fa0b È, fˆ, fˆ, f Ê local a b È 6 6 È maima are at ad at, ad local miima are at ad È at 0. (b) The graph of f rises he f 0, falls he f 0, ad has local etreme values here f 0. The fuctio f has a local miimum value at 0 ad 7 6, here the values of f chage from egative to positive. The fuctio f has a local maimum value at ad 6 egative., here the values of f chage from positive to 56. (a) fab ta, Ê f ab sec, f () 0 Ê sec Ê critical poits are ad Ê f ( ± ± ), fˆ, fˆ Ê local maimum is at, ad local miimum is at. (b) The graph of f rises he f 0, falls he f 0, ad has local etreme values here f 0. The fuctio f has a local miimum value at, here the values of f chage from egative to positive. The fuctio f has a local maimum value at, here the values of f chage from positive to egative. È 57. (a) f() si ˆ Ê f () cos ˆ, f () 0 Ê cos ˆ Ê a critical poit at Ê f [ ± ] ad f(0) 0, f ˆ È, f( ) Ê local maima are 0 at 0 ad! Î at, a local miimum is È at (b) The graph of f rises he f 0, falls he f 0, ad has a local miimum value at the poit here f chages from egative to positive. 58. (a) f() cos cos Ê f () si cos si (si )( cos ) Ê critical poits at, 0, Ê f [ ± ] ad f( ), f(0), f( ) Ê a local maimum is at, a local! miimum is at 0

28 9 Chapter Applicatios of Derivatives (b) The graph of f rises he f 0, falls he f 0, ad has local etreme values here f 0. The fuctio f has a local miimum value at 0, here the values of f chage from egative to positive. 59. (a) f() csc cot Ê f () (csc )( csc )(cot ) acsc b acsc b(cot ) Ê a critical poit at Ê f ( ± ) ad f ˆ 0 Ê o local maimum, a local miimum is 0 at! Î% (b) The graph of f rises he f 0, falls he f 0, ad has a local miimum value at the poit here f 0 ad the values of f chage from egative to positive. The graph of f steepes as f () Ä _. 60. (a) f() sec ta Ê f () (sec )(sec )(ta ) sec a sec b(ta ) Ê a critical poit at Ê f ( ± ) ad f ˆ 0 Ê o local maimum, a local miimum is 0 at Î Î% Î (b) The graph of f rises he f 0, falls he f 0, ad has a local miimum value here f 0 ad the values of f chage from egative to positive. 6. h( )) cos ˆ ) Ê h ()) si ˆ ) Ê h [ ], (!ß ) ad ( ß ) Ê a local maimum is at ) 0,! a local miimum is at ) 6. h( )) 5 si ˆ ) 5 Ê h ()) cos ˆ ) Ê h [ ], (!ß 0) ad ( ß 5) Ê a local maimum is 5 at ), a local! miimum is 0 at ) 0 6. (a) (b) (c) (d)

29 6. (a) (b) Sectio. Mootoic Fuctios ad the First Derivative Test 95 (c) (d) 65. (a) (b) 66. (a) (b) 67. The fuctio fab si ˆ has a ifiite umber of local maima ad miima. The fuctio si has the folloig properties: a) it is cotiuous o a_, _ b; b) it is periodic; ad c) its rage is Ò, Ó. Also, for a 0, the fuctio has a a a rage of Ð_, aó Ò a, _Ñ o,. I particular, if a, the Ÿ or he is i Ò, Ó. This meas si ˆ takes o the values of ad ifiitely may times i times o the iterval Ò, Ó, hich occur he,, 5,....,,,.... Thus si Ê ˆ 5 has ifiitely may local maima ad miima i the iterval Ò, Ó. O the iterval Ò0, Ó, Ÿ siˆ Ÿ ad sice 0 e have Ÿ siˆ Ÿ. O the iterval Ò, 0 Ó, Ÿ siˆ Ÿ ad sice 0 e have siˆ. Thus fa b is bouded by the lies y ad y. Sice si ˆ oscillates betee ad ifiitely may times o Ò, Óthe f ill oscillate betee y ad y ifiitely may times. Thus f has ifiitely may local maima ad miima. We ca see from the graph (ad verify later i Chapter 7) that lim si ˆ ad lim si ˆ. The graph of f does ot have ay absolute Ä_ maima., but it does have to absolute miima. Ä_

30 96 Chapter Applicatios of Derivatives 68. f() a b c a ˆ b b b b c a c a ˆ b Š b ac, a parabola hose a a a a a a b ˆ b ˆ b a a a b b b a a a verte is at. Thus he a 0, f is icreasig o ß _ ad decreasig o _ß ; he a 0, f is icreasig o ˆ _ß ad decreasig o ˆ ß _. Also ote that f () a b a ˆ Ê for a 0, f ; for a 0, f ±. bîa bîa 69. f() a b Ê f ab a b, fab Ê a b, f ab 0 Ê a b 0 Ê a, b Ê f() 70. f() a b c d Êf ab a b c, fa0b 0 Êd 0, fab Ê a b c d, f a0b 0 Ê c 0, f ab 0 Ê a b c 0 Ê a, b, c 0, d 0 Ê f(). CONCAVITY AND CURVE SKETCHING. y Ê y ( )( ) Ê y ˆ. The graph is risig o ( _ß ) ad (ß _), fallig o ( ß ), cocave up o ˆ ß _ ad cocave do o ˆ _ß. Cosequetly, a local maimum is at, a local miimum is at, ad ˆ ß is a poit of iflectio. %. y Ê y a b ( )( ) Ê y Š È Š È. The graph is risig o ( ß 0) ad (ß _), fallig o ( _ß ) ad (!ß ), cocave up o Š _ß ad Š ß _ ad È È È È cocave do o Š ß. Cosequetly, a local maimum is at 0, local miima are 0 at, ad 6 6 È 9 È 9 Š ß ad Š ß are poits of iflectio. Î Î Î. y a b Ê y ˆ ˆ a b () a b, y ) ( ± )(! Ê the graph is risig o ( ß! ) ad (ß_), fallig o ( _ß ) ad (!ß) Ê a local maimum is at 0, local Î %Î miima are 0 at ; y a b () ˆ a b (), Éa b % y ± ) ( )( ± Ê the graph is cocave up o Š _ß È ad Š È ß _, cocave È È do o Š ÈßÈ Ê poits of iflectio at Š Èß % È % 9 Î Î 9 Î Î. y a 7 b Ê y a 7b () a b, y ± )( ±! 7 Ê the graph is risig o ( _ß ) ad (ß_), fallig o ( ß ) Ê a local maimum is at, a local 7 7 &Î Î Î &Î &Î miimum is at ; y a b a b, y )( Ê the graph is cocave up o (!ß _), cocave do o ( _ß!) Ê a poit of iflectio at (!ß!).! 5. y si Ê y cos, y [ ± ± ] Ê the graph is risig o ˆ ß, fallig Î Î Î Î È È È È o ˆ ad ˆ ß ß Ê local maima are at ad at, local miima are at ad at ; y si, y [ ± ± ± ] Ê the Î Î! Î Î ad ˆ ß, cocave do o ˆ ß ad ˆ!ß graph is cocave up o ˆ ß! Ê poits of iflectio at ˆ ß, (!ß!), ad ˆ ß 7

