' ' Š # # ' " # # # Section 5.3 The Definite Integral 275. œ x dx 1 dx x dx 1 dx. œ " # œ x dx 1 dx œ (3 1) œ ( 1 2) œ (see parts (a) and (b) above).

Size: px
Start display at page:

Download "' ' Š # # ' " # # # Section 5.3 The Definite Integral 275. œ x dx 1 dx x dx 1 dx. œ " # œ x dx 1 dx œ (3 1) œ ( 1 2) œ (see parts (a) and (b) above)."

Transcription

1 Sectio. The Defiite Itegral 7 ( ) t dt t dt t dt t dt 6. av(f) Š at t dt Š ( ) ( ) Š Š. ( ) ( ) d ( ) d 6. (a) av(g) Š akk d d d d d ( ) Š ( ( )) Š ( ). () av(g) ˆ akk d ( ) d Š d d ( ). ( ) k k (c) av(g) Š akk d a d akk d ( ) (see parts (a) ad () aove). 6. (a) av(h) Š k k d ( ) d d. ( ) ( ) Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

2 76 Chapter Itegratio () av(h) ˆ k kd d Š. ( ) (c) av(h) Š k k d Œ k k d k k d ˆ ˆ aove). (see parts (a) ad () k Ö a aa aa kaa k a a c a a k c a a k k k a Ä_ m mä 6. Cosider the partitio P that sudivides the iterval Òa, Ó ito suitervals of width a ad let c e the right edpoit of each suiterval. So the partitio is P a, a, a,..., a ad c a. We get the Riema sum f c c c a. As ad P this epressio remais ca a. Thus, c d ca a. a k k Ö k a ˆ k ˆ k 8 k 8 a a k k k k k a a 6. Cosider the partitio P that sudivides the iterval Ò, Ó ito suitervals of width ad let c e the right edpoit of each suiterval. So the partitio is P,,,..., ad c k. We get the Riema sum f c k. As Ä_ ad mp mä the epressio has the value 6. Thus, d Cosider the partitio P that sudivides the iterval Òa, Ó ito suitervals of width a ad let c e the right k a aa aa kaa Ö k a k ˆ Š k a a a k a a ak a a kaa Š k k k k a a k k a a a a a a a Œ a a a a a a a a k k k edpoit of each suiterval. So the partitio is P a, a, a,..., a ad c a. We get the Riema sum f c c a a aa a a aa aa Ä_ m mä a a a a a a aaa aa a aaa aa a As ad P this epressio has value a a a a a a a a a a a a. Thus, d. a 66. Cosider the partitio P that sudivides the iterval Ò, Ó ito suitervals of width ad let c e the right edpoit of each suiterval. So the partitio is P Ö,,,..., ad Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley. k

3 Sectio. The Defiite Itegral 77 k k k k k k k k k k k k Š ˆ a a a k k k k a a a. As Ä_ ad mp mä this epressio has value 6. Thus, a d. 6 c k. We get the Riema sum fac Š ˆ ˆ a k k k k k k k k k a a a Š k k k k 6a 7a a 8. As Ä_ ad mp mä this epressio has value Thus, a d Cosider the partitio P that sudivides the iterval Ò, Ó ito suitervals of width ad let c e the right edpoit of each suiterval. So the partitio is P Ö,,,..., ad c k. We get the Riema sum fac Š ˆ ˆ a k k a k ˆ ˆ k k k k 6k k 8k 6 8 Š k k Œ k k k k k k 6 a a a a a a a Š 68. Cosider the partitio P that sudivides the iterval Ò, Ó ito suitervals of width ad let c e the right edpoit of each suiterval. So the partitio is P Ö,,,..., ad c k. We get the Riema sum f c c k 6. As Ä _ ad mp m Ä this epressio has value 68. Thus, d. k a aa aa k a a a a k a a a k ˆ k Š k k k a a ka a ak a a k a a a a a a a a a a a a k a k k k k k k k a a a a a aa a a a a a a a Š 69. Cosider the partitio P that sudivides the iterval Òa, Ó ito suitervals of width a ad let c e the right edpoit of each suiterval. So the partitio is P Öa, a, a,..., a ad c a. We get the Riema sum f c c a k Š Œ a a a a a a a a a a a a aa a a a aaa a a a a a a aa a a a a a. As Ä_ ad mp mä this epressio has value a aa aa a. Thus, d. k k Ö k a k a k ˆ Š ˆ Œ k k k k k k k k 7. Cosider the partitio P that sudivides the iterval Ò, Ó ito suitervals of width ad let c e the right edpoit of each suiterval. So the partitio is P,,,..., ad c k. We get the Riema sum f c c c k k k k Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

