180 Chapter 3 Applications of Derivatives

Size: px
Start display at page:

Download "180 Chapter 3 Applications of Derivatives"

Transcription

1 80 Chapter Applicatios of Derivatives. Let represet the legth of the rectagle i meters (! % ) The the idth is % ad the area is Aab a%b %. Sice A ab %, the critical poit occurs at. Sice, A a b! for! ad A a b! for %, this critical poit correspods to the maimum area. The rectagle ith the largest area measures m by % m, so it is a square. Graphical Support:. (a) The lie cotaiig poit P also cotais the poits (!ß ) ad (ß!) Ê the lie cotaiig P is y Ê a geeral poit o that lie is (ß ). (b) The area A() ( ), here 0 Ÿ Ÿ. (c) Whe A(), the A () 0 Ê 0 Ê. Sice A(0) 0 ad A() 0, e coclude that A ˆ sq uits is the largest area. The dimesios are uit by uit.. The area of the rectagle is A y a b, È here 0 Ÿ Ÿ. Solvig A () 0 Ê 6 0 Ê or. No is ot i the domai, ad sice A(0) 0 ad A Š È 0, e coclude that A() square uits is the maimum area. The dimesios are uits by 8 uits. 5. The volume of the bo is V() (5 )(8 ) 0 6, here 0 Ÿ Ÿ. Solvig V () 0 5 Ê 0 9 (6 )(5 ) 0 Ê or 6, but 6 is ot i the domai. Sice V(0) V() 0, V ˆ 5 %&! ( * i must be the maimum volume of 5 5 the bo ith dimesios iches. b È da È b db È00 b 6. The area of the triagle is A ba 00 b, here 0 Ÿ b Ÿ 0. The 00 b 00 b 0 Ê the iterior critical poit is b 0È. È00 b Whe b 0 or 0, the area is zero Ê A Š 0È is the maimum area. Whe a b 00 ad b 0 È, the value of a is also 0È Ê the maimum area occurs he a b.

2 Sectio.6 Applied Optimizatio 8 7. The area is A() (800 ), here 0 Ÿ Ÿ 00. Solvig A () Ê 00. With A(0) A(00) 0, the maimum area is A(00) 80,000 m. The dimesios are 00 m by 00 m. 8. The area is y 6 Ê y 08. The amout of fece eeded is P y, here! ; dp d 0 Ê 8 0 Ê the critical poits are 0 ad 9, but 0 ad 9 are ot i the domai. The P (9) 0 Ê at 9 there is a miimum Ê the dimesios of the outer rectagle are 8 m by m Ê 7 meters of fece ill be eeded. 9. (a) We miimize the eight ts here S is the surface area, ad t is the thickess of the steel alls of the tak. The surace area is S % y here is the legth of a side of the square base of the tak, ad y is its depth. The &!!!!! volume of the tak must be &!! ft Ê y. Therefore, the eight of the tak is ab tˆ. Treatig the thickess as a costat gives ab tˆ!!! for Þ!. The critical value is at!. Sice %!!! a! b t ˆ!, there is a miimum at!. Therefore, the optimum dimesios of the tak are! ft o! the base edges ad & ft deep. (b) Miimizig the surface area of the tak miimizes its eight for a give all thickess. The thickess of the steel alls ould likely be determied by other cosideratios such as structural requiremets. & 0. (a) The volume of the tak beig & ft, e have that y & Ê y. The cost of buildig the tak is cab ˆ & (&! &!, here!. The c ab!!ê the critical poits are! ad &, but! is ot a i the domai. Thus, c & b! Ê at & e have a miimum. The values of & ft ad y & ft ill miimize the cost. (b) The cost fuctio c & a % yb! y, ca be separated ito to items: () the cost of the materials ad labor to fabricate the tak, ad () the cost for the ecavatio. Sice the area of the sides ad bottom of the taks is a % y b, it ca be deduced that the uit cost to fabricate the taks is &/ft. Normally, ecavatio costs are per uit volume of ecavated material. Cosequetly, the total ecavatio cost ca be take as! y ˆ! a y b. This suggests that the!î ft uit cost of ecavatio is here is the legth of a side of the square base of the tak i feet. For the least!îft!þ'( ) epesive tak, the uit cost for the ecavatio is & ft ft yd. The total cost of the least epesive tak is (&, hich is the sum of '& for fabricatio ad (&! for the ecavatio.. The area of the pritig is (y )( 8) 50. Cosequetly, y ˆ The area of the paper is A() ˆ 50, here 8. The 8 A () ˆ ( 8) 00 Š 0 8 ( 8) ( 8) Ê the critical poits are ad 8, but is ot i the domai. Thus A (8) 0 Ê at 8 e have a miimum. Therefore the dimesios 8 by 9 iches miimize the amout of paper.. The volume of the coe is V r h, here r 9 y È ad h y (from the figure i the tet). Thus, V(y) 9 y (y ) 7 9y y y Ê V (y) a b a b a9 6y y b ( y)( y). The critical poits are ad, but is ot i the domai. Thus V () ( '6()) 0 Ê at y e have a maimum volume of V() (8)() cubic uits.

3 8 Chapter Applicatios of Derivatives ab si ). The area of the triagle is A( )), here 0 ). ab cos ) Solvig A ()) 0 Ê 0 Ê ). Sice A ()) ab si ) ˆ ) Ê A 0, there is a maimum at.. A volume V r h 000 Ê h. The amout of 000 r material is the surface area give by the sides ad bottom of 000 the ca Ê S rh r r, 0 r. The r ds 000 r 000 dr r r 0 are 0 ad È r! Ê 0. The critical poits, but 0 is ot i the domai. Sice d S 000 dr r r È È 0, e have a miimum surface area he r cm ad h cm. Comparig this result to the result foud i Eample, if e iclude both eds of the ca, the e have a miimum surface area he the ca is shorter-specifically, he the height of the ca is the same as its diameter. 5. With a volume of 000 cm ad V r h, the h. The amout of alumium used per ca is 000 r r 000 r r r r A 8r rh 8r. The A (r) 6r 0 Ê 0 Ê the critical poits are 0 ad 5, but r 0 results i o ca. Sice A (r) 6 0 e have a miimum at r 5 Ê h ad h:r 8:. & a! ba& b 6. (a) The base measures! i. by i., so the volume formula is Vab & (&. (b) We require!,!, ad &. Combiig these requiremets, the domai is the iterval a!ß & b. (c) The maimum volume is approimately 66.0 i. he Þ*' i. &! Éa&! b % a' ba(& b &! È(!! ' a b (d) V ab ' &! (&. The critical poit occurs he V a b!, at & & È( ', that is, Þ*' or 'Þ(. We discard the larger value because it is ot i the domai. Sice V ab &!, hich is egative he Þ*', the critical poit correspods to the maimum volume. The maimum volume occurs he && È( ' Þ*', hich comfimrs the result i (c).

4 Sectio.6 Applied Optimizatio 8 7. Let the radius of the cylider be r cm,! r!. The the height is È!! r ad the volume is Vab r r È!! r cm. The, V ab r r Š a rb Š È!! r a rb r % ra!! r b ra!! r b!! r!! r È!! r!! È. The critical poit for!r! occurs at r!. Sice V r! for È É É ab!r! É ad V ab r! for! É r!, the critical poit correspods to the maimum volume. The! %!!! È È dimesios are r! É )Þ' cm ad h Þ&& cm, ad the volume is %)Þ%! cm. 8. From the diagram the perimeter is P r h r, here r is the radius of the semicircle ad h is the height of the rectagle. The amout of light trasmitted proportioal to A rh r r(p r r) r da rp r r. The dr P r r 0 P P P ( )P Ê r Ê h P. Therefore, r 8 h dr da most light sice 0. gives the proportios that admit the V r r 9. The fied volume is V r h r Ê h, here h is the height of the cylider ad r is the radius of the hemisphere. To miimize the cost e must miimize surface area of the cylider added to tice the surface area of the hemisphere. Thus, e miimize C rh r r ˆ V r V 8 r r. r r The r 0 Ê V r Î Êr ˆ. From the volume equatio, h dc V 6 8 V V r dr r 8 r Î Î Î Î Î Î Î V V V V V Î ˆ dc V 6 Î. Sice Î Î Î dr r 0, these dimesios do miimize the cost. 0. The volume of the trough is maimized he the area of the cross sectio is maimized. From the diagram the area of the cross sectio is A( )) cos ) si ) cos ), 0 ). The A ()) si ) cos ) si ) a si ) si ) b ( si ) )(si ) ) so A ()) 0 Ê si ) or si ) Ê ) 6 because si ) Á he 0 ). Also, A ()) 0 for 0 ) 6 ad A ()) 0 for 6 ). Therefore, at ) 6 there is a maimum.. Note that h r ad so r È h. The the volume is give by V r h ah bh h h for!h È dv dv, ad so dh r ar b. The critical poit (for h! ) occurs at h. Sice dh! for dv!h, ad! for h È dh, the critical poit correspods to the maimum volume. The coe of greatest volume has radius È m, height m, ad volume m. a. (a) f() Ê f () a a b, so that f () 0 he implies a 6 a (b) f() Ê f () a a b, so that f () 0 he implies a. (a) sab t ' t *' t Ê vab t s ab t t *'. At t!, the velocity is v a! b *' ft/sec. (b) The maimum height ocurs he vab t!, he t. The maimum height is s a b&' ft ad it occurs at t sec. (c) Note that satb ' t *' t ' at bat ( b, so s! at t or t (. Choosig the positive value of t, the velocity he s! is v a( b ) ft/sec.

5 8 Chapter Applicatios of Derivatives. Let be the distace from the poit o the shorelie earest Jae's boat to the poit here she lads her boat. The she eeds to ro È % mi at mph ad alk ' mi at 5 mph. The total amout of time to reach the village is È% ' & È% & È% & fa b hours (! Ÿ Ÿ '). The f ab a b. Solvig f a b!, e have: % Ê & È% Ê & % a% b Ê ' Ê. We discard the egative È% & È value of because it is ot i the domai. Checkig the edpoits ad critical poit, e have f a! b Þ, % % È È f Š Þ, ad f a' b Þ'. Jae should lad her boat!þ)( miles do the shorelie from the poit earest her boat. ) h ' 5. Ê h ) ad Lab Éh a ( b ( Ɉ ' ) a ( b he!. Note that La b is miimized he fab ˆ ' ) a ( b is miimized. If f a b!, the ˆ ' ) ˆ ' a( b! () Ê a ( bˆ! Ê ( (ot acceptable sice distace is ever egative or. The L a b È*( %'Þ)( ftþ 6. (a) s s Ê si t si ˆ t Ê si t si t cos si cos t Ê si t si t cos t Ê ta t È Ê t or È (b) The distace betee the particles is s(t) ks s k si t si ˆ t ¹ si t È cos t¹ Š si t È cos t Š cos t È si t ¹ si t È cos t¹ Ê s (t) sice k k Ê critical times ad edpoits È d d kk 5 5 are 0,, 6,, 6, ; the s(0), s ˆ 0, s ˆ 6, s ˆ 0, s ˆ 6, s( ) Ê the greatest distace betee the particles is. Š si t cos t Š cos t È si t ¹ si t È cos t¹ (c) Sice s (t) e ca coclude that at t ad, s (t) has cusps ad the distace betee the particles is chagig the fastest ear these poits. 7. (a) s 0 cos ( t) Ê v 0 si ( t) Ê speed k0 si ( t) k 0ksi ( t) k Ê the maimum speed is 0. cm/sec sice the maimum value of ksi ( t) k is ; the cart is movig the fastest at t 0.5 sec,.5 sec,.5 sec ad.5 sec he ksi ( t) k is. At these times the distace is s 0 cos ˆ 0 cm ad a 0 cos ( t) Ê kk a 0 kcos ( t) kê kk a 0 cm/sec (b) kk a 0 kcos ( t) kis greatest at t 0.0 sec,.0 sec,.0 sec,.0 sec ad.0 sec, ad at these times the magitude of the cart's positio is kk s 0 cm from the rest positio ad the speed is 0 cm/sec. 8. (a) si t si t Ê si t si t cos t 0 Ê ( si t)( cos t) 0 Ê t k here k is a positive iteger È