31 Sectio. Cocavity ad Curve Sketchig y ta Ê y sec, y ( ± ± ) Ê the graph is risig o ˆ ß ad Î Î Î Î ˆ, fallig o ˆ a local maimum is È at, a local miimum is È ß ß Ê at ; y (sec )(sec )(ta ) asec b(ta ), y ( ± ) Ê the graph is cocave up o ˆ 0 ß, Î! Î cocave do o ˆ ß0 Ê a poit of iflectio at (0ß0) 7. If 0, si kk si ad if 0, si kk si ( ) si. From the sketch the graph is risig o ˆ, ˆ ad ˆ ß!ß ß, fallig o ˆ ß, ˆ ad ˆ ß! ß ; local miima are at ad 0 at! ; local maima are at ad 0 at ; cocave up o ( ß) ad ( ß ), ad cocave do o ( ß 0) ad (!ß ) Ê poits of iflectio are ( ß! ) ad ( ß! ) 8. y cos È Ê y si È, y [ ± ± ± ] Ê risig o Î% Î% & Î% Î È ˆ ad ˆ 5, fallig o ˆ ad ˆ 5 ß ß ß ß Ê local maima are È at, È È È 5È at ad at, ad local miima are È at ad È 5 at ; y cos, y [ ± ± ] Ê cocave up o ˆ ß ad ˆ ß, cocave do o Î Î Î È È ˆ ß Ê poits of iflectio at Š ß ad Š ß 9. Whe y, the y ( ) ad y. The curve rises o (ß_) ad falls o ( _ß ). At there is a miimum. Sice y 0, the curve is cocave up for all. 0. Whe y, the y ( ) ad y. The curve rises o ( _ß) ad falls o ( ß_ ). At there is a maimum. Sice y 0, the curve is cocave do for all.

32 98 Chapter Applicatios of Derivatives. Whe y, the y ( )( ) ad y 6. The curve rises o ( _ß ) (ß _) ad falls o ( ß). At there is a local maimum ad at a local miimum. The curve is cocave do o ( _ß 0) ad cocave up o (!ß _). There is a poit of iflectio at 0.. Whe y (6 ), the y (6 ) () ( )( ) ad y ( ) ( ) ( ). The curve rises o ( _ß ) ( ß_ ) ad falls o (ß ). The curve is cocave do o ( _ß ) ad cocave up o (ß _). At there is a poit of iflectio.. Whe y 6, the y 6 6( ) ad y ( ). The curve rises o (!ß ) ad falls o ( _ß 0) ad (ß _). At 0 there is a local miimum ad at a local maimum. The curve is cocave up o ( _ß ) ad cocave do o (ß _). At there is a poit of iflectio.. Whe y 9 6, the y 9 ( )( B) ad y 66( ). The curve rises o ( ß ) ad falls o ( _ß ) ad ( ß _). At there is a local maimum ad at a local miimum. The curve is cocave up o ( _ß ) ad cocave do o ( ß _). At there is a poit of iflectio. 5. Whe y ( ), the y ( ) ad y 6( ). The curve ever falls ad there are o local etrema. The curve is cocave do o ( _ß ) ad cocave up o (ß _). At there is a poit of iflectio.

33 Sectio. Cocavity ad Curve Sketchig Whe y ( ), the y ( ) ad y 6( ). The curve ever rises ad there are o local etrema. The curve is cocave up o ( _ß ) ad cocave do o ( ß _). At there is a poit of iflectio. % 7. Whe y, the y ( )( ) ad y Š È Š È. The curve rises o ( ß!) ad (ß _) ad falls o ( _ß ) ad (!ß ). At there are local miima ad at 0 a local maimum. The curve is cocave up o Š _ß È Š ß_ ad cocave do o Š ß. At there are poits of iflectio. ad È È È È % 8. Whe y 6, the y Š È Š È ad y ( )( ). The curve rises o Š _ßÈ ad Š!ß È, ad falls o Š È ß! ad Š È ß _. At Èthere are local maima ad at 0 a local miimum. The curve is cocave up o ( ß ) ad cocave do o ( _ß ) ad (ß _). At there are poits of iflectio. % 9. Whe y, the y ( ) ad y ( ). The curve rises o a_ß b ad falls o aß _ b. At there is a local maimum, but there is o local miimum. The graph is cocave up o a!ß b ad cocave do o a_ß! b ad aß _ b. There are iflectio poits at 0 ad. % 0. Whe y, the y 6 ( ) ad y ( ). The curve rises o ˆ ad falls o ˆ ß ß. There is a local miimum at, but o local maimum. The curve is cocave up o ( _ß ) ad (!ß _), ad cocave do o ( ß0). At ad 0 there are poits of iflectio.

34 00 Chapter Applicatios of Derivatives & % %. Whe y 5, the y ( ) ad y ( ). The curve rises o ( _ß! ) ad (%ß_), ad falls o (!ß%). There is a local maimum at 0, ad a local miimum at. The curve is cocave do o ( _ß ) ad cocave up o ( ß_ ). At there is a poit of iflectio. % % , ad y ( ). The curve is risig. Whe y ˆ 5, the y ˆ 5 () ˆ 5 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ o ( _ß ) ad (0 ß_ ), ad fallig o (ß0). There is a local maimum at ad a local miimum at 0. The curve is cocave do o ( _ß %) ad cocave up o (%ß _). At there is a poit of iflectio.. Whe y si, the y cos ad y si. The curve rises o (!ß ). At 0 there is a local ad absolute miimum ad at there is a local ad absolute maimum. The curve is cocave do o (!ß ) ad cocave up o ( ß ). At there is a poit of iflectio.. Whe y si, the y cos ad y si. The curve rises o (!ß ). At 0 there is a local ad absolute miimum ad at there is a local ad absolute maimum. The curve is cocave up o (!ß ) ad cocave do o ( ß ). At there is a poit of iflectio. 5. Whe y È cos, the y È si ad y cos. The curve is icreasig o ˆ!ß ad ˆ 5, ad decreasig o ˆ 5 ß ß. At 0 there is a local ad absolute miimum, at there is a local maimum, at 5 there is a local miimum, ad ad at there is a local ad absolute maimum. The curve is cocave up o ˆ ad ˆ!ß ß, ad is cocave do o ˆ ß. At ad there are poits of iflectio.