4 78 Chapter Itegratio a a a Š. As Ä_ ad mp mä this epressio has value. Thus, a d. 7. To fid where, let Ê ( ) Ê or. If, the Ê a ad maimize the itegral. 7. To fid where Ÿ, let Ê a Ê or È. By the sig graph,, we ca see that Ÿ o Èß È Ê a È ad È È È miimize the itegral. 7. f() is decreasig o [ß] Ê maimum value of f occurs at Ê ma f f() ; miimum value of f occurs at Ê mi f f(). Therefore, ( ) mi f Ÿ d Ÿ ( ) ma f Ê Ÿ d Ÿ. That is, a upper oud ad a lower oud. (.).. (.) Ÿ Ÿ Ê Ÿ Ÿ... 9 Ÿ Ÿ. Ê Ÿ Ÿ 7. See Eercise 7 aove. O [ß.], ma f, mi f.8. Therefore (. ) mi f Ÿ f() d Ÿ (. ) ma f Ê Ÿ d Ÿ. O [.ß], ma f.8 ad mi f.. Therefore (.) mi f d (.) ma f d. The d d d. 7. Ÿ si a Ÿ for all Ê ( )( ) Ÿ si a d Ÿ ( )() or si d Ÿ Ê si d caot equal. 76. f() È 8 is icreasig o [ß] Ê ma f f() È 8 ad mi f f() È 8 È. Therefore, ( ) mi f Ÿ È 8 d Ÿ ( ) ma f Ê È Ÿ È 8 d Ÿ. 77. If f() o [aß ], the mi f ad ma f o [aß]. Now, ( a) mi f Ÿ f() d Ÿ ( a) ma f. The a Ê a Ê ( a) mi f Ê f() d. 78. If f() Ÿ o [aß], the mi f Ÿ ad ma f Ÿ. Now, ( a) mi f Ÿ f() d Ÿ ( a) ma f. The a Ê a Ê ( a) ma f Ÿ Ê f() d Ÿ. a a 79. si Ÿ for Ê si Ÿ for Ê (si ) d Ÿ (see Eercise 78) Ê si d d Ÿ a si d d si d Š si d. Thus a upper oud is. Ê Ÿ Ê Ÿ Ê Ÿ a Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