6 Sectio.6 Applied Optimizatio 85 (b) The vertical distace betee the masses is s(t) ks s k ˆ as s b a(si t si t) b Î Î Î (cos t cos t)(si t si t) ksi t si tk ( cos t )(cos t )(si t)(cos t ) ksi t si tk critical times at 0,,,, ; the s(0) 0, ˆ ˆ È ˆ 8 ˆ È È the greatest distace is at t ad Ê s (t) ˆ a(si t si t) b ()(si t si t)( cos t cos t) Ê s ˆ si si, s( ) 0, s ˆ si si, s( ) 0 Ê 9. From the diagram above e have! ) Ê )!. From the left triagle e have cot! Ê cot ˆ 50 50!, ad from the triagle o the right side e have cot Ê cot ˆ Ê ) cot ˆ cot ˆ 50 d) Ê 0 Œ Œ 60 0 d ˆ 60 ˆ 50 c d ) 60 0 d Š ˆ Š ˆ 50 c 0 a50 b a50 c b a50 b 0 Ê 60Š 0 a50 b 0a60 b Ê Ê 0Š 5 È7. Sice 0 Ÿ Ÿ 50 Ê 0Š 5 È7 7.5 Þ a0b ) a50 0b ad a 0 b. 0Š 5È7 50 0Š 5È7 ) a50 0b Ê the maimum agle is ) cot 60 cot rad or 6.55 he the solar statio is 7.5 m est of the left ( 60 m) buildig. 0. The distace OT TB is miimized he OB is a straight lie. Hece! Ê ) ).. The profit is p c ( c) ca( c) b(00 ) d( c) a b(00 )( c) c a (bc 00b) 00bc b. The p () bc 00b b ad p () b. Solvig p () 0 Ê 50. c At 50 there is a maimum profit sice p () b 0 for all.. Let represet the umber of people over 50. The profit is p() (50 )(00 ) (50 ) The p () 68 ad p. Solvig p () 0 Ê 7. At 7 there is a maimum sice p (7) 0. It ould take 67 people to maimize the profit.

7 86 Chapter Applicatios of Derivatives h h hq km q. (a) A(q) kmq cm q, here q 0 Ê A (q) kmq ad A (q) kmq. The km km km critical poits are É, 0, ad É, but oly É km is i the domai. The A Š É 0 Ê at h h h h q É km h there is a miimum average eekly cost. (kbq)m q h h km É h (b) A(q) cm q kmq bm cm q, here q 0 Ê A (q) 0 at q as i (a). Also A (q) kmq 0 so the most ecoomical quatity to order is still q É km hich miimizes the average eekly cost. c a b c a b d c abcab c a b. We start ith ca b the cost of producig items,!, ad the average cost of producig items, assumed to be differetiable. If the average cost ca be miimized, it ill be at a productio level at hich d Š! Ê! (by the quotiet rule) Ê c ab ca b!(multiply both sides by ) Ê c a b here c a b is the margial cost. This cocludes the proof. (Note: The theorem does ot assure a productio level that ill give a miimum cost, but rather, it idicates here to look to see if there is oe. Fid the productio levels here the average cost equals the margial cost, the check to see if ay of them give a mimimum.) dr d R C d R C 5. We have dm CM M. Solvig dm C M! Ê M. Also, dm! Ê at M there is a maimum.!!!!! r! r! r! r! 6. (a) If v cr r cr, the v cr r cr cr ar r bad v cr 6cr c ar r b. The solutio of v 0 is r 0 or, but 0 is ot i the domai. Also, v 0 for r ad v 0 for r Ê at r there is a maimum. (b) The graph cofirms the fidigs i (a). h 7. If 0, the ( ) 0 Ê Ê. I particular if a, b, c ad d are positive itegers, a b c d a b c d the Š Š Š Š 6. Î cî aa b aa b a a Èa aa b aa b aa b 8. (a) f() Ê f () 0 Ê f() is a icreasig fuctio of d Èb (d) (b) g() Ê g () ab (d) b(d) b Î ab (d) b ab (d) b Î ab (d) b (d) ab (d) b b (d) 0 Ê g() is a decreasig fuctio of Î dt (c) Sice c, c 0, the derivative d is a icreasig fuctio of (from part (a)) mius a decreasig dt d t fuctio of (from part (b)): d c f() c g() Ê d c f () c g () 0 sice f () 0 ad g () 0 Ê dt is a icreasig fuctio of. d cî Î

8 Sectio.6 Applied Optimizatio At c, the tagets to the curves are parallel. Justificatio: The vertical distace betee the curves is D() f() g(), so D () f () g (). The maimum value of D ill occur at a poit c here D 0. At such a poit, f (c) g (c) 0, or f (c) g (c). 0. (a) f() cos cos is a periodic fuctio ith period (b) No, f() cos cos cos a cos b a cos cos b ( cos ) 0 Ê f() is ever egative. (a) If y cot È csc here 0, the y (csc ) Š È cot csc. Solvig y 0 Ê cos (b) È Ê. For 0 e have y 0, ad y 0 he. Therefore, at there is a maimum value of y. The graph cofirms the fidigs i (a). È È. (a) If y ta cot here 0, the y sec csc. Solvig y 0 Ê ta (b) Ê, but is ot i the domai. Also, y sec ta csc cot 0 for all 0. Therefore at there is a miimum value of y. The graph cofirms the fidigs i (a). %. (a) The square of the distace is Dab ˆ ˆ È *!, so D ab ad the critical poit occurs at. Sice D a b! for ad D a b! for, the critical poit correspods to the miimum distace. The miimum distace is ÈD a b È &.

9 88 Chapter Applicatios of Derivatives (b) The miimum distace is from the poit ˆ ß! to the poit aß bo the graph of y È, ad this occurs at the value here Da b, the distace squared, has its miimum value.. (a) Calculus Method: The square of the distace from the poit Š ß È to Š ß È' is give by D a b a b Š È' È ' È%)! È%). ' The D ab a' b. Solvig D a b! e have: ' È%) È%) È%) Ê ' % a%) b Ê * %) Ê %) Ê. We discard as a etraeous solutio, leavig. Sice D a b! for % ad D a b! for %, the critical poit correspods to the miimum distace. The miimum distace is ÈD a b. Geometry Method: The semicircle is cetered at the origi ad has radius %. The distace from the origi to Š ß È is Ê Š È. The shortest distace from the poit to the semicircle is the distace alog the radius (b) cotaiig the poit Š ß È. That distace is %. The miimum distace is from the poit Š ß È to the poit Š ß È o the graph of y È', ad this occurs at the value here Da b, the distace squared, has its miimum value.

10 .7 INDETERMINATE FORMS AND L'HOPITAL'S ^ RULE Sectio.7 Idetermiate Forms ad L'Hopital's ^ Rule 89. l'hopital: ^ lim or lim lim lim Ä ¹ Ä Ä a ba b Ä. l'hopital: ^ si 5 5 cos 5 si 5 si 5 lim 5 or lim 5 lim 5 5 Ä 0 ¹ Ä 0 5! 5 Ä l'hopital: ^ lim lim lim or lim lim Ä_ Ä_ Ä_ Ä_ Ä_. l'hopital: ^ lim lim or lim lim Ä Ä Ä Ä a b lim Ä a + + b a ba b a ba + + b 5. l'hopital: ^ cos si cos cos acos b cos lim lim lim or lim lim Ä! Ä! Ä! Ä! ˆ Ä! co si si si lim lim Ä! a cos b ˆ ˆ ˆ Ä! cos s 6. l'hopital: ^ % %! lim lim lim or lim lim Ä_ Ä_ Ä_ '! Ä_ Ä_! 7. lim lim Ä Ä 5 8. lim lim 0 Ä5 5 Ä5 t t5 t ( ) t t t ( ) 7 9. lim lim t Ä t Ä t t t t t 0. lim lim t Ä t Ä lim lim lim lim Ä_ Ä_ Ä_ Ä_ lim lim lim Ä_ Ä_ Ä_ si t acos t b(t). lim lim 0 t Ä 0 t t Ä 0 si 5t 5 cos 5t 5 t. lim lim t Ä 0 t Ä lim lim lim 6 Ä 0 cos Ä 0 si Ä 0 cos si cos si cos lim lim lim lim Ä 0 Ä 0 Ä 0 Ä 0 ) 7. lim lim ) Ä Î cos( ) ) ) Ä Î si( ) ) si ˆ ) 8. lim lim ) Ä Î si ˆ ) ) ÄÎ cos ˆ )

11 90 Chapter Applicatios of Derivatives si ) cos ) si ) cos si cos ( )( ) 9. lim lim lim ) Ä Î ) ) Ä Î ) ) Ä Î ) l si ( ) cos ( ) 0. lim lim Ä Ä. lim lim lim lim Ä 0 l (sec ) Ä 0 ˆ sec ta Ä 0 ta Ä 0 sec sec l (csc ) ˆ csc cot cot csc csc. lim lim lim lim Ä Î ˆ ˆ Ä Î ˆ ˆ Ä Î ˆ ˆ Ä Î t( cos t) ( cos t) t(si t) si t (si t t cos t) t si t cos t si t. lim lim lim t Ä 0 t Ä 0 t Ä 0 cos tcos tcos tt si t 0 lim t Ä 0 cos t t si t si t t cos t cos t (cos t t si t) ( 0). lim lim lim t Ä 0 cos t t Ä 0 si t t Ä 0 cos t ˆ 5. lim ˆ sec lim lim ˆ ÄÐÎÑc ÄÐÎÑc cos ÄÐÎÑc si ˆ 6. lim ˆ ta lim lim ˆ lim si ÄÐÎÑc ÄÐÎÑc cot ÄÐÎÑc csc ÄÐÎÑc si si (l )(cos ))! a b(l )() ) ) 7. lim lim l ) Ä 0 ) ) Ä 0 ) ) ˆ ˆ lˆ ˆ 8. lim lim l l l l ) Ä 0 ) ) Ä 0 ˆ () a b ()(l ) a b 0 (l ) (l ) l! 9. lim lim Ä 0 Ä 0 a b! l l l l l l! 0. lim lim! Ä 0 Ä 0 l () l () ˆ b. lim lim (l ) lim (l ) lim (l ) lim l Ä_ log Ä_ ˆ l Ä_ ˆ Ä_ Ä_ l ˆ l log l l l l l. lim lim lim lim Ä_ log ( ) ˆ Ä_ l ( ) l Ä_ l ( ) ˆ l ˆ b Ä_ ˆ l lim Ä_ ˆ lim Ä_ l l l l Š l ˆ b b l a b Š. lim lim b lim lim lim Ä! b l Ä! b ˆ Ä! b Ä! b Ä! b e l ae b Š c e e e 0 e. lim lim lim lim Ä! b l Ä! b ˆ Ä! b e Ä! b e È5y 5 5 Î (5y 5) 5 ˆ cî (5y 5) (5) 5 5. lim lim lim lim y Ä 0 y y Ä 0 y y Ä 0 y Ä 0 È 5y 5 Èay a a aay a b a ˆ aay a b (a) a 6. lim lim Î lim lim, a 0 y Ä 0 y y Ä 0 y y Ä 0 y Ä 0 È ay a