35 Sectio. Cocavity ad Curve Sketchig 0 6. Whe y ta, the y sec ad y sec ta. The curve is icreasig o ˆ 6ß 6, ad decreasig o ˆ ad ˆ ß ß 6 6. At 6 there is a local miimum, at 6 there is a local maimum,there are o absolute maima or absolute miima. The curve is cocave up o ˆ 0 ß, ad is cocave do oˆ 0 ß. At 0 there is a poit of iflectio. 7. Whe y si cos, the y si cos cos ad y si. The curve is icreasig o ˆ 0 ß ad ˆ, ad decreasig o ˆ ß ß. At 0 there is a local miimum, at there is a local ad absolute maimum, at there is a local ad absolute miimum, ad at there is a local maimum. The curve is cocave do o ˆ 0 ß, ad is cocave up o ˆ ß. At there is a poit of iflectio. 8. Whe y cos È si, the y si Ècos ad y cos È si. The curve is icreasig o ˆ 0 ad ˆ ß ß, ad decreasig o ˆ ß. At 0 there is a local miimum, at there is a local ad absolute maimum, at there is a local ad absolute miimum, ad at there is a local maimum. The curve is cocave do o ˆ 5 0 ad ˆ ß ß 6, ad is cocave up o ˆ 5 5 ß. At ad there are poits of iflectio Î& %Î& *Î& Whe y, the y ad y. The curve rises o ( _ß _) ad there are o etrema. The curve is cocave up o ( _ß!) ad cocave do o (!ß _). At 0 there is a poit of iflectio. Î& Î& 6 )Î& 0. Whe y, the y 5 ad y 5. The curve is risig o (0 ß_ ) ad fallig o ( _ß! ). At 0 there is a local ad absolute miimum. There is o local or absolute maimum. The curve is cocave do o ( _ß!) ad (!ß _). There are o poits of iflectio, but a cusp eists at 0.

36 0 Chapter Applicatios of Derivatives È a Î a 5 b. Whe y, the y ad y Î. The curve is icreasig o a_ß _ b. There are o local or absolute etrema. The curve is cocave up o a_ß! b ad cocave do o a!ß _ b. At 0 there is a poit of iflectio. È a b a b È 7 a b a b ß ß. Whe y, the y ad y. The curve is decreasig o ˆ ad ˆ. There are o absolute etrrema, there is a local maimum at ad a local miimum at. The curve is cocave up o aß0.9 bad ˆ 0.69, ad cocave do o ˆ ß 0.9 ß ad a0.69ß b. At 0.9 ad 0.69 there are poits of iflectio. Î Î. Whe y, the y ad %Î y. The curve is risig o ( _ß!) ad (ß _), ad fallig o (!ß ). There is a local maimum at 0 ad a local miimum at. The curve is cocave up o ( _ß!) ad (!ß _). There are o poits of iflectio, but a cusp eists at 0. Î& Î&. Whe y 5, the y ˆ Î& 6 )Î& ad y 5. The curve is risig o (0ß) ad fallig o ( _ß 0) ad (ß _). There is a local miimum at 0 ad a local maimum at. The curve is cocave do o ( _ß!) ad (!ß _). There are o poits of iflectio, but a cusp eists at 0. Î 5. Whe y ˆ 5 5 Î &Î, the 5 Î 5 Î 5 Î y ( ) ad 5 %Î 0 Î 5 %Î y ( ). The curve is risig o (!ß ) ad fallig o ( _ß!) ad (ß _). There is a local miimum at 0 ad a local maimum at. The curve is cocave up o ˆ _ß ad cocave do o ˆ ß! ad (0 ß_ ). There is a poit of iflectio at ad a cusp at 0.

37 Sectio. Cocavity ad Curve Sketchig 0 Î &Î Î 6. Whe y ( 5) 5, the 5 Î 0 Î 5 Î y ( ) ad 0 Î 0 %Î 0 %Î y ( ). The curve is risig o ( _ß! ) ad (ß_), ad fallig o (!ß). There is a local miimum at ad a local maimum at 0. The curve is cocave up o ( ß 0) ad (!ß _), ad cocave do o ( _ß ). There is a poit of iflectio at ad a cusp at Whe y È8 a8 b Î, the Î Î Î ( )( ) ÊŠ Š È y a8 b () ˆ a8 b ( ) a8 b a8 b ad y ˆ a8 b ( ) a8 ba8 b ( ) a b Éa8 b. The curve is risig o ( ß ), ad fallig o Š È ß ad Š ßÈ. There are local miima ad È, ad local maima at È ad. The curve is cocave up o Š È ß! ad cocave do o Š!ß È. There is a poit of iflectio at 0. Î 8. Whe y a b, the y ˆ a b ( ) È ÊŠ È Š È ad Î y ( ) a b ( ) ˆ a b ( ) 6( )( ) ÊŠ È Š È. The curve is risig o Î Î Š È ß! ad fallig o Š!ßÈ. There is a local maimum at 0, ad local miima at È. The curve is cocave do o ( ß ) ad cocave up o Š È ß ad Š ßÈ. There are poits of iflectio at. È 6 6 a6 Î b 9. Whe y 6, the y ad È y. The curve is risig o aß0 bad fallig o a0ß b. There is a local ad absolute maimum at 0 ad local ad absolute miima at ad. The curve is cocave do o aß b. There are o poits of iflectio.

38 0 Chapter Applicatios of Derivatives 0. Whe y, the y ad y. The curve is fallig o a_ß0b ad a0ß b, ad risig o a ß_ b. There is a local miimum at. There are o absolute maima or absolute miima. The curve is cocave up o Š È _ß ad a 0, _ b, ad cocave do o Š È, 0. There is a poit of iflectio at È. ( ) a b( ) () ( )( ) ( ) ad ( )( ) a b ( ) ( ) % ( ). Whe y, the y y. The curve is risig o ( _ß ) ad ( ß _), ad fallig o (ß ) ad (ß ). There is a local maimum at ad a local miimum at. The curve is cocave do o ( _ß ) ad cocave up o (ß _). There are o poits of iflectio because is ot i the domai. È Î a b a 5 b. Whe y, the y ad y Î. The curve is risg o a_ß b, a, 0 b, ad a0 ß_ b. There is are o local or absolute etrema. The curve is cocave up o a_ß bad a0, _ b, ad cocave do o a, 0 b. There are poits of iflectio at ad ˆ a b 6ˆ. Whe y, the y ad y. The curve is fallg o _ß a b a b ad a ß_ b, ad is risig o aß b. There is a local ad absolute miimum at, ad a local ad absolute maimum at. The curve is cocave do o Š _ß È ad Š 0, È, ad cocave up o Š È, 0 ad Š È, _. There are poits of iflectio at È, 0, ad È. y 0 is a horizotal asymptote a 5b 00 ˆ a 5b. Whe y, the y ad y. The curve is risg o a_ß0 b, ad is fallig o a0 ß_ b. There is a local ad absolute maimum at 0, ad there is o local or aboslute miimum. The curve is cocave up o Š È ad Š È,, ad cocave do o Š È, 0 ad Š 0, È _ß _. There are poits of iflectio at È È ad. There is a horizotal asymptote of y 0.