5 Sectio. The Defiite Itegral 79 ß ß Ê Ê 7 Š 6 8. sec o ˆ ß Ê sec Š o ˆ ß Ê sec Š d (see Eercise 77) sice [ ] is cotaied i ˆ sec d Š d sec d Š Ê sec d d d Ê sec d ( ) Ê sec d. Thus a lower oud 7 is 6. a a a a av(f) d ( a)k ( a) f() d f() d. a a a a 8. Yes, for the followig reasos: av(f) f() d is a costat K. Thus av(f) d K d K( a) Ê 8. All three rules hold. The reasos: O ay iterval [aß ] o which f ad g are itegrale, we have: a a a a a a a a a (a) av(f g) [f() g()] d f() d g() d f() d g() d av(f) av(g) a a a a a a () av(kf) kf() d k f() d k f() d k av(f) a a a a a a (c) av(f) f() d Ÿ g() d sice f() Ÿ g() o [aß], ad g() d av(g). Therefore, av(f) Ÿ av(g). 8. (a) U ma? ma? á ma? where ma f( ), ma f( ), á, ma f( ) sice f is icreasig o [aß]; L mi? mi? á mi? where mi f( ), mi f( ), á, mi f( c) sice f is icreasig o [aß]. Therefore U L (ma mi )? (ma mi )? á (ma mi )? (f() f( ))? (f( ) f( ))? á (f( ) f( c))? (f( ) f( ))? (f() f(a))?. () U ma? ma? á ma? where ma f( ), ma f( ), á, ma f( ) sice f is icreasig o[aß]; L mi? mi? á mi? where mi f( ), mi f( ), á, mi f( c) sice f is icreasig o [aß]. Therefore U L (ma mi )? (ma mi )? á (ma mi )? (f() f( ))? (f( ) f( ))? á (f( ) f( c))? Ÿ (f() f( ))? ma (f( ) f( ))? ma á (f( ) f( c))? ma. The U L Ÿ (f( ) f( ))? ma (f() f(a))? ma kf() f(a) k? ma sice f() f(a). Thus lim (U L) lim (f() f(a))? ma, sice? ma lp l. lpl Ä lpl Ä 8. (a) U ma? ma? á ma? where ma f( ), ma f( ), á, ma f( c ) sice f is decreasig o [aß ]; L mi? mi? á mi? where mi f( ), mi f( ) ß á, mi f( ) sice f is decreasig o [aß ]. Therefore U L (ma mi )? (ma mi )? á (ma mi )? (f() f( ))? (f( ) f( ))? á (f( c ) f( ))? (f( ) f( ))? (f(a) f())?. Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

6 8 Chapter Itegratio () U ma? ma? á ma? where ma f( ), ma f( ), á, ma f( c ) sice f is decreasig o[aß]; L mi? mi? á mi? where mi f( ), mi f( ), á, mi f( ) sice f is decreasig o [aß]. Therefore U L (ma mi )? (ma mi )? á (ma mi )? (f() f( ))? (f( ) f( ))? á (f( c ) f( ))? Ÿ (f() f( ))? ma (f(a) f()? ma kf() f(a) k? ma sice f() Ÿ f(a). Thus lim (U L) lim kf() f(a) k? ma, sice? ma lp l. lpl Ä lpl Ä 8. (a) Partitio ß ito suitervals, each of legth? with poits,?,?, á,?. Sice si is icreasig o ß, the upper sum U is the sum of the areas of the circumscried rectagles of areas f( )? (si? )?, f( )? (si? )?, á, f( )? cos? cosˆ ˆ? si (si? )?. The U (si? si? á si? )??? cos cos ˆ ˆ ˆ cos cos ˆ cos cos ˆ si si si Š ˆ () The area is si d lim. Ä_ Î cos cos ˆ cos si Š 86. (a) The area of the shaded regio is m which is equal to L. i () The area of the shaded regio is M which is equal to U. i i i i i (c) The area of the shaded regio is the differece i the areas of the shaded regios show i the secod part of the figure ad the first part of the figure. Thus this area is U L. 87. By Eercise 86, U L M m where M maö fa o the ith suiterval ad i i i i i i i i a a i i i i i i i i i a a i i m miö f o the ith suiterval. Thus U L M m provided for each i ßÞÞÞ,. Sice a the result, U L a follows. 88. The car drove the first miles i hours ad the secod miles i hours, which meas it drove miles i 8 hours, for a average of mi/hr 7. mi/hr. I terms of average values of fuctios, the fuctio whose average value we seek is 8, Ÿ t Ÿ v(t), ad the average value is, Ÿ 8 ()() ()() Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