12 Sectio.7 Idetermiate Forms ad L'Hopital's ^ Rule 9 7. lim [l l ( )] lim l ˆ l lim l lim l Ä_ Ä_ Š Š Ä_ Ä_ 8. lim (l l si ) lim l ˆ l lim l lim l 0 Ä! b Ä! b si Š Š Ä! b si Ä! b cos siaa hbsi a cosaa h b 0 9. lim lim cos a h Ä 0 h h Ä 0 0. lim ˆ lim Š lim Ä! b Ä! b Ä! b lim Ä! b Š cos cos ( )( si ) ()(0) 6 cos cos si 0 ( )(si ) si ( )(cos ) si si si cos. lim ˆ lim lim lim Ä b Ä b Š Ä b Š l ( ) Ä b Š l ( )(l ) (l ) ( ) ˆ ( l ) lim Ä b Š (l ) (0 ). lim (csc cot cos ) lim ˆ cos cos ( cos ) (si )(cos ) lim Š Ä! b Ä! b si si Ä! b si si cos si 00 lim Ä! b Š cos cos ) si ) cos ). lim ) lim ) lim ) ) Ä 0 e ) ) Ä 0 e ) Ä 0 e e (h) e e. lim lim lim h Ä 0 h h Ä 0 h h Ä 0 t t t t e t e t e e 5. lim lim lim lim t Ä_ et t Ä_ et t Ä_ et t Ä_ et 6. lim e lim lim lim 0 Ä_ Ä_ e Ä_ e Ä_ e _ ÎÐcÑ ÎÐcÑ l 7. The limit leads to the idetermiate form. Let f() Ê l f() l a b. No ÎÐcÑ lim l f() lim lim. Therefore lim lim f() lim e e Ä b Ä b Ä b Ä b Ä b Ä b l ˆ l fðñ e _ ÎÐcÑ ÎÐcÑ l 8. The limit leads to the idetermiate form. Let f() Ê l f() l a b. No l ˆ ÎÐcÑ lim l f() lim lim. Therefore lim lim f() lim e e e Ä b Ä b Ä b Ä b Ä b Ä b! Î Î l (l ) l fðñ 9. The limit leads to the idetermiate form _. Let f() (l ) Ê l f() l (l ). No l (l ) ˆ lim l f() lim Ä_ Ä_ lim Ä_ l 0. Therefore lim (l ) lim f() Ä_ Ä_ lim e e Ä_ l fðñ _ ÎÐ c Ñ 50. The limit leads to the idetermiate form. Let f() (l ) Ê l f() e lim l f() b Ä e l (l ) ˆ e l (l ) l fðñ Îe l ÎÐceÑ lim lim. Therefore (l ) lim f() lim e e b e b e b b Ä e Ä e Ä e Ä e! 5. The limit leads to the idetermiate form 0. Let f() Ê l f() l. Therefore cîl l fðñ lim lim f() lim e e b b b e Ä! Ä! Ä! c Î l l

13 9 Chapter Applicatios of Derivatives! l l Îl Î 5. The limit leads to the idetermiate form _. Let f() Ê l f() l. Therefore lim Ä_ lim f() lim e e e Ä_ Ä_ fðñ! ÎÐ Ñ l ( ) l 5. The limit leads to the idetermiate form _. Let f() ( ) Ê l f() l l ( ) Ê lim l f() lim lim lim. Therefore lim ( ) Ä_ Ä_ l Ä_ Ä_ Ä_ lim f() lim e e Ä_ Ä_ l fðñ Î 5. The limit leads to the idetermiate form. Let f() ae b Ê l f() ÎÐlÑ _ Î lae b l ae b e Ä 0 Ä 0 Ä 0 e a b Ä 0 Ä 0 l fðñ lim e e Ä 0 Ê lim l f() lim lim. Therefore lim e lim f()! 55. The limit leads to the idetermiate form 0. Let f() Ê l f() l Ê l f() l ˆ lim l f() lim lim lim ( ) 0. Therefore lim lim f() Ä! b Ä! b ˆ Ä! b Š Ä! b Ä! b Ä! b l fðñ! lim e e Ä! b! c 56. The limit leads to the idetermiate form _. Let f() ˆ l a b Ê l f() c Ê lim l f() Ä! b c c Š b lim c lim lim 0. Therefore lim ˆ c c lim f() Ä! b Ä! b Ä! b Ä! b Ä! b l fðñ! lim e e Ä! b È lim lim lim 9 Ä_ È É Ä_ É Ä_ È l ˆ È 58. lim Ä! b È si Ê si É lim Ä! b sec cos 59. lim lim lim Ä Îc ta ˆ ˆ Ä Îc cos si Ä Îc si cot ˆ cos 60. lim lim lim cos Ä! b csc si Ä! b ˆ Ä! b si 0 _ 6. Part (b) is correct because part (a) is either i the or form ad so l'hopital's ^ rule may ot be used. 6. Part (b) is correct; the step lim lim i part (a) is false because lim is Ä 0 cos Ä 0 si Ä 0 cos ot a idetermiate quotiet form. 0 _ 6. Part (d) is correct, the other parts are idetermiate forms ad caot be calculated by the icorrect arithmetic

14 Sectio.7 Idetermiate Forms ad L'Hopital's ^ Rule 9 6. (a) (b) The limit leads to the idetermiate form : È È È È lim Š È lim Š È a b Š lim Š lim Ä_ Ä_ Ä_ Ä_ lim Ä_ È É! 65. The graph idicates a limit ear. The limit leads to the idetermiate form 0 ( ) È 0 : lim Ä 9 Î Î Î lim lim Ä Ä 9 5 cî _ 66. (a) The limit leads to the idetermiate form. Let f() ˆ Ê l f() l ˆ Ê lim l f() Ä_ l ˆ l a b Š c b lim lim lim c lim Ä_ ˆ c c Ä_ Ä_ Ä_ ˆ 0 Ê lim lim f() lim e e e Ä_ ˆ l fðñ Ä_ Ä_ (b) ˆ , , Both fuctios have limits as approaches ifiity. The fuctio f has a maimum but o miimum hile g has o etrema. The limit _ of f() leads to the idetermiate form. c c (c) Let f() ˆ Ê l f() l a b l a b Š c c c b Ê lim l f() lim lim c lim c c lim lim 0. Ä_ Ä_ Ä_ Ä_ a b Ä_ a b Ä_ 6 Therefore lim ˆ l fðñ! lim f() lim e e Ä_ Ä_ Ä_ rk k l a rk b l a rk b Š r k k k k rk 67. Let f(k) ˆ r c c b rk Ê l f(k) Ê lim lim c lim k Ä_ k Ä_ k Ä_ rk r r k lim lim r. Therefore lim ˆ l fðkñ r lim f(k) lim e e. k Ä_ k r k Ä_ k Ä_ k k Ä_ k Ä_ c c c c c c

15 9 Chapter Applicatios of Derivatives y ˆ () l y 68. (a) y Î Ê l l y Ê Ê y ˆ l Î a b. The sig patter is y Îe ±±hich idicates a maimum value of y e he e! e Î l y ˆ a b l l y (b) y Ê l y Ê Ê y ˆ Î a b. The sig patter is % y Îe ±± hich idicates a maimum of y e he Èe! Èe Î l ˆ a b (l ) ˆ c c ( l ) Î (c) y Ê l y Ê y. The sig patter is Îe y ±± hich idicates a maimum of y e he È e! È e Î l Î l ÐlÑÎ! (d) lim lim ˆ e lim e ep Š lim ep lim e Ä_ Ä_ Ä_ Ä_ Š ˆ Ä_ Þ8 NEWTON'S METHOD b! 6 9 9! 5. y Ê y Ê ; Ê 9 Ê Ê.6905; Ê Ê.66667!. y Ê y Ê ; 0 Ê 0 b 7 Ê % % 6 b! ! y Ê y Ê ; Ê 65 5 Ê.65; Ê Ê 00 b! ;! y Ê y Ê ; 0 Ê 0 Ê Ê Ê Oe obvious root is 0. Graphig e ad shos that 0 is the oly root. Takig a aive approach e ca use Neto's Method to estimate the root as follos: Let fab e,, ad ec 0 b ec. Performig iteratios o a calculator, spreadsheet, or CAS gives 0.59, , You may get differet results depedig upo hat you select for fa b ad, ad hat calculator or computer you may use Graphig ta a bad shos that there is oly oe root ad it is betee 0. ad 0.. Let f a b tac ab b f a b b fab ta ab, 0., ad. Performig iteratios o a calculator, spreadsheet, or CAS gives 0.705, 0.79, You may get differet results depedig upo hat you select for fa b ad, ad hat calculator or computer you may use. fa b 7. f(!) 0 ad f (!) Á! Ê b gives! Ê f ab! Ê! for all 0. That is, all of the approimatios i Neto's method ill be the root of f() 0. f a b f ab

16 Sectio.8 Neto's Method It does matter. If you start too far aay from, the calculated values may approach some other root. Startig ith! 0.5, for istace, leads to as the root, ot.! 9. If h 0 Ê h!! È f( ) f()! f(h) f(h) h h hš Èh Š Èh h; Š È h! if h 0 Ê h!! È f( ) f( h) f()! f( h) h h hš Èh Š Èh h. c Š È h Î 0. f() Ê f () ˆ Î Ê b ˆ Î cî ;! Ê,, 8, ad % 6 ad so forth. Sice kk l cl e may coclude that Ä _ Ê k k Ä _.. i) is equivalet to solvig!. ii) is equivalet to solvig!. iii) is equivalet to solvig!. iv) is equivalet to solvig!. All four equatios are equivalet.. f() 0.5 si Ê f () 0.5 cos Ê ; if.5, the.9870 b ta a b 0.5 si 0.5 cos!. f() ta Ê f () sec Ê b sec a b ;! Ê 905 Ê Ê (a) Yes, three times as idicted by the graphs (b) f() cos Ê f () si Ê cos ab si a b b ; at approimately , , ad e have cos 5. (a) The graph of f() si 0.99 i the ido Ÿ Ÿ, Ÿ y Ÿ suggests three roots. Hoever, he you zoom i o the -ais ear., you ca see that the graph lies above the ais there. There are oly to roots, oe ear, the other ear 0.. (b) f() si 0.99 Ê f () cos Ê ad the solutios b si ( ) 0.99 cos ( ) are approimately ad

17 96 Chapter Applicatios of Derivatives % 6. f() Ê f () 6 Ê ; if! 0.5, the % ; if!.5, the % b % 6 7. Graphig e ad shos that there are to places here the curves itersect, oe at 0 ad the other c f e betee 0.5 ad 0.6. Let fab e, 0.5, ad f 0 b a. b e c Performig iteratios o a calculator, spreadsheet, or CAS gives , , 0.585, (You may get differet results depedig upo hat you select for fa b ad, ad hat calculator or 0 computer you may use.) Therefore, the to curves itersect at 0 ad Graphig la bad shos that there are to places here the curves itersect, oe betee ad 0.9, ad the other betee 0.5 ad 0.6. Let fab la b, ad a b f a b b f ab. Performig iteratios o a calculator, spreadsheet, or CAS ith 0.5 gives , lˆ c c , , ad ith gives 0.987, 0.97, 0.99, (You may get differet results depedig upo hat you select for f ad, ad a b 0 hat calculator or computer you may use.) Therefore, the to curves itersect at 0.99 ad % i i i 9. f() Ê f () 6 8 Ê. Iteratios are performed usig the f a b f a b ib i i i % procedure i problem i this sectio. (a) For! or!!þ), i Ä as i gets large. (b) For!!Þ& or!!þ&, i Ä! as i gets large. (c) For!!Þ) or!, i Ä as i gets large. (d) (If your calculator has a CAS, put it i eact mode, otherise approimate the radicals ith a decimal value.) È È For or, Neto's method does ot coverge. The values of alterate betee! 7! 7 i È È! 7! 7 or as i icreases. 0. (a) The distace ca be represeted by D() É( ) ˆ, here 0. The distace D() is miimized he ˆ f() ( ) ˆ is miimized. If f() ( ), the f () a b ad f () a b 0. No f () 0 Ê 0 Ê a b Ê. i