39 Sectio. Cocavity ad Curve Sketchig 05, kk 5. Whe y k k, the, kk, kk, kk y ad y. The, k k, kk curve rises o ( ß!) ad (ß _) ad falls o ( _ß ) ad (0ß). There is a local maimum at 0 ad local miima at. The curve is cocave up o ( _ß) ad (ß _), ad cocave do o ( ß ). There are o poits of iflectio because y is ot differetiable at (so there is o taget lie at those poits). Ú, 0 6. Whe y k k Û, 0 Ÿ Ÿ, the Ü, Ú, 0 Ú, 0 y Û, 0, ad y Û, 0. Ü, Ü, The curve is risig o (!ß ) ad (ß _), ad fallig o ( _ß!) ad (ß ). There is a local maimum at ad local miima at 0 ad. The curve is cocave up o ( _ß! ) ad (ß_), ad cocave do o (!ß). There are o poits of iflectio because y is ot differetiable at 0 ad (so there is o taget at those poits). È, 0 7. Whe y Èk k, the È, 0 Ú cî, 0, 0 È y Û ad y., 0 cî ( ) Ü È, 0 Sice lim y ad lim y there is a Ä! c Ä! b cusp at 0. There is a local miimum at 0, but o local maimum. The curve is cocave do o ( _ß! ) ad (!ß _). There are o poits of iflectio. È, 8. Whe y Èk k, the È, Ú cî, ( ) È, y Û ad y., cî ( ) Ü È, Sice lim y ad lim y there is a cusp Ä c Ä b at. There is a local miimum at, but o local maimum. The curve is cocave do o ( _ß %) ad (%ß _). There are o poits of iflectio. 9. y ( )( ), y ± ± Ê risig o ( ß ), fallig o ( _ß ) ad (ß _) Ê there is a local maimum at ad a local miimum at ; y, y ± Î Ê cocave up o ˆ _ß, cocave do o ˆ ß_ Ê a poit of iflectio at

AP Calculus BC Review Applications of Derivatives (Chapter 4) and f,

AP Calculus BC Review Applications of Derivatives (Chapter 4) and f, AP alculus B Review Applicatios of Derivatives (hapter ) Thigs to Kow ad Be Able to Do Defiitios of the followig i terms of derivatives, ad how to fid them: critical poit, global miima/maima, local (relative)

More information

Chapter 4 Practice Exercises 303

Chapter 4 Practice Exercises 303 Chapter Practice Eercises 303 0 3 3 5 5 53. y 5. y 55. y 56. y 30 Chapter Applicatios of Derivatives % 57. y 58. y 3 3 59. y 60. y 6. lim lim Ä Ä a ac a a b bc b 6. lim b lim Ä Ä & 63. lim Ä ta ta! ta

More information

274 Chapter 4 Applications of Derivatives

274 Chapter 4 Applications of Derivatives 274 Chapter 4 Applicatios of Derivatives Ê % a%) Ê * %) Ê %) Ê. We discard as a etraeous solutio, leavig. Sice D a for % ad D a for %, the critical poit correspods to the miimum distace. The miimum distace

More information

Maximum and Minimum Values

Maximum and Minimum Values Sec 4.1 Maimum ad Miimum Values A. Absolute Maimum or Miimum / Etreme Values A fuctio Similarly, f has a Absolute Maimum at c if c f f has a Absolute Miimum at c if c f f for every poit i the domai. f

More information

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is Calculus BC Fial Review Name: Revised 7 EXAM Date: Tuesday, May 9 Remiders:. Put ew batteries i your calculator. Make sure your calculator is i RADIAN mode.. Get a good ight s sleep. Eat breakfast. Brig:

More information

236 Chapter 4 Applications of Derivatives

236 Chapter 4 Applications of Derivatives 26 Chapter Applications of Derivatives Î$ &Î$ Î$ 5 Î$ 0 "Î$ 5( 2) $È 26. (a) g() œ ( 5) œ 5 Ê g () œ œ Ê critical points at œ 2 and œ 0 Ê g œ ± )(, increasing on ( _ß 2) and (!ß _), decreasing on ( 2 ß!)!

More information

The type of limit that is used to find TANGENTS and VELOCITIES gives rise to the central idea in DIFFERENTIAL CALCULUS, the DERIVATIVE.

The type of limit that is used to find TANGENTS and VELOCITIES gives rise to the central idea in DIFFERENTIAL CALCULUS, the DERIVATIVE. NOTES : LIMITS AND DERIVATIVES Name: Date: Period: Iitial: LESSON.1 THE TANGENT AND VELOCITY PROBLEMS Pre-Calculus Mathematics Limit Process Calculus The type of it that is used to fid TANGENTS ad VELOCITIES

More information

Continuous Functions

Continuous Functions Cotiuous Fuctios Q What does it mea for a fuctio to be cotiuous at a poit? Aswer- I mathematics, we have a defiitio that cosists of three cocepts that are liked i a special way Cosider the followig defiitio

More information

MTH Assignment 1 : Real Numbers, Sequences

MTH Assignment 1 : Real Numbers, Sequences MTH -26 Assigmet : Real Numbers, Sequeces. Fid the supremum of the set { m m+ : N, m Z}. 2. Let A be a o-empty subset of R ad α R. Show that α = supa if ad oly if α is ot a upper boud of A but α + is a

More information

CHAPTER 4 Integration

CHAPTER 4 Integration CHAPTER Itegratio Sectio. Atierivatives a Iefiite Itegratio......... 77 Sectio. Area............................. 8 Sectio. Riema Sums a Defiite Itegrals........... 88 Sectio. The Fuametal Theorem of Calculus..........

More information

CHAPTER 4 Integration

CHAPTER 4 Integration CHAPTER Itegratio Sectio. Atierivatives a Iefiite Itegratio......... Sectio. Area............................. Sectio. Riema Sums a Defiite Itegrals........... Sectio. The Fuametal Theorem of Calculus..........

More information

PRACTICE FINAL/STUDY GUIDE SOLUTIONS

PRACTICE FINAL/STUDY GUIDE SOLUTIONS Last edited December 9, 03 at 4:33pm) Feel free to sed me ay feedback, icludig commets, typos, ad mathematical errors Problem Give the precise meaig of the followig statemets i) a f) L ii) a + f) L iii)

More information

y = f x x 1. If f x = e 2x tan -1 x, then f 1 = e 2 2 e 2 p C e 2 D e 2 p+1 4

y = f x x 1. If f x = e 2x tan -1 x, then f 1 = e 2 2 e 2 p C e 2 D e 2 p+1 4 . If f = e ta -, the f = e e p e e p e p+ 4 f = e ta -, so f = e ta - + e, so + f = e p + e = e p + e or f = e p + 4. The slope of the lie taget to the curve - + = at the poit, - is - 5 Differetiate -

More information

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0,

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0, Math Activity 9( Due with Fial Eam) Usig first ad secod Taylor polyomials with remaider, show that for, 8 Usig a secod Taylor polyomial with remaider, fid the best costat C so that for, C 9 The th Derivative

More information

(a) (b) All real numbers. (c) All real numbers. (d) None. to show the. (a) 3. (b) [ 7, 1) (c) ( 7, 1) (d) At x = 7. (a) (b)

(a) (b) All real numbers. (c) All real numbers. (d) None. to show the. (a) 3. (b) [ 7, 1) (c) ( 7, 1) (d) At x = 7. (a) (b) Chapter 0 Review 597. E; a ( + )( + ) + + S S + S + + + + + + S lim + l. D; a diverges by the Itegral l k Test sice d lim [(l ) ], so k l ( ) does ot coverge absolutely. But it coverges by the Alteratig