7 89-9. Eample CAS commads: Maple: with( plots ); with( Studet[Calculus] ); f := -> -; a := ; := ; N :=[,,, ]; P := [seq( RiemaSum( f(), =a.., partitio=, method=radom, output=plot ), =N )]: display( P, isequece=true ); Sectio. The Defiite Itegral Eample CAS commads: Maple: with( Studet[Calculus] ); f := -> si(); a := ; := Pi; plot( f(), =a.., title=9(a) (Sectio.) ); N := [,, ]; () for i N do Xlist := [ a+.*(-a)/*i i=.. ]; Ylist := map( f, Xlist ); ed do: for i N do (c) Avg[] := evalf(add(y,y=ylist)/ops(ylist)); ed do; avg := FuctioAverage( f(), =a.., output=value ); evalf( avg ); FuctioAverage(f(),=a..,output=plot); (d) fsolve( f()=avg, =. ); fsolve( f()=avg, =. ); fsolve( f()=avg[], =. ); fsolve( f()=avg[], =. ); Eample CAS commads: Mathematica: (assiged fuctio ad values for a,, ad may vary) Sums of rectagles evaluated at left-had edpoits ca e represeted ad evaluated y this set of commads Clear[, f, a,, ] {a, }={, }; =; d = ( a)/; f = Si[] ; vals =Tale[N[], {, a, d, d}]; yvals = f /. Ä vals; oes = MapThread[Lie[{{,},{, },{, },{, }]&,{vals, vals d, yvals}]; Plot[f, {, a, }, Epilog Ä oes]; Sum[yvals[[i]] d, {i,, Legth[yvals]}]//N Sums of rectagles evaluated at right-had edpoits ca e represeted ad evaluated y this set of commads. Clear[, f, a,, ] {a, }={, }; =; d = ( a)/; f = Si[] ; Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

8 8 Chapter Itegratio vals =Tale[N[], {, a d,, d}]; yvals = f /. Ä vals; oes = MapThread[Lie[{{,},{, },{, },{, }]&,{vals d,vals, yvals}]; Plot[f, {, a, }, Epilog Ä oes]; Sum[yvals[[i]] d, {i,,legth[yvals]}]//n Sums of rectagles evaluated at midpoits ca e represeted ad evaluated y this set of commads. Clear[, f, a,, ] {a, }={, }; =; d = ( a)/; f = Si[] ; vals =Tale[N[], {, a d/, d/, d}]; yvals = f /. Ä vals; oes = MapThread[Lie[{{,},{, },{, },{, }]&,{vals d/, vals d/, yvals}]; Plot[f, {, a, },Epilog Ä oes]; Sum[yvals[[i]] d, {i,, Legth[yvals]}]//N. THE FUNDAMENTAL THEOREM OF CALCULUS. ( ) d c d a () a( ) ( ) 6 c. ˆ ( ) d Š () Š ( ) c. a d a d Š Š a a a a. a d Š a a Š ( ) ( ) c a ( ). Š d Š Š 8 () () () a d Š () Š ( ) ( ) c ( ) 7. ˆ È d ˆ Î 8. d ˆ ( ) Î& Î& Î 9. sec d [ ta ] ˆ ta ˆ ( ta ) È È Î. a cos d [ si ] asi a si Î Î. csc ) cot ) d ) [ csc )] ˆ csc ˆ ˆ csc ˆ È Š È Î Î. sec u ta u du [ sec u] sec ˆ sec () () Î Î Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

9 Sectio. The Fudametal Theorem of Calculus 8 Î Î Î cos t. dt ˆ cos t dt t si t ˆ () si () ˆ ˆ si ˆ Î Î cos t. dt ˆ cos t dt t si t cî cî Î Î È 6 6 ˆ ˆ si ˆ ˆ ˆ si ˆ si si ˆ Î Î Î. ta d asec d [ta ] ˆ ta ˆ ata a Î6 Î6 Î6 6. asec ta d asec sec ta ta d asec sec ta d Î6 ˆ ˆ ˆ ˆ a È [ ta sec ] ta sec ta sec 7. si d cos ˆ cos ˆ ˆ cos a Î8 Î8 È 8 Î Î cî t cî Î t Î 8. ˆ sec t dt a sec t t dt ta t Š ta ˆ Š ta ˆ (( ) ) Š Š È È ˆ ˆ r ( ) 8 9. (r ) dr ar r dr r r Š ( ) ( ) Š È È. (t ) t dt t t È a È at t t dt t t Š È È Š È Š È È È È Š È Š È Š È Š È ) Š È u u & u u 6 È 6 6 Š È ( ( ) ). È Š & du È Š u du u Š () c c c y y y ac ac c y c c ac ac. dy ay y dy y Š Š È È È. s Ès ds s ˆ Î s Î ds s È È Š È È ÈÈ 8 ˆ ˆ s ÉÈ Î Î Î Î Î Î Î Î Î. d d ˆ d Î Î Î Î Î Î Î Î Î Š 8 a a8 8 a a8 Š a a a a 7 si sicos. d d cos d si asi a ˆ si ˆ Î si Î si Î Î Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