18 a b (b) Let g() a b Ê g () a b () Ê ; Ê 0.68 to five decimal places. b Œ b Î Ñ c ÏŠ b c Ò! % Sectio.9 Hyperbolic Fuctios 97.9 HYPERBOLIC FUNCTIONS ˆ 6 6 cosh ˆ tah cosh 5 si. sih Ê cosh È sih sih É ˆ É É, tah, coth, sech, ad csch ˆ 9 9 cosh ˆ 5 5 tah, ad csch cosh 5 sih. sih Ê cosh È sih sih 5 É É, tah, coth, sech 7. cosh, 0 Ê sih Ècosh Ɉ sih É É, tah ˆ cosh ˆ 7 5 8, coth 7, sech 5, ad csch 5 7 tah 8 cosh 7 sih 8 69 sih ˆ. cosh, 0 Ê sih Ècosh 5 É É, tah, cosh ˆ tah cosh sih coth, sech, ad csch l l e ec l el 5. cosh (l ) Š e l l l l e ec c Š % e e 6. sih ( l ) e e 5 e e 5 5 c c 7. cosh 5 sih 5 e e e e e c c 8. cosh sih e e ec e ec % % % 9. (sih cosh ) ˆ ae b e 0. l (cosh sih ) l (cosh sih ) l acosh sih b l 0. (a) sih sih ( ) sih cosh cosh sih sih cosh (b) cosh cosh ( ) cosh cosh sih si cosh sih c c e! a bae b ae b (). cosh sih ˆ e e ˆ e e cae e bae e bdcae e bae e bd dy. y 6 sih Ê 6 ˆ cosh ˆ cosh d dy d. y sih ( ) Ê [cosh ( )]() cosh ( )

19 98 Chapter Applicatios of Derivatives 5. y Èt tah Èt t Î tah t Î dy Ê sech ˆ t Î ˆ t Î ˆ t Î ˆ tah t Î ˆ t Î sech È t tah È t Èt dt dy t dt t t 6. y t tah t tah t Ê csech at bdat bat b(t) atah t b sech t tah dy cosh z dy sih z dz sih z dz cosh z 7. y l (sih z) Ê coth z 8. y l (cosh z) Ê tah z dy 9. y (sech ))( l sech )) Ê ˆ sech ) tah ) (sech )) ( sech ) tah ))( l sech )) d) sech ) sech ) tah ) (sech ) tah ))( l sech )) (sech ) tah ))[ ( l sech ))] (sech ) tah ))(l sech )) dy 0. y (csch ))( l csch )) Ê (csch )) ˆ csch ) coth ) ( l csch ))( csch ) coth )) d) csch ) csch ) coth ) ( l csch ))(csch ) coth )) (csch ) coth ))( l csch )) (csch ) coth ))(l csch )) dy dv cosh v sih v. y l cosh v tah v Ê ˆ ( tah v) asech vb tah v (tah v) asech vb (tah v) a sech v b (tah v) atah vb tah v dy dv sih v cosh v. y l sih v coth v Ê ˆ ( coth v) acsch vb coth v (coth v) acsch vb (coth v) a csch v b (coth v) acoth vb coth v. y a b sech (l ) a bˆ a bˆ a bˆ dy Ê c c el e l d. y a b csch (l ) a bˆ a bš a bˆ c c dy d Ê el e l () cî Š É aî b ÈÈ È( ) 5. y sih È sih ˆ Î dy Ê d cî () Š ( ) Éc( ) Î d ÈÈ È 7 6. y cosh È cosh ˆ Î ( ) dy Ê d dy 7. y ( ) ) tah ) Ê ( ) ) ˆ ( ) tah ) tah ) d) ) ) dy d) ( ) ) 8. y a) ) b tah () ) Ê a) ) b () ) tah () ) ) ) ) ) () ) tah () ) () ) tah () ) 9. y ( t) coth È t ( t) coth ˆ Î t dy Î Ê ( t) ( ) coth ˆ t coth È dt t Î Š t cî at b Èt dy 0. y a t b coth t Ê a t bˆ ( t) coth t t coth t dt t dy d È È È È. y cos sech Ê Š () sech sech sech

20 . y l È Î sech l a b sech Ê dy d Sectio.9 Hyperbolic Fuctios 99 Î Î È È È a b Š ˆ a b ( ) sech sech sech. y csch ˆ ) dy l () l () Ê d) l Š Š l Š Ë Š ÊŠ ÊŠ ) ) ) ) ) ) dy (l ) d) ) É ) a b ). y csch Ê l È ) dy sec sec sec ksec k ksec k d È (ta ) Èsec ksec k ksec k 5. y sih (ta ) Ê ksec k dy (sec )(ta ) (sec )(ta ) (sec )(ta ) d Èsec Èta kta k 6. y cosh (sec ) Ê sec, 0 7. sih ˆ l l ˆ 8. cosh ˆ 5 Š 5 5 É l Š É l 9 9. tah ˆ l (/) l 0. coth ˆ 5 Š (9/) l Š l 9 l (/) (/) È. sech ˆ (9/5) l Š l. csch Š l È / l Š È 5 (/5) È e ec e ˆ e 0 È Š / È. (a) lim tah lim lim lim lim Ä_ Ä_ e Ä_ e Ä_ e e e e Ä_ 0 c e ˆ e e e e e e e e e c e ˆ e e e 0 e ec e e e e 0 e ˆ e e e e c e ˆ e e e e c ˆ e e c e e 0 eec e 0 e e e e ec e ˆ e 0 (b) lim tah lim lim lim lim Ä_ Ä_ Ä_ Ä_ Ä_ (c) lim sih lim lim lim 0 Ä_ Ä_ Ä_ Ä _ (d) lim sih lim lim 0 Ä_ Ä_ Ä _ (e) lim sech lim lim lim Ä_ Ä_ Ä_ Ä_! (f) lim coth lim lim lim lim Ä_ Ä_ e Ä_ e Ä_ e e e e Ä_ 0 c e ˆ e e e e e e e c e e (g) lim coth lim lim lim Ä 0b Ä 0b e e e Ä 0b e Ä 0b e _ c e e e e e c e e e (h) lim coth lim lim lim Ä 0c Ä 0c eec Ä 0c e Ä 0c e _ e e (i) lim csch lim lim lim Ä_ Ä_ Ä_ e e Ä_ 0 e e e e 0! c e y e ecy y ey y y y y. y sih Ê sih y Ê Ê e Ê e e Ê e e 0 È e y y Ê e Ê e È y Ê sih y l Š È. Sice e 0, e caot choose e y È because È 0. e mg gk mg gk gk gk k m dt k m m m 5. (a) v É tahœé dv t Ê É sech ŒÉ t ŒÉ g sech ŒÉ t. gk gk dt m m dv Thus m mg sech ŒÉ t mgœtah ŒÉ t mg kv. Also, sice tah! he!, v! he t!. mg kg mg kg mg mg k m k m k k (b) lim v lim É tah t lim tah t () t Ä_ t Ä_ ŒÉ É É É t Ä_ ŒÉ

21 00 Chapter Applicatios of Derivatives 60 60,000 (c) É É 00 80È ft/sec È5 ds d s dt dt 6. (a) s(t) a cos kt b si kt Ê ak si kt bk cos kt Ê ak cos kt bk si kt k (a cos kt b si kt) k s(t) Ê acceleratio is proportioal to s. The egative costat k implies that the acceleratio is directed toard the origi. ds d s dt dt (b) s(t) a cosh kt b sih kt Ê ak sih kt bk cosh kt Ê ak cosh kt bk sih kt k (a cosh kt b sih kt) k s(t) Ê acceleratio is proportioal to s. The positive costat k implies that the acceleratio is directed aay from the origi. H 7. (a) y cosh ˆ dy H Ê ta 9 ˆ sih ˆ sih ˆ H d H H H (b) The tesio at P is give by T cos 9 H Ê T H sec 9 HÈ ta 9 HÉ ˆ sih H cosh ˆ ˆ H cosh ˆ y H H È a a a a 8. s sih a Ê sih a as Ê a sih as Ê sih as; y cosh a cosh a Èsih a Èa s É s a a a H CHAPTER PRACTICE AND ADDITIONAL EXERCISES. No, sice f() ta Ê f () sec 0 Ê f() is alays icreasig o its domai cos. No, sice g() csc cot Ê g () csc cot csc si si si (cos ) 0 Ê g() is alays decreasig o its domai. No absolute miimum because lim (7 )( ) _. Net f () Ä_ Î Î ( ) (7 ) ( ) ( ) (7 )( ) Ê ad are critical poits. Î ( ) Î ( ) Sice f 0 if ad f 0 if, f() 6 is the absolute maimum. Î a b a a b(a b) aa b ab a b a b '% ab 8 a ba b a b. f() Ê f () ; f () 0 Ê (* a ' b a)!ê& a b!. We require also that f(). Thus Ê a b ). Solvig both equatios yields a 6 ad b 0. No, f () so that f ± ± ± ±. Thus f chages sig at from / positive to egative so there is a local maimum at hich has a value f(). 5. gab e Ê g ab e Ê g ± Ê the graph is decreasig o a_, 0 b, icreasig o a0, _ b; 0 a absolute miimum value is at 0; 0 is the oly critical poit of g; there is o absolute maimum value e ˆ e e e a b 6. fab Ê f ab Ê f ± Ê the graph is icreasig o a_, _ b; ab ab is the oly critical poit of f; there are o absolute maimum values or absolute miimum values. 7. fab l o Ÿ Ÿ Ê f ab Ê f ± ± ± Ê the graph is decreasig o a, b, icreasig o a, b; a absolute miimum value is l at ; a absolute maimum value is at.

22 Chapter Practice ad Additioal Eercises 0 8. fab l o ŸŸ Êf ab Êf ±±± Êthe graph is decreasig o a, b, icreasig o a, b; a absolute miimum value is l at ; a absolute maimum value is at. 9. Yes, because at each poit of [!ß Ñ ecept 0, the fuctio's value is a local miimum value as ell as a local maimum value. At 0 the fuctio's value, 0, is ot a local miimum value because each ope iterval aroud 0 o the -ais cotais poits to the left of 0 here f equals. 0. (a) The first derivative of the fuctio f() is zero at 0 eve though f has o local etreme value at 0. (b) Theorem says oly that if f is differetiable ad f has a local etreme at c the f (c) 0. It does ot assert the (false) reverse implicatio f (c) 0 Ê f has a local etreme at c.. No, because the iterval 0 fails to be closed. The Etreme Value Theorem says that if the fuctio is cotiuous throughout a fiite closed iterval a Ÿ Ÿ b the the eistece of absolute etrema is guarateed o that iterval.. The absolute maimum is kk ad the absolute miimum is k0k 0. This is ot icosistet ith the Etreme Value Theorem for cotiuous fuctios, hich says a cotiuous fuctio o a closed iterval attais its etreme values o that iterval. The theorem says othig about the behavior of a cotiuous fuctio o a iterval hich is half ope ad half closed, such as Òß Ñ, so there is othig to cotradict.. (a) g(t) si t t Ê g (t) si t cos t si (t) Ê g 0 Ê g(t) is alays fallig ad hece must decrease o every iterval i its domai. (b) Oe, sice si t t 5 0 ad si t t 5 have the same solutios: f(t) si t t 5 has the same derivative as g(t) i part (a) ad is alays decreasig ith f( ) 0 ad f(0) 0. The Itermediate Value Theorem guaratees the cotiuous fuctio f has a root i [ ß 0]. dy d). (a) y ta ) Ê sec ) 0 Ê y ta ) is alays risig o its domai Ê y ta ) icreases o every iterval i its domai (b) The iterval ß is ot i the taget's domai because ta ) is udefied at ). Thus the taget eed ot icrease o this iterval. % 5. (a) f() Ê f (). Sice f(0) 0, f() 0 ad f () 0 for 0 Ÿ Ÿ, e may coclude from the Itermediate Value Theorem that f() has eactly oe solutio he 0 Ÿ Ÿ. È8 (b) 0 Ê È ad 0 Ê È () 6. (a) y Ê y 0, for all i the domai of Ê y is icreasig i every iterval i its domai (b) y Ê y 0 for all Ê the graph of y is alays icreasig ad ca ever have a local maimum or miimum 7. Let V(t) represet the volume of the ater i the reservoir at time t, i miutes, let V(0) a! be the iitial amout ad V(0) a! (00)(,560)(7.8) gallos be the amout of ater cotaied i the reservoir after the rai, here hr 0 mi. Assume that V(t) is cotiuous o [!ß0] ad differetiable o!! (!ß 0). The Mea Value Theorem says that for some t i (!ß 0) e have V (t ) a (00)(,560)(7.8) a 56,60,0 gal 0 0 mi V(0) V(0) 0 0!! 6,778 gal/mi. Therefore at t the reservoir's volume as icreasig at a rate i ecess of 5,000 gal/mi.!