More information

Math 21B-B - Homework Set 2

Math 21B-B - Homework Set 2 Math B-B - Homework Set Sectio 5.:. a) lim P k= c k c k ) x k, where P is a partitio of [, 5. x x ) dx b) lim P k= 4 ck x k, where P is a partitio of [,. 4 x dx c) lim P k= ta c k ) x k, where P is a partitio

More information

MATHEMATICS. 61. The differential equation representing the family of curves where c is a positive parameter, is of

MATHEMATICS. 61. The differential equation representing the family of curves where c is a positive parameter, is of MATHEMATICS 6 The differetial equatio represetig the family of curves where c is a positive parameter, is of Order Order Degree (d) Degree (a,c) Give curve is y c ( c) Differetiate wrt, y c c y Hece differetial

More information

CALCULUS BASIC SUMMER REVIEW

CALCULUS BASIC SUMMER REVIEW CALCULUS BASIC SUMMER REVIEW NAME rise y y y Slope of a o vertical lie: m ru Poit Slope Equatio: y y m( ) The slope is m ad a poit o your lie is, ). ( y Slope-Itercept Equatio: y m b slope= m y-itercept=

More information

Honors Calculus Homework 13 Solutions, due 12/8/5

Honors Calculus Homework 13 Solutions, due 12/8/5 Hoors Calculus Homework Solutios, due /8/5 Questio Let a regio R i the plae be bouded by the curves y = 5 ad = 5y y. Sketch the regio R. The two curves meet where both equatios hold at oce, so where: y

More information

Power Series: A power series about the center, x = 0, is a function of x of the form

Power Series: A power series about the center, x = 0, is a function of x of the form You are familiar with polyomial fuctios, polyomial that has ifiitely may terms. 2 p ( ) a0 a a 2 a. A power series is just a Power Series: A power series about the ceter, = 0, is a fuctio of of the form

More information

180 Chapter 3 Applications of Derivatives

180 Chapter 3 Applications of Derivatives 80 Chapter Applicatios of Derivatives. Let represet the legth of the rectagle i meters (! % ) The the idth is % ad the area is Aab a%b %. Sice A ab %, the critical poit occurs at. Sice, A a b! for! ad

More information

' ' Š # # ' " # # # Section 5.3 The Definite Integral 275. œ x dx 1 dx x dx 1 dx. œ " # œ x dx 1 dx œ (3 1) œ ( 1 2) œ (see parts (a) and (b) above).

' ' Š # # '  # # # Section 5.3 The Definite Integral 275. œ x dx 1 dx x dx 1 dx. œ  # œ x dx 1 dx œ (3 1) œ ( 1 2) œ (see parts (a) and (b) above). Sectio. The Defiite Itegral 7 ( ) t dt t dt t dt t dt 6. av(f) Š at t dt Š ( ) ( ) Š Š. ( ) ( ) d ( ) d 6. (a) av(g) Š akk d d d d d ( ) Š ( ( )) Š ( ). () av(g) ˆ akk d ( ) d Š d d ( ). ( ) k k (c) av(g)

More information

Name: Math 10550, Final Exam: December 15, 2007

Name: Math 10550, Final Exam: December 15, 2007 Math 55, Fial Exam: December 5, 7 Name: Be sure that you have all pages of the test. No calculators are to be used. The exam lasts for two hours. Whe told to begi, remove this aswer sheet ad keep it uder

More information

Unit 4: Polynomial and Rational Functions

Unit 4: Polynomial and Rational Functions 48 Uit 4: Polyomial ad Ratioal Fuctios Polyomial Fuctios A polyomial fuctio y px ( ) is a fuctio of the form p( x) ax + a x + a x +... + ax + ax+ a 1 1 1 0 where a, a 1,..., a, a1, a0are real costats ad

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Math PracTest Be sure to review Lab (ad all labs) There are lots of good questios o it a) State the Mea Value Theorem ad draw a graph that illustrates b) Name a importat theorem where the Mea Value Theorem

More information

MATH 1A FINAL (7:00 PM VERSION) SOLUTION. (Last edited December 25, 2013 at 9:14pm.)

MATH 1A FINAL (7:00 PM VERSION) SOLUTION. (Last edited December 25, 2013 at 9:14pm.) MATH A FINAL (7: PM VERSION) SOLUTION (Last edited December 5, 3 at 9:4pm.) Problem. (i) Give the precise defiitio of the defiite itegral usig Riema sums. (ii) Write a epressio for the defiite itegral

More information

Math 105: Review for Final Exam, Part II - SOLUTIONS

Math 105: Review for Final Exam, Part II - SOLUTIONS Math 5: Review for Fial Exam, Part II - SOLUTIONS. Cosider the fuctio f(x) = x 3 lx o the iterval [/e, e ]. (a) Fid the x- ad y-coordiates of ay ad all local extrema ad classify each as a local maximum

More information

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B) SCORING GUIDELINES (Form B) Questio 5 Let f be a fuctio defied o the closed iterval [,7]. The graph of f, cosistig of four lie segmets, is show above. Let g be the fuctio give by g ftdt. (a) Fid g (, )

More information

Lesson 10: Limits and Continuity

Lesson 10: Limits and Continuity www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals

More information

Mathematics Extension 1

Mathematics Extension 1 016 Bored of Studies Trial Eamiatios Mathematics Etesio 1 3 rd ctober 016 Geeral Istructios Total Marks 70 Readig time 5 miutes Workig time hours Write usig black or blue pe Black pe is preferred Board-approved

More information

Curve Sketching Handout #5 Topic Interpretation Rational Functions

Curve Sketching Handout #5 Topic Interpretation Rational Functions Curve Sketchig Hadout #5 Topic Iterpretatio Ratioal Fuctios A ratioal fuctio is a fuctio f that is a quotiet of two polyomials. I other words, p ( ) ( ) f is a ratioal fuctio if p ( ) ad q ( ) are polyomials

More information

Taylor Series (BC Only)

Taylor Series (BC Only) Studet Study Sessio Taylor Series (BC Oly) Taylor series provide a way to fid a polyomial look-alike to a o-polyomial fuctio. This is doe by a specific formula show below (which should be memorized): Taylor

More information

Math 128A: Homework 1 Solutions

Math 128A: Homework 1 Solutions Math 8A: Homework Solutios Due: Jue. Determie the limits of the followig sequeces as. a) a = +. lim a + = lim =. b) a = + ). c) a = si4 +6) +. lim a = lim = lim + ) [ + ) ] = [ e ] = e 6. Observe that

More information

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0.

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0. THE SOLUTION OF NONLINEAR EQUATIONS f( ) = 0. Noliear Equatio Solvers Bracketig. Graphical. Aalytical Ope Methods Bisectio False Positio (Regula-Falsi) Fied poit iteratio Newto Raphso Secat The root of

More information

1988 AP Calculus BC: Section I

1988 AP Calculus BC: Section I 988 AP Calculus BC: Sectio I 9 Miutes No Calculator Notes: () I this eamiatio, l deotes the atural logarithm of (that is, logarithm to the base e). () Uless otherwise specified, the domai of a fuctio f

More information

CALCULUS AB SECTION I, Part A Time 60 minutes Number of questions 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM.