10 8 Chapter Itegratio Î Î Î 6. acos sec d acos sec d ˆ cos sec d Î Î ˆ cos sec d si ta ˆ si ˆ ˆ taˆ ˆ si a a taa 9È k k d k k d k k d d d Š Š 6 c c c Î Î ( ) 8. acos kcos k d (cos cos ) d (cos cos ) d cos d [si ] Î si si È È È 9. (a) cos t dt [si t] si È si si È d d Î Ê Œ cos t dt ˆ si È cos È ˆ cos È È È d d () Œ cos t dt ˆ cos È ˆ ˆ È ˆ cos È ˆ Î d d d cos È È si si si d d d d. (a) t dt ct d si Ê Œ t dt asi si cos d d () Œ t dt a si ˆ (si ) si cos d si d Î t t t Î Î & dt dt t. (a) Èu du u du u d t t È d a Ê Œ u du ˆ t t t d d () Œ Èu du Èt ˆ at t at t dt & dt ta ) ta ) d d d) d) ta ). (a) sec y dy [ta y] ta (ta )) ta (ta )) Ê sec y dy (ta (ta ))) Œ asec (ta )) sec ) d d () Œ sec y dy asec (ta ) ˆ (ta ) ) ) asec (ta )) sec ) d) d) ta ). y È t dy dt Ê È dy. y dt Ê, d t d È. y si t dt dy d Î È si t dt Ê si (si ) d Š ˆ È ˆ ˆ È ˆ d dy d d d d d 6. y si t dt Ê Œ si t dt si t dt si a a si t dt 6 si si t dt t t dy ct t d 7. y dt dt Ê d si È Î Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

11 Sectio. The Fudametal Theorem of Calculus 8 dy d d d 8. y Œ at dt Ê Œ at dt Œ at dt a Œ at dt si Èt d Èsi d Ècos kcos k cos dt dy d cos cos 9. y, k k Ê ˆ (si ) (cos ) sice kk dt dy. y Ê ˆ ˆ d (ta ) ˆ asec ta t d ta d sec. Ê ( ) Ê or ; Area a d a d a d ( ) ( ) Š Š ( ) Š ( ) ( ) Š Š Š ( ) 8 Š Š Š. Ê Ê ; ecause of symmetry aout the y-ais, Area Œ a d a d Š c d c d c aa () a () aa () a () d (6). Ê a Ê ( )( ) Ê,, or ; Area a d a d Š Š Š Š Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