23 0 Chapter Applicatios of Derivatives 8. Yes, all differetiable fuctios g() havig as a derivative differ by oly a costat. Cosequetly, the d differece g() is a costat K because g () (). Thus g() K, the same form as F(). d ˆ ( ) () d ˆ d ( ) ( ) d. 9. No, Ê differs from by the costat. Both fuctios have the same derivative a b 0. f () g () Ê f() g() C for some costat C Ê the graphs differ by a vertical shift. d. The global miimum value of occurs at.. (a) The fuctio is icreasig o the itervals Òß Ó ad Òß Ó. (b) The fuctio is decreasig o the itervals Òß!Ñ ad Ð!ß Ó. (c) The local maimum values occur oly at, ad at ; local miimum values occur at ad at provided f is cotiuous at!

24 Chapter Practice ad Additioal Eercises

25 0 Chapter Applicatios of Derivatives 9. (a) y 6 Ê y ± ± Ê the curve is risig o ( %ß %), fallig o ( _ß ) ad (%ß _) % % Ê a local maimum at ad a local miimum at ; y Ê y ± Ê the curve (b) is cocave up o ( _ß!), cocave do o (!ß _) Ê a poit of iflectio at 0! 0. (a) y 6 ( )( ) Ê y ± ± Ê the curve is risig o ( _ß ) ad ( ß _), fallig o ( ß ) Ê local maimum at ad a local miimum at ; y Ê y ± Ê cocave up o ˆ ß _, cocave do o ˆ _ß Ê a poit of iflectio at Î (b). (a) y 6( )( ) 6 6 Ê y ± ± ± Ê the graph is risig o ( ß!)! ad (ß _), fallig o ( _ß ) ad (!ß ) Ê a local maimum at 0, local miima at ad (b) È7 È7 ; y 8 6 a b 6 Š Š Ê y ± ± Ê the curve is cocave up o Š _ß ad Š ß _, cocave do È( È( È 7 È 7 poits of iflectio at È 7 ß Ê o Š È7 È7. (a) y (6 ) 6 Ê y ± ± Ê the curve is risig o ˆ _ß, fallig o ˆ ß _! Î Ê a local maimum at ; y ( ) Ê y ± ± Ê cocave up o! (!ß ), cocave do o ( _ß!) ad (ß _) Ê poits of iflectio at 0 ad

26 Chapter Practice ad Additioal Eercises 05 (b). (a) y % a b Ê y ± ± ± Ê the curve is risig o Š _ß È ad È! È Š È ß_, fallig o Š ÈßÈ Ê a local maimum at È ad a local miimum at È ; y ( )( ) Ê y ± ± ± Ê cocave up o ( ß 0) ad (ß _),! cocave do o ( _ß ) ad (0ß ) Ê poits of iflectio at 0 ad (b) %. (a) y a b Ê y ± ± ± Ê the curve is risig o ( ß 0) ad (0ß ),! fallig o ( _ß ) ad (ß _) Ê a local maimum at, a local miimum at ; y 8 a b Ê y ± ± ± Ê cocave up o Š _ß È ad Š 0ß È, cocave È! È do o Š Èß0 ad Š È ß_ Ê poits of iflectio at 0 ad È (b)

27 06 Chapter Applicatios of Derivatives y 6. y 7. y 8. y 9. y 50. y % 5. lim lim Ä Ä a ac a a b bc b 5. lim b lim Ä Ä & 5. lim Ä ta ta!

28 Chapter Practice ad Additioal Eercises 07 ta sec 5. lim lim Ä! si Ä! cos si si cos si cos taa b sec a b sec a b a sec a btaa b b sec! 55. lim lim lim lim Ä! Ä! Ä! Ä! siamb m cosamb m siab cosab 56. lim lim Ä! Ä! cosa b sia b ( ( ( ( 57. lim seca( bcosa b lim lim Ä Î c Ä Î c cosa b Ä Î c sia b a b È 58. lim È sec lim Ä! b Ä! b! cos! cos si! 59. lim acsc cot b lim lim Ä! Ä! si! Ä! cos È È È È 60. lim Š È lim Ä_ È Š È Ä_ È lim Ä _ È È È Notice that for! so this is equivalet to b lim lim Ä_ b b c Ä_ È È É É É É The limit leads to the idetermiate form : lim 0 lim l 0 Ä 0 Ä 0 (l 0)0 si 0 si (l )(cos ) 6. The limit leads to the idetermiate form 0: lim e lim l Ä 0 e Ä cos 5 si 5 cos 6. The limit leads to the idetermiate form 0: lim e lim lim 5 Ä 0 e e Ä 0 Ä 0 0 e e 6. The limit leads to the idetermiate form 0: lim e lim e e Ä 0 Ä 0 tl(t) Š b 0 t 65. The limit leads to the idetermiate form 0: lim t lim t _ t Ä! t Ä! 0 e t e t e t 66. The limit leads to the idetermiate form 0: lim Š t t lim Š t lim t Ä! t Ä! t Ä! b k Îb bk bk 67. lim lim e Ä _ ˆ Ä Š _ Îb 68. lim 0 0 Ä _ ˆ (a) Maimize f() È È Î Î Î Î 6 (6 ) here 0 Ÿ Ÿ 6 Ê f () (6 ) ( ) È6 È È È6 Ê derivative fails to eist at 0 ad 6; f(0) 6, ad f(6) 6 Ê the umbers are 0 ad 6

29 08 Chapter Applicatios of Derivatives (b) Maimize g() È È Î Î 6 (6 ) here 0 Ÿ Ÿ 6 Î Î È6 È È È6 Ê g () (6 ) ( ) Ê critical poits at 0, 8 ad 6; g(0) 6, g(8) È8 6È ad g(6) 6 Ê the umbers are 8 ad 8 È Î Î Î Î 70. (a) Maimize f() (0 ) 0 here 0 Ÿ Ÿ 0 Ê f () Ê 0 ad 0 are critical poits; f(0) f(0) 0 ad f ˆ 0 É 0 ˆ 0 0 È 0È0 È Ê 0 0 the umbers are ad. È Î È0 È0 (b) Maimize g() 0 (0 ) here 0 Ÿ Ÿ 0 Ê g () 0 Ê È Ê. The critical poits are ad 0. Sice g ˆ 79 8 ad g(0) 0, 79 the umbers must be ad. 7. A() () a7 bfor 0 Ÿ Ÿ È7 Ê A () ( )( ) ad A () 6. The critical poits are ad, but is ot i the domai. Sice A () 8 0 ad A Š È7 0, the maimum occurs at Ê the largest area is A() 5 sq uits. 7. From the diagram e have ˆ h r Š È Ê h r. The volume of the cylider is h È V r h Š h ah h b, here 0 Ÿ h Ÿ. The V (h) ( h)( h) Ê the critical poits are ad, but is ot i the domai. At h there is a maimum sice V () 0. The dimesios of the largest cylider are radius È ad height. 7. The dimesios ill be i. by! i. by ' i., so Vab a! ba' b % & '! for! &. The V ab!% '! % a ba! b, so the critical poit i the correct domai is. This critical poit correspods to the maimum possible volume because V a b! for! ad V a b! for &. The bo of largest volume has a height of i. ad a base measurig 6 i. by i., ad its volume is i. Graphical support:

30 Chapter Practice ad Additioal Eercises The legth of the ladder is d d 8 sec ) 6 csc ). We ish to maimize I( )) 8 sec ) 6 csc ) Ê I ()) 8 sec ) ta ) 6 csc ) cot ). The I ()) 0 È 6 Ê 8 si ) 6 cos ) 0 Ê ta ) Ê d É È6 ad d È6 É È6 Ê the legth of the ladder is about Š È6 É È 6 Š È6 *Þ( ft. Î 75. g() Ê g() 0 ad g() 0 Ê g() 0 i the iterval [ß] by the Itermediate Value Theorem. The g () Ê b ;! Ê. Ê.965, ad so forth to & % 76. g() 75 Ê g() 0 ad g() 7 0 Ê g() 0 i the iterval [ ß% ] by the Itermediate Value Theorem. The g () Ê ; Ê.5959 b Ê.9050, ad so forth to & c da c c c % 75! da 77. A y e Ê d e ()( ) e e a b. Solvig d 0 Ê 0 Ê da ; 0 for da ad 0 for 0 Ê absolute maimum of Î e at È d È d È È Èe Î È Èe uits log by y e uits high. 78. A y ˆ l l da l l da da Ê d. Solvig d 0 Ê l 0 Ê e; d 0 for da l e e ad 0 for e Ê absolute maimum of at e uits log ad y uits high. d e e e 79. y l Ê y ˆ l () l ; solvig y 0 Ê ; y 0 for ad y 0 for Ê relative miimum of at ; f ˆ e ad f ˆ 0 Ê absolute miimum is at ad e e the absolute maimum is 0 at e 80. y 0( l ) Ê y 0( l ) 0 ˆ 0 0 l 0 0( l ); solvig y 0 Ê e; y 0 for e ad y 0 for e Ê relative maimum at e of 0e; y! o Ð!ß e Ó ad y ae b 0e ( l e) 0 Ê absolute miimum is 0 at e ad the absolute maimum is 0e at e

31 0 Chapter Applicatios of Derivatives ÎÈ Š È Š È b ÎÈ ÎÈ Š È Š È 8. fab e for all i a_, _ b; f ab e e ˆ ˆ a Î b ÎÈ ÎÈ ÎÈ Ä Ä e 0 Ê 0 Ê are critical poits. Cosider the behavior of f as Ä _; lim e lim e as suggested by the folloig table ( digit precisio, digits displayed): È ÎÈ Î e _ 0 ã ã ã ã ã ã _ 0 Therefore, y is a horizotal asymptote i both directios. Check the critical poits for absolute etreme values: ÈÎ ÈÎ ÈÎ fab e 0.9, fab e.08 Ê the absolute miimum value of the fuctio is e at, È Î ad the absolute maimum value is e at. È 8. fab e ; The domai of g is all such that 0. The parabola y is cocave do ith -itercepts at ad, therefore 0 if Ÿ Ÿ, ad this iterval is the domai of g; È È 0 g a b e 0 Ê 0 Ê is a critical poit; g a b g a b e, gab e 7.89 Ê the absolute miimum value of the fuctio is at ad, ad the aboslute maimum value is e at. l l l È È Î È 8. (a) y Ê y &Î &Î &Î Ê y ( l ) ˆ l ; solvig y 0 Ê l Ê e ; y 0 for e ad ad y 0 for e Ê a maimum of ; y 0 8 )Î Ê l Ê e ; the curve is cocave do o ˆ )Î 0 e ad cocave up o ˆ )Î ß e ß_ ; so there is a iflectio poit at ˆ )Î ) e ß. e %Î (b) y e Ê y e Ê y e e a be ; solvig y 0 Ê 0; y 0 for 0 ad y 0 for 0 Ê a maimum at 0 of! e ; there are poits of iflectio at È ; the curve is cocave do for ad cocave up otherise. e È È