CALCULUS AB SECTION I, Part A Time 60 minutes Number of questions 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM. AP Calculus AB Portfolio Project Multiple Choice Practice Name: CALCULUS AB SECTION I, Part A Time 60 miutes Number of questios 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM. Directios: Solve

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

CHAPTER 5 INTEGRATION

CHAPTER 5 INTEGRATION CHAPTER 5 INTEGRATION 5. AREA AND ESTIMATING WITH FINITE SUMS. fa Sice f is icreasig o Òß Ó, we use left edpoits to otai lower sums ad right edpoits to otai upper sums. i ) i i ( ( i ˆ i Š ˆ ˆ ˆ ) i i

More information

Student s Printed Name:

Student s Printed Name: Studet s Prited Name: Istructor: XID: C Sectio: No questios will be aswered durig this eam. If you cosider a questio to be ambiguous, state your assumptios i the margi ad do the best you ca to provide

More information

VICTORIA JUNIOR COLLEGE Preliminary Examination. Paper 1 September 2015

VICTORIA JUNIOR COLLEGE Preliminary Examination. Paper 1 September 2015 VICTORIA JUNIOR COLLEGE Prelimiary Eamiatio MATHEMATICS (Higher ) 70/0 Paper September 05 Additioal Materials: Aswer Paper Graph Paper List of Formulae (MF5) 3 hours READ THESE INSTRUCTIONS FIRST Write

More information

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations Chapter The Solutio of Numerical Algebraic ad Trascedetal Equatios Itroductio I this chapter we shall discuss some umerical methods for solvig algebraic ad trascedetal equatios. The equatio f( is said

More information

f t dt. Write the third-degree Taylor polynomial for G

f t dt. Write the third-degree Taylor polynomial for G AP Calculus BC Homework - Chapter 8B Taylor, Maclauri, ad Power Series # Taylor & Maclauri Polyomials Critical Thikig Joural: (CTJ: 5 pts.) Discuss the followig questios i a paragraph: What does it mea

More information

Calculus I Practice Test Problems for Chapter 5 Page 1 of 9

Calculus I Practice Test Problems for Chapter 5 Page 1 of 9 Calculus I Practice Test Problems for Chapter 5 Page of 9 This is a set of practice test problems for Chapter 5. This is i o way a iclusive set of problems there ca be other types of problems o the actual

More information

Quiz. Use either the RATIO or ROOT TEST to determine whether the series is convergent or not.

Quiz. Use either the RATIO or ROOT TEST to determine whether the series is convergent or not. Quiz. Use either the RATIO or ROOT TEST to determie whether the series is coverget or ot. e .6 POWER SERIES Defiitio. A power series i about is a series of the form c 0 c a c a... c a... a 0 c a where

More information

Calculus 2 Test File Fall 2013

Calculus 2 Test File Fall 2013 Calculus Test File Fall 013 Test #1 1.) Without usig your calculator, fid the eact area betwee the curves f() = 4 - ad g() = si(), -1 < < 1..) Cosider the followig solid. Triagle ABC is perpedicular to

More information

+ {JEE Advace 03} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks: 00. If A (α, β) = (a) A( α, β) = A( α, β) (c) Adj (A ( α, β)) = Sol : We

More information

(Figure 2.9), we observe x. and we write. (b) as x, x 1. and we write. We say that the line y 0 is a horizontal asymptote of the graph of f.

(Figure 2.9), we observe x. and we write. (b) as x, x 1. and we write. We say that the line y 0 is a horizontal asymptote of the graph of f. The symbol for ifiity ( ) does ot represet a real umber. We use to describe the behavior of a fuctio whe the values i its domai or rage outgrow all fiite bouds. For eample, whe we say the limit of f as

More information

CHAPTER 1 SEQUENCES AND INFINITE SERIES

CHAPTER 1 SEQUENCES AND INFINITE SERIES CHAPTER SEQUENCES AND INFINITE SERIES SEQUENCES AND INFINITE SERIES (0 meetigs) Sequeces ad limit of a sequece Mootoic ad bouded sequece Ifiite series of costat terms Ifiite series of positive terms Alteratig

More information

MA1200 Exercise for Chapter 7 Techniques of Differentiation Solutions. First Principle 1. a) To simplify the calculation, note. Then. lim h.

MA1200 Exercise for Chapter 7 Techniques of Differentiation Solutions. First Principle 1. a) To simplify the calculation, note. Then. lim h. MA00 Eercise for Chapter 7 Techiques of Differetiatio Solutios First Priciple a) To simplify the calculatio, ote The b) ( h) lim h 0 h lim h 0 h[ ( h) ( h) h ( h) ] f '( ) Product/Quotiet/Chai Rules a)

More information

Castiel, Supernatural, Season 6, Episode 18

Castiel, Supernatural, Season 6, Episode 18 13 Differetial Equatios the aswer to your questio ca best be epressed as a series of partial differetial equatios... Castiel, Superatural, Seaso 6, Episode 18 A differetial equatio is a mathematical equatio

More information

MATHEMATICS Code No. 13 INSTRUCTIONS

MATHEMATICS Code No. 13 INSTRUCTIONS DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO COMBINED COMPETITIVE (PRELIMINARY) EXAMINATION, 0 Serial No. MATHEMATICS Code No. A Time Allowed : Two Hours Maimum Marks : 00 INSTRUCTIONS. IMMEDIATELY

More information

n 3 ln n n ln n is convergent by p-series for p = 2 > 1. n2 Therefore we can apply Limit Comparison Test to determine lutely convergent.

n 3 ln n n ln n is convergent by p-series for p = 2 > 1. n2 Therefore we can apply Limit Comparison Test to determine lutely convergent. 06 微甲 0-04 06-0 班期中考解答和評分標準. ( poits) Determie whether the series is absolutely coverget, coditioally coverget, or diverget. Please state the tests which you use. (a) ( poits) (b) ( poits) (c) ( poits)

More information

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial.