32 Chapter Practice ad Additioal Eercises c c c c (c) y ( ) e Ê y e ( ) e e Ê y ec e c ( ) e c ; solvig y 0 c Ê e 0 Ê 0; y 0 for 0 ad y 0 for 0 Ê a maimum at 0 of ( 0) e! ; there is a poit of iflectio at ad the curve is cocave up for ad cocave do for. 8. y l Ê y l ˆ l ; solvig y 0 Ê l 0 Ê l Ê e ; y 0 for e ad y 0 for e Ê a miimum of e l e at e. This miimum is a absolute miimum e sice y is positive for all!. dy dy/dt sec t ta t ta t dy È d d/dt sec t sec t d¹ tî È ta ad y È sec y dy dy/dt cos t dy ; d d/dt cos t sec t d 85. ta t, y sec t Ê si t Ê si ; t Ê Ê Ê cos ˆ tî dy dy/dt Š dy 5 t t d d/dt d Š t t dy dy/dt ˆ dy d d/dt d ¹ Š t t t 86., y Ê t Ê ¹ () ; t Ê ad y Ê y ; t Ê () y sih Ê y sih cosh 6sih cosh Ê y sih 6 dy sec dy dy d tah y sechy d d 88. ta tah y Ê sec tah y sech y Ê Ê sec coth y cosh y dy dy dy cosh y coth y È d sechytahyè d d È 89. si sech y Ê sech y tah y Ê Ê dy dy sec ta dy d d cosh y d 90. sih y sec Ê cosh y sec ta Ê Ê sec ta sech y dy dy + y y d d 9. ta y tah Ê Ê 9. y tahal b Ê y sech al b Ê y sech al b dy sihal yb dy y dy dy y d y d sihal yb d d 9. coshal yb Ê sihal yb Ê Ê Ê y cschal yb aeb 9. y sihata e b Êy coshata e b e Êy e coshˆ tac e e 6

33 Chapter Applicatios of Derivatives dy sec sec dy 95. y sih ata b Ê sec Èsec Ê lsec l d É È ta ta a b Èsec d dy dy d d dy dy dy d d a bd dy coshysihcosh coshysihcosh d ysihy ysihy 96. y cosh y sih 50 Ê y sih y cosh y sih cosh 0 Ê y sihy coshysihcoshê ysihy coshysihcosh

274 Chapter 4 Applications of Derivatives

274 Chapter 4 Applications of Derivatives 274 Chapter 4 Applicatios of Derivatives Ê % a%) Ê * %) Ê %) Ê. We discard as a etraeous solutio, leavig. Sice D a for % ad D a for %, the critical poit correspods to the miimum distace. The miimum distace

More information

Chapter 4 Practice Exercises 303

Chapter 4 Practice Exercises 303 Chapter Practice Eercises 303 0 3 3 5 5 53. y 5. y 55. y 56. y 30 Chapter Applicatios of Derivatives % 57. y 58. y 3 3 59. y 60. y 6. lim lim Ä Ä a ac a a b bc b 6. lim b lim Ä Ä & 63. lim Ä ta ta! ta

More information

Maximum and Minimum Values

Maximum and Minimum Values Sec 4.1 Maimum ad Miimum Values A. Absolute Maimum or Miimum / Etreme Values A fuctio Similarly, f has a Absolute Maimum at c if c f f has a Absolute Miimum at c if c f f for every poit i the domai. f

More information

AP Calculus BC Review Applications of Derivatives (Chapter 4) and f,

AP Calculus BC Review Applications of Derivatives (Chapter 4) and f, AP alculus B Review Applicatios of Derivatives (hapter ) Thigs to Kow ad Be Able to Do Defiitios of the followig i terms of derivatives, ad how to fid them: critical poit, global miima/maima, local (relative)

More information

CHAPTER 4 APPLICATIONS OF DERIVATIVES

CHAPTER 4 APPLICATIONS OF DERIVATIVES CHAPTER APPLICATIONS OF DERIVATIVES. EXTREME VALUES OF FUNCTIONS. A absolute miimum at c, a absolute maimum at b. Theorem guaratees the eistece of such etreme values because h is cotiuous o [aß b].. A

More information

Math 105: Review for Final Exam, Part II - SOLUTIONS

Math 105: Review for Final Exam, Part II - SOLUTIONS Math 5: Review for Fial Exam, Part II - SOLUTIONS. Cosider the fuctio f(x) = x 3 lx o the iterval [/e, e ]. (a) Fid the x- ad y-coordiates of ay ad all local extrema ad classify each as a local maximum

More information

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is Calculus BC Fial Review Name: Revised 7 EXAM Date: Tuesday, May 9 Remiders:. Put ew batteries i your calculator. Make sure your calculator is i RADIAN mode.. Get a good ight s sleep. Eat breakfast. Brig:

More information

CHAPTER 4 Integration

CHAPTER 4 Integration CHAPTER Itegratio Sectio. Atierivatives a Iefiite Itegratio......... Sectio. Area............................. Sectio. Riema Sums a Defiite Itegrals........... Sectio. The Fuametal Theorem of Calculus..........

More information

The type of limit that is used to find TANGENTS and VELOCITIES gives rise to the central idea in DIFFERENTIAL CALCULUS, the DERIVATIVE.

The type of limit that is used to find TANGENTS and VELOCITIES gives rise to the central idea in DIFFERENTIAL CALCULUS, the DERIVATIVE. NOTES : LIMITS AND DERIVATIVES Name: Date: Period: Iitial: LESSON.1 THE TANGENT AND VELOCITY PROBLEMS Pre-Calculus Mathematics Limit Process Calculus The type of it that is used to fid TANGENTS ad VELOCITIES

More information

CHAPTER 4 Integration

CHAPTER 4 Integration CHAPTER Itegratio Sectio. Atierivatives a Iefiite Itegratio......... 77 Sectio. Area............................. 8 Sectio. Riema Sums a Defiite Itegrals........... 88 Sectio. The Fuametal Theorem of Calculus..........

More information

y = f x x 1. If f x = e 2x tan -1 x, then f 1 = e 2 2 e 2 p C e 2 D e 2 p+1 4

y = f x x 1. If f x = e 2x tan -1 x, then f 1 = e 2 2 e 2 p C e 2 D e 2 p+1 4 . If f = e ta -, the f = e e p e e p e p+ 4 f = e ta -, so f = e ta - + e, so + f = e p + e = e p + e or f = e p + 4. The slope of the lie taget to the curve - + = at the poit, - is - 5 Differetiate -

More information

Mathematics Extension 1

Mathematics Extension 1 016 Bored of Studies Trial Eamiatios Mathematics Etesio 1 3 rd ctober 016 Geeral Istructios Total Marks 70 Readig time 5 miutes Workig time hours Write usig black or blue pe Black pe is preferred Board-approved

More information

MTH Assignment 1 : Real Numbers, Sequences

MTH Assignment 1 : Real Numbers, Sequences MTH -26 Assigmet : Real Numbers, Sequeces. Fid the supremum of the set { m m+ : N, m Z}. 2. Let A be a o-empty subset of R ad α R. Show that α = supa if ad oly if α is ot a upper boud of A but α + is a

More information

CHAPTER 5 INTEGRATION

CHAPTER 5 INTEGRATION CHAPTER 5 INTEGRATION 5. AREA AND ESTIMATING WITH FINITE SUMS. fa Sice f is icreasig o Òß Ó, we use left edpoits to otai lower sums ad right edpoits to otai upper sums. i ) i i ( ( i ˆ i Š ˆ ˆ ˆ ) i i

More information

Name: Math 10550, Final Exam: December 15, 2007

Name: Math 10550, Final Exam: December 15, 2007 Math 55, Fial Exam: December 5, 7 Name: Be sure that you have all pages of the test. No calculators are to be used. The exam lasts for two hours. Whe told to begi, remove this aswer sheet ad keep it uder

More information

PRACTICE FINAL/STUDY GUIDE SOLUTIONS

PRACTICE FINAL/STUDY GUIDE SOLUTIONS Last edited December 9, 03 at 4:33pm) Feel free to sed me ay feedback, icludig commets, typos, ad mathematical errors Problem Give the precise meaig of the followig statemets i) a f) L ii) a + f) L iii)

More information

VICTORIA JUNIOR COLLEGE Preliminary Examination. Paper 1 September 2015

VICTORIA JUNIOR COLLEGE Preliminary Examination. Paper 1 September 2015 VICTORIA JUNIOR COLLEGE Prelimiary Eamiatio MATHEMATICS (Higher ) 70/0 Paper September 05 Additioal Materials: Aswer Paper Graph Paper List of Formulae (MF5) 3 hours READ THESE INSTRUCTIONS FIRST Write

More information

Math 21B-B - Homework Set 2

Math 21B-B - Homework Set 2 Math B-B - Homework Set Sectio 5.:. a) lim P k= c k c k ) x k, where P is a partitio of [, 5. x x ) dx b) lim P k= 4 ck x k, where P is a partitio of [,. 4 x dx c) lim P k= ta c k ) x k, where P is a partitio

More information

Calculus 2 Test File Fall 2013

Calculus 2 Test File Fall 2013 Calculus Test File Fall 013 Test #1 1.) Without usig your calculator, fid the eact area betwee the curves f() = 4 - ad g() = si(), -1 < < 1..) Cosider the followig solid. Triagle ABC is perpedicular to

More information

Honors Calculus Homework 13 Solutions, due 12/8/5

Honors Calculus Homework 13 Solutions, due 12/8/5 Hoors Calculus Homework Solutios, due /8/5 Questio Let a regio R i the plae be bouded by the curves y = 5 ad = 5y y. Sketch the regio R. The two curves meet where both equatios hold at oce, so where: y

More information

CALCULUS BASIC SUMMER REVIEW

CALCULUS BASIC SUMMER REVIEW CALCULUS BASIC SUMMER REVIEW NAME rise y y y Slope of a o vertical lie: m ru Poit Slope Equatio: y y m( ) The slope is m ad a poit o your lie is, ). ( y Slope-Itercept Equatio: y m b slope= m y-itercept=

More information

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations Chapter The Solutio of Numerical Algebraic ad Trascedetal Equatios Itroductio I this chapter we shall discuss some umerical methods for solvig algebraic ad trascedetal equatios. The equatio f( is said

More information

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0.

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0. THE SOLUTION OF NONLINEAR EQUATIONS f( ) = 0. Noliear Equatio Solvers Bracketig. Graphical. Aalytical Ope Methods Bisectio False Positio (Regula-Falsi) Fied poit iteratio Newto Raphso Secat The root of

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Math PracTest Be sure to review Lab (ad all labs) There are lots of good questios o it a) State the Mea Value Theorem ad draw a graph that illustrates b) Name a importat theorem where the Mea Value Theorem

More information

AP Calculus BC 2011 Scoring Guidelines Form B

AP Calculus BC 2011 Scoring Guidelines Form B AP Calculus BC Scorig Guidelies Form B The College Board The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success ad opportuity. Fouded i 9, the College

More information

CALCULUS AB SECTION I, Part A Time 60 minutes Number of questions 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM.

CALCULUS AB SECTION I, Part A Time 60 minutes Number of questions 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM. AP Calculus AB Portfolio Project Multiple Choice Practice Name: CALCULUS AB SECTION I, Part A Time 60 miutes Number of questios 30 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAM. Directios: Solve

More information

1988 AP Calculus BC: Section I

1988 AP Calculus BC: Section I 988 AP Calculus BC: Sectio I 9 Miutes No Calculator Notes: () I this eamiatio, l deotes the atural logarithm of (that is, logarithm to the base e). () Uless otherwise specified, the domai of a fuctio f

More information

Student s Printed Name:

Student s Printed Name: Studet s Prited Name: Istructor: XID: C Sectio: No questios will be aswered durig this eam. If you cosider a questio to be ambiguous, state your assumptios i the margi ad do the best you ca to provide

More information

Calculus 2 Test File Spring Test #1

Calculus 2 Test File Spring Test #1 Calculus Test File Sprig 009 Test #.) Without usig your calculator, fid the eact area betwee the curves f() = - ad g() = +..) Without usig your calculator, fid the eact area betwee the curves f() = ad

More information

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1 Assigmet : Real Numbers, Sequeces. Let A be a o-empty subset of R ad α R. Show that α = supa if ad oly if α is ot a upper boud of A but α + is a upper boud of A for every N. 2. Let y (, ) ad x (, ). Evaluate

More information

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0,

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0, Math Activity 9( Due with Fial Eam) Usig first ad secod Taylor polyomials with remaider, show that for, 8 Usig a secod Taylor polyomial with remaider, fid the best costat C so that for, C 9 The th Derivative

More information

MATH 1A FINAL (7:00 PM VERSION) SOLUTION. (Last edited December 25, 2013 at 9:14pm.)