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial. Taylor Polyomials ad Taylor Series It is ofte useful to approximate complicated fuctios usig simpler oes We cosider the task of approximatig a fuctio by a polyomial If f is at least -times differetiable

More information

GULF MATHEMATICS OLYMPIAD 2014 CLASS : XII

GULF MATHEMATICS OLYMPIAD 2014 CLASS : XII GULF MATHEMATICS OLYMPIAD 04 CLASS : XII Date of Eamiatio: Maimum Marks : 50 Time : 0:30 a.m. to :30 p.m. Duratio: Hours Istructios to cadidates. This questio paper cosists of 50 questios. All questios

More information

AP Calculus BC 2007 Scoring Guidelines Form B

AP Calculus BC 2007 Scoring Guidelines Form B AP Calculus BC 7 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

More information

Taylor Polynomials and Taylor Series

Taylor Polynomials and Taylor Series Taylor Polyomials ad Taylor Series Cotets Taylor Polyomials... Eample.... Eample.... 4 Eample.3... 5 Eercises... 6 Eercise Solutios... 8 Taylor s Iequality... Eample.... Eample.... Eercises... 3 Eercise

More information

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1 Assigmet : Real Numbers, Sequeces. Let A be a o-empty subset of R ad α R. Show that α = supa if ad oly if α is ot a upper boud of A but α + is a upper boud of A for every N. 2. Let y (, ) ad x (, ). Evaluate

More information

Math 176 Calculus Sec. 5.1: Areas and Distances (Using Finite Sums)

Math 176 Calculus Sec. 5.1: Areas and Distances (Using Finite Sums) Math 176 Calculus Sec. 5.1: Areas ad Distaces (Usig Fiite Sums) I. Area A. Cosider the problem of fidig the area uder the curve o the f y=-x 2 +5 over the domai [0, 2]. We ca approximate this area by usig

More information

Polynomial and Rational Functions. Polynomial functions and Their Graphs. Polynomial functions and Their Graphs. Examples

Polynomial and Rational Functions. Polynomial functions and Their Graphs. Polynomial functions and Their Graphs. Examples Polomial ad Ratioal Fuctios Polomial fuctios ad Their Graphs Math 44 Precalculus Polomial ad Ratioal Fuctios Polomial Fuctios ad Their Graphs Polomial fuctios ad Their Graphs A Polomial of degree is a

More information

Real Analysis Fall 2004 Take Home Test 1 SOLUTIONS. < ε. Hence lim

Real Analysis Fall 2004 Take Home Test 1 SOLUTIONS. < ε. Hence lim Real Aalysis Fall 004 Take Home Test SOLUTIONS. Use the defiitio of a limit to show that (a) lim si = 0 (b) Proof. Let ε > 0 be give. Defie N >, where N is a positive iteger. The for ε > N, si 0 < si

More information

Objective Mathematics

Objective Mathematics 6. If si () + cos () =, the is equal to :. If <

More information

x c the remainder is Pc ().

x c the remainder is Pc (). Algebra, Polyomial ad Ratioal Fuctios Page 1 K.Paulk Notes Chapter 3, Sectio 3.1 to 3.4 Summary Sectio Theorem Notes 3.1 Zeros of a Fuctio Set the fuctio to zero ad solve for x. The fuctio is zero at these

More information

Precalculus MATH Sections 3.1, 3.2, 3.3. Exponential, Logistic and Logarithmic Functions

Precalculus MATH Sections 3.1, 3.2, 3.3. Exponential, Logistic and Logarithmic Functions Precalculus MATH 2412 Sectios 3.1, 3.2, 3.3 Epoetial, Logistic ad Logarithmic Fuctios Epoetial fuctios are used i umerous applicatios coverig may fields of study. They are probably the most importat group

More information

AP Calculus BC 2011 Scoring Guidelines Form B

AP Calculus BC 2011 Scoring Guidelines Form B AP Calculus BC Scorig Guidelies Form B The College Board The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success ad opportuity. Fouded i 9, the College

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

9.3 Power Series: Taylor & Maclaurin Series

9.3 Power Series: Taylor & Maclaurin Series 9.3 Power Series: Taylor & Maclauri Series If is a variable, the a ifiite series of the form 0 is called a power series (cetered at 0 ). a a a a a 0 1 0 is a power series cetered at a c a a c a c a c 0

More information

Chapter 10: Power Series

Chapter 10: Power Series Chapter : Power Series 57 Chapter Overview: Power Series The reaso series are part of a Calculus course is that there are fuctios which caot be itegrated. All power series, though, ca be itegrated because

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

LIMIT. f(a h). f(a + h). Lim x a. h 0. x 1. x 0. x 0. x 1. x 1. x 2. Lim f(x) 0 and. x 0

LIMIT. f(a h). f(a + h). Lim x a. h 0. x 1. x 0. x 0. x 1. x 1. x 2. Lim f(x) 0 and. x 0 J-Mathematics LIMIT. INTRODUCTION : The cocept of it of a fuctio is oe of the fudametal ideas that distiguishes calculus from algebra ad trigoometr. We use its to describe the wa a fuctio f varies. Some

More information

A.1 Algebra Review: Polynomials/Rationals. Definitions:

A.1 Algebra Review: Polynomials/Rationals. Definitions: MATH 040 Notes: Uit 0 Page 1 A.1 Algera Review: Polyomials/Ratioals Defiitios: A polyomial is a sum of polyomial terms. Polyomial terms are epressios formed y products of costats ad variales with whole

More information

AP Calculus AB 2006 Scoring Guidelines Form B

AP Calculus AB 2006 Scoring Guidelines Form B AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

More information

6.) Find the y-coordinate of the centroid (use your calculator for any integrations) of the region bounded by y = cos x, y = 0, x = - /2 and x = /2.

6.) Find the y-coordinate of the centroid (use your calculator for any integrations) of the region bounded by y = cos x, y = 0, x = - /2 and x = /2. Calculus Test File Sprig 06 Test #.) Fid the eact area betwee the curves f() = 8 - ad g() = +. For # - 5, cosider the regio bouded by the curves y =, y = +. Produce a solid by revolvig the regio aroud

More information

TEACHER CERTIFICATION STUDY GUIDE

TEACHER CERTIFICATION STUDY GUIDE COMPETENCY 1. ALGEBRA SKILL 1.1 1.1a. ALGEBRAIC STRUCTURES Kow why the real ad complex umbers are each a field, ad that particular rigs are ot fields (e.g., itegers, polyomial rigs, matrix rigs) Algebra

More information

(A) 0 (B) (C) (D) (E) 2.703

(A) 0 (B) (C) (D) (E) 2.703 Class Questios 007 BC Calculus Istitute Questios for 007 BC Calculus Istitutes CALCULATOR. How may zeros does the fuctio f ( x) si ( l ( x) ) Explai how you kow. = have i the iterval (0,]? LIMITS. 00 Released

More information

CHAPTER 11 Limits and an Introduction to Calculus

CHAPTER 11 Limits and an Introduction to Calculus CHAPTER Limits ad a Itroductio to Calculus Sectio. Itroductio to Limits................... 50 Sectio. Teciques for Evaluatig Limits............. 5 Sectio. Te Taget Lie Problem................. 50 Sectio.

More information

Math 312 Lecture Notes One Dimensional Maps

Math 312 Lecture Notes One Dimensional Maps Math 312 Lecture Notes Oe Dimesioal Maps Warre Weckesser Departmet of Mathematics Colgate Uiversity 21-23 February 25 A Example We begi with the simplest model of populatio growth. Suppose, for example,

More information

Math 61CM - Solutions to homework 3

Math 61CM - Solutions to homework 3 Math 6CM - Solutios to homework 3 Cédric De Groote October 2 th, 208 Problem : Let F be a field, m 0 a fixed oegative iteger ad let V = {a 0 + a x + + a m x m a 0,, a m F} be the vector space cosistig

More information

MA Lesson 26 Notes Graphs of Rational Functions (Asymptotes) Limits at infinity

MA Lesson 26 Notes Graphs of Rational Functions (Asymptotes) Limits at infinity MA 1910 Lesso 6 Notes Graphs of Ratioal Fuctios (Asymptotes) Limits at ifiity Defiitio of a Ratioal Fuctio: If P() ad Q() are both polyomial fuctios, Q() 0, the the fuctio f below is called a Ratioal Fuctio.

More information

For example suppose we divide the interval [0,2] into 5 equal subintervals of length

For example suppose we divide the interval [0,2] into 5 equal subintervals of length Math 1206 Calculus Sec 1: Estimatig with Fiite Sums Abbreviatios: wrt with respect to! for all! there exists! therefore Def defiitio Th m Theorem sol solutio! perpedicular iff or! if ad oly if pt poit

More information

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT TR/46 OCTOBER 974 THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION by A. TALBOT .. Itroductio. A problem i approximatio theory o which I have recetly worked [] required for its solutio a proof that the

More information

TECHNIQUES OF INTEGRATION

TECHNIQUES OF INTEGRATION 7 TECHNIQUES OF INTEGRATION Simpso s Rule estimates itegrals b approimatig graphs with parabolas. Because of the Fudametal Theorem of Calculus, we ca itegrate a fuctio if we kow a atiderivative, that is,

More information

Topic 5 [434 marks] (i) Find the range of values of n for which. (ii) Write down the value of x dx in terms of n, when it does exist.

Topic 5 [434 marks] (i) Find the range of values of n for which. (ii) Write down the value of x dx in terms of n, when it does exist. Topic 5 [44 marks] 1a (i) Fid the rage of values of for which eists 1 Write dow the value of i terms of 1, whe it does eist Fid the solutio to the differetial equatio 1b give that y = 1 whe = π (cos si

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute Math, Calculus II Fial Eam Solutios. 5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute 4 d. The check your aswer usig the Evaluatio Theorem. ) ) Solutio: I this itegral,

More information

2018 MAΘ National Convention Mu Individual Solutions ( ) ( ) + + +

2018 MAΘ National Convention Mu Individual Solutions ( ) ( ) + + + 8 MΘ Natioal ovetio Mu Idividual Solutios b a f + f + + f + + + ) (... ) ( l ( ) l ( ) l ( 7) l ( ) ) l ( 8) ) a( ) cos + si ( ) a' ( ) cos ( ) a" ( ) si ( ) ) For a fuctio to be differetiable at c, it

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n Review of Power Series, Power Series Solutios A power series i x - a is a ifiite series of the form c (x a) =c +c (x a)+(x a) +... We also call this a power series cetered at a. Ex. (x+) is cetered at

More information

PAPER : IIT-JAM 2010

PAPER : IIT-JAM 2010 MATHEMATICS-MA (CODE A) Q.-Q.5: Oly oe optio is correct for each questio. Each questio carries (+6) marks for correct aswer ad ( ) marks for icorrect aswer.. Which of the followig coditios does NOT esure

More information

10.1 Sequences. n term. We will deal a. a n or a n n. ( 1) n ( 1) n 1 2 ( 1) a =, 0 0,,,,, ln n. n an 2. n term.

10.1 Sequences. n term. We will deal a. a n or a n n. ( 1) n ( 1) n 1 2 ( 1) a =, 0 0,,,,, ln n. n an 2. n term. 0. Sequeces A sequece is a list of umbers writte i a defiite order: a, a,, a, a is called the first term, a is the secod term, ad i geeral eclusively with ifiite sequeces ad so each term Notatio: the sequece

More information

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t Itroductio to Differetial Equatios Defiitios ad Termiolog Differetial Equatio: A equatio cotaiig the derivatives of oe or more depedet variables, with respect to oe or more idepedet variables, is said

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

For example suppose we divide the interval [0,2] into 5 equal subintervals of length

For example suppose we divide the interval [0,2] into 5 equal subintervals of length Math 120c Calculus Sec 1: Estimatig with Fiite Sums I Area A Cosider the problem of fidig the area uder the curve o the fuctio y!x 2 + over the domai [0,2] We ca approximate this area by usig a familiar

More information

Example 2. Find the upper bound for the remainder for the approximation from Example 1.

Example 2. Find the upper bound for the remainder for the approximation from Example 1. Lesso 8- Error Approimatios 0 Alteratig Series Remaider: For a coverget alteratig series whe approimatig the sum of a series by usig oly the first terms, the error will be less tha or equal to the absolute

More information

WBJEE Answer Keys by Aakash Institute, Kolkata Centre

WBJEE Answer Keys by Aakash Institute, Kolkata Centre WBJEE - 7 Aswer Keys by, Kolkata Cetre MATHEMATICS Q.No. B A C B A C A B 3 D C B B 4 B C D D 5 D A B B 6 C D B B 7 B C C A 8 B B A A 9 A * B D C C B B D A A D B B C B 3 A D D D 4 C B A A 5 C B B B 6 C

More information

Calculus 2 Test File Spring Test #1

Calculus 2 Test File Spring Test #1 Calculus Test File Sprig 009 Test #.) Without usig your calculator, fid the eact area betwee the curves f() = - ad g() = +..) Without usig your calculator, fid the eact area betwee the curves f() = ad

More information

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS MIDTERM 3 CALCULUS MATH 300 FALL 08 Moday, December 3, 08 5:5 PM to 6:45 PM Name PRACTICE EXAM S Please aswer all of the questios, ad show your work. You must explai your aswers to get credit. You will

More information

Math 508 Exam 2 Jerry L. Kazdan December 9, :00 10:20

Math 508 Exam 2 Jerry L. Kazdan December 9, :00 10:20 Math 58 Eam 2 Jerry L. Kazda December 9, 24 9: :2 Directios This eam has three parts. Part A has 8 True/False questio (2 poits each so total 6 poits), Part B has 5 shorter problems (6 poits each, so 3

More information

CHAPTER 2 LIMITS AND CONTINUITY

CHAPTER 2 LIMITS AND CONTINUITY CHAPTER LIMITS AND CONTINUITY RATES OF CHANGE AND LIMITS (a) Does not eist As approaches from the right, g() approaches 0 As approaches from the left, g() approaches There is no single number L that all

More information

AP Calculus BC 2005 Scoring Guidelines

AP Calculus BC 2005 Scoring Guidelines AP Calculus BC 5 Scorig Guidelies The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success ad

More information

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series.

1.3 Convergence Theorems of Fourier Series. k k k k. N N k 1. With this in mind, we state (without proof) the convergence of Fourier series. .3 Covergece Theorems of Fourier Series I this sectio, we preset the covergece of Fourier series. A ifiite sum is, by defiitio, a limit of partial sums, that is, a cos( kx) b si( kx) lim a cos( kx) b si(

More information

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6 Math 4 Activity (Due by EOC Apr. ) Graph the followig epoetial fuctios by modifyig the graph of f. Fid the rage of each fuctio.. g. g. g 4. g. g 6. g Fid a formula for the epoetial fuctio whose graph is

More information