MATH 1A FINAL (7:00 PM VERSION) SOLUTION. (Last edited December 25, 2013 at 9:14pm.) MATH A FINAL (7: PM VERSION) SOLUTION (Last edited December 5, 3 at 9:4pm.) Problem. (i) Give the precise defiitio of the defiite itegral usig Riema sums. (ii) Write a epressio for the defiite itegral

More information

Example 2. Find the upper bound for the remainder for the approximation from Example 1.

Example 2. Find the upper bound for the remainder for the approximation from Example 1. Lesso 8- Error Approimatios 0 Alteratig Series Remaider: For a coverget alteratig series whe approimatig the sum of a series by usig oly the first terms, the error will be less tha or equal to the absolute

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam 4 will cover.-., 0. ad 0.. Note that eve though. was tested i exam, questios from that sectios may also be o this exam. For practice problems o., refer to the last review. This

More information

n 3 ln n n ln n is convergent by p-series for p = 2 > 1. n2 Therefore we can apply Limit Comparison Test to determine lutely convergent.

n 3 ln n n ln n is convergent by p-series for p = 2 > 1. n2 Therefore we can apply Limit Comparison Test to determine lutely convergent. 06 微甲 0-04 06-0 班期中考解答和評分標準. ( poits) Determie whether the series is absolutely coverget, coditioally coverget, or diverget. Please state the tests which you use. (a) ( poits) (b) ( poits) (c) ( poits)

More information

Math 176 Calculus Sec. 5.1: Areas and Distances (Using Finite Sums)

Math 176 Calculus Sec. 5.1: Areas and Distances (Using Finite Sums) Math 176 Calculus Sec. 5.1: Areas ad Distaces (Usig Fiite Sums) I. Area A. Cosider the problem of fidig the area uder the curve o the f y=-x 2 +5 over the domai [0, 2]. We ca approximate this area by usig

More information

For example suppose we divide the interval [0,2] into 5 equal subintervals of length

For example suppose we divide the interval [0,2] into 5 equal subintervals of length Math 120c Calculus Sec 1: Estimatig with Fiite Sums I Area A Cosider the problem of fidig the area uder the curve o the fuctio y!x 2 + over the domai [0,2] We ca approximate this area by usig a familiar

More information

(A) 0 (B) (C) (D) (E) 2.703

(A) 0 (B) (C) (D) (E) 2.703 Class Questios 007 BC Calculus Istitute Questios for 007 BC Calculus Istitutes CALCULATOR. How may zeros does the fuctio f ( x) si ( l ( x) ) Explai how you kow. = have i the iterval (0,]? LIMITS. 00 Released

More information

For example suppose we divide the interval [0,2] into 5 equal subintervals of length

For example suppose we divide the interval [0,2] into 5 equal subintervals of length Math 1206 Calculus Sec 1: Estimatig with Fiite Sums Abbreviatios: wrt with respect to! for all! there exists! therefore Def defiitio Th m Theorem sol solutio! perpedicular iff or! if ad oly if pt poit

More information

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B) SCORING GUIDELINES (Form B) Questio 5 Let f be a fuctio defied o the closed iterval [,7]. The graph of f, cosistig of four lie segmets, is show above. Let g be the fuctio give by g ftdt. (a) Fid g (, )

More information

WBJEE Answer Keys by Aakash Institute, Kolkata Centre

WBJEE Answer Keys by Aakash Institute, Kolkata Centre WBJEE - 7 Aswer Keys by, Kolkata Cetre MATHEMATICS Q.No. B A C B A C A B 3 D C B B 4 B C D D 5 D A B B 6 C D B B 7 B C C A 8 B B A A 9 A * B D C C B B D A A D B B C B 3 A D D D 4 C B A A 5 C B B B 6 C

More information

' ' Š # # ' " # # # Section 5.3 The Definite Integral 275. œ x dx 1 dx x dx 1 dx. œ " # œ x dx 1 dx œ (3 1) œ ( 1 2) œ (see parts (a) and (b) above).

' ' Š # # '  # # # Section 5.3 The Definite Integral 275. œ x dx 1 dx x dx 1 dx. œ  # œ x dx 1 dx œ (3 1) œ ( 1 2) œ (see parts (a) and (b) above). Sectio. The Defiite Itegral 7 ( ) t dt t dt t dt t dt 6. av(f) Š at t dt Š ( ) ( ) Š Š. ( ) ( ) d ( ) d 6. (a) av(g) Š akk d d d d d ( ) Š ( ( )) Š ( ). () av(g) ˆ akk d ( ) d Š d d ( ). ( ) k k (c) av(g)

More information

AP Calculus BC 2007 Scoring Guidelines Form B

AP Calculus BC 2007 Scoring Guidelines Form B AP Calculus BC 7 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

More information

7.) Consider the region bounded by y = x 2, y = x - 1, x = -1 and x = 1. Find the volume of the solid produced by revolving the region around x = 3.

7.) Consider the region bounded by y = x 2, y = x - 1, x = -1 and x = 1. Find the volume of the solid produced by revolving the region around x = 3. Calculus Eam File Fall 07 Test #.) Fid the eact area betwee the curves f() = 8 - ad g() = +. For # - 5, cosider the regio bouded by the curves y =, y = 3 + 4. Produce a solid by revolvig the regio aroud

More information

Algebra II Notes Unit Seven: Powers, Roots, and Radicals

Algebra II Notes Unit Seven: Powers, Roots, and Radicals Syllabus Objectives: 7. The studets will use properties of ratioal epoets to simplify ad evaluate epressios. 7.8 The studet will solve equatios cotaiig radicals or ratioal epoets. b a, the b is the radical.

More information

MATH 10550, EXAM 3 SOLUTIONS

MATH 10550, EXAM 3 SOLUTIONS MATH 155, EXAM 3 SOLUTIONS 1. I fidig a approximate solutio to the equatio x 3 +x 4 = usig Newto s method with iitial approximatio x 1 = 1, what is x? Solutio. Recall that x +1 = x f(x ) f (x ). Hece,

More information

MATHEMATICS. 61. The differential equation representing the family of curves where c is a positive parameter, is of

MATHEMATICS. 61. The differential equation representing the family of curves where c is a positive parameter, is of MATHEMATICS 6 The differetial equatio represetig the family of curves where c is a positive parameter, is of Order Order Degree (d) Degree (a,c) Give curve is y c ( c) Differetiate wrt, y c c y Hece differetial

More information

JEE ADVANCED 2013 PAPER 1 MATHEMATICS

JEE ADVANCED 2013 PAPER 1 MATHEMATICS Oly Oe Optio Correct Type JEE ADVANCED 0 PAPER MATHEMATICS This sectio cotais TEN questios. Each has FOUR optios (A), (B), (C) ad (D) out of which ONLY ONE is correct.. The value of (A) 5 (C) 4 cot cot

More information

Continuous Functions

Continuous Functions Cotiuous Fuctios Q What does it mea for a fuctio to be cotiuous at a poit? Aswer- I mathematics, we have a defiitio that cosists of three cocepts that are liked i a special way Cosider the followig defiitio

More information

Lesson 10: Limits and Continuity

Lesson 10: Limits and Continuity www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals

More information

ENGI 9420 Engineering Analysis Assignment 3 Solutions

ENGI 9420 Engineering Analysis Assignment 3 Solutions ENGI 9 Egieerig Aalysis Assigmet Solutios Fall [Series solutio of ODEs, matri algebra; umerical methods; Chapters, ad ]. Fid a power series solutio about =, as far as the term i 7, to the ordiary differetial

More information

John Riley 30 August 2016

John Riley 30 August 2016 Joh Riley 3 August 6 Basic mathematics of ecoomic models Fuctios ad derivatives Limit of a fuctio Cotiuity 3 Level ad superlevel sets 3 4 Cost fuctio ad margial cost 4 5 Derivative of a fuctio 5 6 Higher

More information

JEE(Advanced) 2018 TEST PAPER WITH SOLUTION (HELD ON SUNDAY 20 th MAY, 2018)

JEE(Advanced) 2018 TEST PAPER WITH SOLUTION (HELD ON SUNDAY 20 th MAY, 2018) JEE(Advaced) 08 TEST PAPER WITH SOLUTION (HELD ON SUNDAY 0 th MAY, 08) PART- : JEE(Advaced) 08/Paper- SECTION. For ay positive iteger, defie ƒ : (0, ) as ƒ () j ta j j for all (0, ). (Here, the iverse

More information

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6 Math 4 Activity (Due by EOC Apr. ) Graph the followig epoetial fuctios by modifyig the graph of f. Fid the rage of each fuctio.. g. g. g 4. g. g 6. g Fid a formula for the epoetial fuctio whose graph is

More information

GULF MATHEMATICS OLYMPIAD 2014 CLASS : XII

GULF MATHEMATICS OLYMPIAD 2014 CLASS : XII GULF MATHEMATICS OLYMPIAD 04 CLASS : XII Date of Eamiatio: Maimum Marks : 50 Time : 0:30 a.m. to :30 p.m. Duratio: Hours Istructios to cadidates. This questio paper cosists of 50 questios. All questios

More information

Mathematics Extension 2

Mathematics Extension 2 009 HIGHER SCHOOL CERTIFICATE EXAMINATION Mathematics Etesio Geeral Istructios Readig time 5 miutes Workig time hours Write usig black or blue pe Board-approved calculators may be used A table of stadard

More information

+ {JEE Advace 03} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks: 00. If A (α, β) = (a) A( α, β) = A( α, β) (c) Adj (A ( α, β)) = Sol : We

More information

A.1 Algebra Review: Polynomials/Rationals. Definitions:

A.1 Algebra Review: Polynomials/Rationals. Definitions: MATH 040 Notes: Uit 0 Page 1 A.1 Algera Review: Polyomials/Ratioals Defiitios: A polyomial is a sum of polyomial terms. Polyomial terms are epressios formed y products of costats ad variales with whole

More information

Calculus. Ramanasri. Previous year Questions from 2016 to

Calculus. Ramanasri. Previous year Questions from 2016 to ++++++++++ Calculus Previous ear Questios from 6 to 99 Ramaasri 7 S H O P NO- 4, S T F L O O R, N E A R R A P I D F L O U R M I L L S, O L D R A J E N D E R N A G A R, N E W D E L H I. W E B S I T E :

More information

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim Math 3, Sectio 2. (25 poits) Why we defie f(x) dx as we do. (a) Show that the improper itegral diverges. Hece the improper itegral x 2 + x 2 + b also diverges. Solutio: We compute x 2 + = lim b x 2 + =

More information

Circular Functions (Trigonometry)

Circular Functions (Trigonometry) Circular Fuctios (Trigoometry) Circular fuctios Revisio Where do si cos ad ta come from? Uit circle (of radius ) cos is the coordiate si is the y coordiate si ta cos all are measures of legth. Remember

More information

CHAPTER 11 Limits and an Introduction to Calculus

CHAPTER 11 Limits and an Introduction to Calculus CHAPTER Limits ad a Itroductio to Calculus Sectio. Itroductio to Limits................... 50 Sectio. Teciques for Evaluatig Limits............. 5 Sectio. Te Taget Lie Problem................. 50 Sectio.

More information

MATHEMATICS Code No. 13 INSTRUCTIONS

MATHEMATICS Code No. 13 INSTRUCTIONS DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO COMBINED COMPETITIVE (PRELIMINARY) EXAMINATION, 0 Serial No. MATHEMATICS Code No. A Time Allowed : Two Hours Maimum Marks : 00 INSTRUCTIONS. IMMEDIATELY

More information

Taylor Series (BC Only)

Taylor Series (BC Only) Studet Study Sessio Taylor Series (BC Oly) Taylor series provide a way to fid a polyomial look-alike to a o-polyomial fuctio. This is doe by a specific formula show below (which should be memorized): Taylor

More information

f t dt. Write the third-degree Taylor polynomial for G

f t dt. Write the third-degree Taylor polynomial for G AP Calculus BC Homework - Chapter 8B Taylor, Maclauri, ad Power Series # Taylor & Maclauri Polyomials Critical Thikig Joural: (CTJ: 5 pts.) Discuss the followig questios i a paragraph: What does it mea

More information

U8L1: Sec Equations of Lines in R 2

U8L1: Sec Equations of Lines in R 2 MCVU U8L: Sec. 8.9. Equatios of Lies i R Review of Equatios of a Straight Lie (-D) Cosider the lie passig through A (-,) with slope, as show i the diagram below. I poit slope form, the equatio of the lie

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

Section 1.1. Calculus: Areas And Tangents. Difference Equations to Differential Equations

Section 1.1. Calculus: Areas And Tangents. Difference Equations to Differential Equations Differece Equatios to Differetial Equatios Sectio. Calculus: Areas Ad Tagets The study of calculus begis with questios about chage. What happes to the velocity of a swigig pedulum as its positio chages?

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

We will conclude the chapter with the study a few methods and techniques which are useful

We will conclude the chapter with the study a few methods and techniques which are useful Chapter : Coordiate geometry: I this chapter we will lear about the mai priciples of graphig i a dimesioal (D) Cartesia system of coordiates. We will focus o drawig lies ad the characteristics of the graphs

More information

a is some real number (called the coefficient) other

a is some real number (called the coefficient) other Precalculus Notes for Sectio.1 Liear/Quadratic Fuctios ad Modelig http://www.schooltube.com/video/77e0a939a3344194bb4f Defiitios: A moomial is a term of the form tha zero ad is a oegative iteger. a where

More information

MATH spring 2008 lecture 3 Answers to selected problems. 0 sin14 xdx = x dx. ; (iv) x +

MATH spring 2008 lecture 3 Answers to selected problems. 0 sin14 xdx = x dx. ; (iv) x + MATH - sprig 008 lecture Aswers to selected problems INTEGRALS. f =? For atiderivatives i geeral see the itegrals website at http://itegrals.wolfram.com. (5-vi (0 i ( ( i ( π ; (v π a. This is example

More information

TEACHER CERTIFICATION STUDY GUIDE

TEACHER CERTIFICATION STUDY GUIDE COMPETENCY 1. ALGEBRA SKILL 1.1 1.1a. ALGEBRAIC STRUCTURES Kow why the real ad complex umbers are each a field, ad that particular rigs are ot fields (e.g., itegers, polyomial rigs, matrix rigs) Algebra

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

MOCK TEST - 02 COMMON ENTRANCE TEST 2012 SUBJECT: MATHEMATICS Time: 1.10Hrs Max. Marks 60 Questions 60. then x 2 =

MOCK TEST - 02 COMMON ENTRANCE TEST 2012 SUBJECT: MATHEMATICS Time: 1.10Hrs Max. Marks 60 Questions 60. then x 2 = MOCK TEST - 0 COMMON ENTRANCE TEST 0 SUBJECT: MATHEMATICS Time:.0Hrs Max. Marks 60 Questios 60. The value of si cot si 3 cos sec + + 4 4 a) 0 b) c) 4 6 + x x. If Ta - α + x + x the x a) cos α b) Taα c)

More information

MATHEMATICS 9740 (HIGHER 2)

MATHEMATICS 9740 (HIGHER 2) VICTORIA JUNIOR COLLEGE PROMOTIONAL EXAMINATION MATHEMATICS 970 (HIGHER ) Frida 6 Sept 0 8am -am hours Additioal materials: Aswer Paper List of Formulae (MF5) READ THESE INSTRUCTIONS FIRST Write our ame

More information

VITEEE 2018 MATHEMATICS QUESTION BANK

VITEEE 2018 MATHEMATICS QUESTION BANK VITEEE 8 MTHEMTICS QUESTION BNK, C = {,, 6}, the (B C) Ques. Give the sets {,,},B {, } is {} {,,, } {,,, } {,,,,, 6} Ques. s. d ( si cos ) c ta log( ta 6 Ques. The greatest umer amog 9,, 7 is ) c c cot

More information

Sequences. A Sequence is a list of numbers written in order.

Sequences. A Sequence is a list of numbers written in order. Sequeces A Sequece is a list of umbers writte i order. {a, a 2, a 3,... } The sequece may be ifiite. The th term of the sequece is the th umber o the list. O the list above a = st term, a 2 = 2 d term,

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

MATH 129 FINAL EXAM REVIEW PACKET (Spring 2014)

MATH 129 FINAL EXAM REVIEW PACKET (Spring 2014) MATH 9 FINAL EXAM REVIEW PACKET (Sprig 4) The followig questios ca be used as a review for Math 9. These questios are ot actual samples of questios that will appear o the fial eam, but the will provide

More information

236 Chapter 4 Applications of Derivatives

236 Chapter 4 Applications of Derivatives 26 Chapter Applications of Derivatives Î$ &Î$ Î$ 5 Î$ 0 "Î$ 5( 2) $È 26. (a) g() œ ( 5) œ 5 Ê g () œ œ Ê critical points at œ 2 and œ 0 Ê g œ ± )(, increasing on ( _ß 2) and (!ß _), decreasing on ( 2 ß!)!

More information

Quiz. Use either the RATIO or ROOT TEST to determine whether the series is convergent or not.

Quiz. Use either the RATIO or ROOT TEST to determine whether the series is convergent or not. Quiz. Use either the RATIO or ROOT TEST to determie whether the series is coverget or ot. e .6 POWER SERIES Defiitio. A power series i about is a series of the form c 0 c a c a... c a... a 0 c a where

More information

Fundamental Concepts: Surfaces and Curves

Fundamental Concepts: Surfaces and Curves UNDAMENTAL CONCEPTS: SURACES AND CURVES CHAPTER udametal Cocepts: Surfaces ad Curves. INTRODUCTION This chapter describes two geometrical objects, vi., surfaces ad curves because the pla a ver importat

More information

WELCOME. Welcome to the Course. to MATH 104: Calculus I

WELCOME. Welcome to the Course. to MATH 104: Calculus I WELCOME to MATH : Calculus I Welcome to the Course. Pe Math Calculus I. Topics: quick review of high school calculus, methods ad applicatios of itegratio, ifiite series ad applicatios, some fuctios of

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

7 Sequences of real numbers

7 Sequences of real numbers 40 7 Sequeces of real umbers 7. Defiitios ad examples Defiitio 7... A sequece of real umbers is a real fuctio whose domai is the set N of atural umbers. Let s : N R be a sequece. The the values of s are

More information

(a) (b) All real numbers. (c) All real numbers. (d) None. to show the. (a) 3. (b) [ 7, 1) (c) ( 7, 1) (d) At x = 7. (a) (b)

(a) (b) All real numbers. (c) All real numbers. (d) None. to show the. (a) 3. (b) [ 7, 1) (c) ( 7, 1) (d) At x = 7. (a) (b) Chapter 0 Review 597. E; a ( + )( + ) + + S S + S + + + + + + S lim + l. D; a diverges by the Itegral l k Test sice d lim [(l ) ], so k l ( ) does ot coverge absolutely. But it coverges by the Alteratig

More information

TECHNIQUES OF INTEGRATION

TECHNIQUES OF INTEGRATION 7 TECHNIQUES OF INTEGRATION Simpso s Rule estimates itegrals b approimatig graphs with parabolas. Because of the Fudametal Theorem of Calculus, we ca itegrate a fuctio if we kow a atiderivative, that is,

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

CALCULUS IN A NUTSHELL INTRODUCTION:

CALCULUS IN A NUTSHELL INTRODUCTION: CALCULUS IN A NUTSHELL INTRODUCTION: Studets are usually itroduced to basic calculus i twelfth grade i high school or the first year of college. The course is typically stretched out over oe year ad ivolves

More information

FINALTERM EXAMINATION Fall 9 Calculus & Aalytical Geometry-I Questio No: ( Mars: ) - Please choose oe Let f ( x) is a fuctio such that as x approaches a real umber a, either from left or right-had-side,

More information

NATIONAL JUNIOR COLLEGE SENIOR HIGH 1 PROMOTIONAL EXAMINATIONS Higher 2

NATIONAL JUNIOR COLLEGE SENIOR HIGH 1 PROMOTIONAL EXAMINATIONS Higher 2 NATIONAL JUNIOR COLLEGE SENIOR HIGH PROMOTIONAL EXAMINATIONS Higher MATHEMATICS 9758 9 September 06 hours Additioal Materials: Aswer Paper List of Formulae (MF6) Cover Sheet READ THESE INSTRUCTIONS FIRST

More information

SEQUENCE AND SERIES NCERT

SEQUENCE AND SERIES NCERT 9. Overview By a sequece, we mea a arragemet of umbers i a defiite order accordig to some rule. We deote the terms of a sequece by a, a,..., etc., the subscript deotes the positio of the term. I view of

More information

Solving equations (incl. radical equations) involving these skills, but ultimately solvable by factoring/quadratic formula (no complex roots)

Solving equations (incl. radical equations) involving these skills, but ultimately solvable by factoring/quadratic formula (no complex roots) Evet A: Fuctios ad Algebraic Maipulatio Factorig Square of a sum: ( a + b) = a + ab + b Square of a differece: ( a b) = a ab + b Differece of squares: a b = ( a b )(a + b ) Differece of cubes: a 3 b 3

More information

4.1 SIGMA NOTATION AND RIEMANN SUMS

4.1 SIGMA NOTATION AND RIEMANN SUMS .1 Sigma Notatio ad Riema Sums Cotemporary Calculus 1.1 SIGMA NOTATION AND RIEMANN SUMS Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each

More information

Substitute these values into the first equation to get ( z + 6) + ( z + 3) + z = 27. Then solve to get

Substitute these values into the first equation to get ( z + 6) + ( z + 3) + z = 27. Then solve to get Problem ) The sum of three umbers is 7. The largest mius the smallest is 6. The secod largest mius the smallest is. What are the three umbers? [Problem submitted by Vi Lee, LCC Professor of Mathematics.

More information

Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t =

Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t = Mathematics Summer Wilso Fial Exam August 8, ANSWERS Problem 1 (a) Fid the solutio to y +x y = e x x that satisfies y() = 5 : This is already i the form we used for a first order liear differetial equatio,

More information

3. If x and y are real numbers, what is the simplified radical form

3. If x and y are real numbers, what is the simplified radical form lgebra II Practice Test Objective:.a. Which is equivalet to 98 94 4 49?. Which epressio is aother way to write 5 4? 5 5 4 4 4 5 4 5. If ad y are real umbers, what is the simplified radical form of 5 y

More information

ENGI 9420 Lecture Notes 3 - Numerical Methods Page 3.01

ENGI 9420 Lecture Notes 3 - Numerical Methods Page 3.01 ENGI 940 Lecture Notes 3 - Numerical Methods Page 3.0 3. Numerical Methods The majority of equatios of iterest i actual practice do ot admit ay aalytic solutio. Eve equatios as simple as = e ad I = e d

More information

Polynomial Functions and Their Graphs

Polynomial Functions and Their Graphs Polyomial Fuctios ad Their Graphs I this sectio we begi the study of fuctios defied by polyomial expressios. Polyomial ad ratioal fuctios are the most commo fuctios used to model data, ad are used extesively

More information