12 86 Chapter Itegratio Î Î Î Î. Ê ˆ Ê or Î Î Ê or Ê or Ê or ; ) Area ˆ Î d ˆ Î Î d ˆ d c ) Î Î Î Î Î ( ) Š () Š ( ) Î Î Š () Š () Î 8 Î 8 Š (8) Š () ˆ. The area of the rectagle ouded y the lies y, y,, ad is. The area uder the curve y cos o [ ß] is ( cos ) d [ si ] ( si ) ( si ). Therefore the area of the shaded regio is The area uder the curve y si o Î6 & Î 6 6 6ß 6 is si d [ cos ] Î6 Î ˆ ˆ È È Š È È The area of the rectagle ouded y the lies,, y si si, ad y is ˆ cos cos. Therefore the area of the shaded regio is. 7. O ß : The area of the rectagle ouded y the lies y È, y, ), ad ) is È ˆ È. The area etwee the curve y sec ) ta ) ad y is sec ) ta ) d ) [ sec )] cî Î ˆ È È Î ) ) Î ) ) ) ) È È ( sec ) sec ˆ È. Therefore the area of the shaded regio o ß is Š È. O ß : The area of the rectagle ouded y,, y È, ad y is È ˆ ) ). The area uder the curve y sec ta is sec ta d [sec ] sec sec. Therefore the area of the shaded regio o ß is Š È. Thus, the area of the total shaded regio is È È È Š È Š È. 8. The area of the rectagle ouded y the lies y, y, t, ad t is ˆ ˆ. The area uder the curve y sec t o ß is sec t dt [ta t] ta ta ˆ Î. The area cî uder the curve y t o [ß ] is t a t dt t Š Š. Thus, the total area uder the curves o ß is. Therefore the area of the shaded regio is ˆ. dy t d t 9. y dt Ê ad y( ) dt Ê (d) is a solutio to this prolem. dy c c d c. y sec t dt Ê sec ad y( ) sec t dt Ê (c) is a solutio to this prolem. dy d. y sec t dt Ê sec ad y() sec t dt Ê () is a solutio to this prolem. Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

13 dy Sectio. The Fudametal Theorem of Calculus 87. y dt Ê ad y() dt Ê (a) is a solutio to this prolem. t d t È. y sec t dt. y t dt Î Î. Area ˆ h ˆ h h d h cî h ˆ h ˆ Œhˆ Œhˆ ˆ ˆ h h h h h h 6 6 cî h Îk Îk k k 6. k Ê oe arch of y si k will occur over the iterval ß Ê the area si k d cos k cos ˆ k ˆ ˆ cos () k k k k dc 7. Î Ê c Î t dt Î t È; c() c() È È 9. d È 8. r Š d Š d ˆ Š Š ( ) ( ) ( ) ( ) ˆ. or 9. (a) t Ê T 8 È 7 F; t 6 Ê T 8 È 6 76 F; È t Ê T 8 8 F Î () average temperatuve Š 8 È t dt 8t a t Î Î Š 8aa Š 8aa 7 F 6. (a) t Ê H È a Î ft; t Ê H È a Î È È.7 ft; t 8 Ê H È8a8 Î ft 8 Î Î Î () average height t t dt t t Š È a 8 8 Î Î Î Î Š a8 a8 Š a a 9.67 ft d d 6. f(t) dt Ê f() d f(t) dt d a d d 6. f(t) dt cos Ê f() f(t) dt cos si Ê f() cos () () si () 9 w 9 9 w 9 t () t 6. f() dt Ê f () Ê f () ; f() dt ; L() ( ) f() ( ) 8 Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

14 88 Chapter Itegratio 6. g() sec (t ) dt Ê g () asec a () sec a Ê g ( ) ( ) sec a( ) w w a ; g( ) sec (t ) dt sec (t ) dt ; L() ( ( )) g( ) ( ) 6. (a) True: sice f is cotiuous, g is differetiale y Part of the Fudametal Theorem of Calculus. () True: g is cotiuous ecause it is differetiale. w (c) True, sice g () f(). ww w (d) False, sice g () f (). w ww w (e) True, sice g () ad g () f (). ww w ww (f) False: g () f (), so g ever chages sig. w w w (g) True, sice g () f() ad g () f() is a icreasig fuctio of (ecause f () ). 66. Let a â e ay partitio of Òa, Óad let F e ay atiderivative of f. (a) Fa Fa i i i F a F a F a F a F a F a â F a F a F a F a F a F a F a F a F a âf a F a F a F a F a F a Fa a () Sice F is ay atiderivative of f o Òa, Ó Ê F is differetiale o Òa, Ó Ê F is cotiuous o Òa, Ó. Cosider ay suiterval Ò, Ói Òa, Ó, the y the Mea Value Theorem there is at least oe umer c i Ð, Ñ such that i i i i i w i i i i i i i i i? i i i i F a F a Faca fc a a fc a. Thus F a Fa a F a F a fc a?. i i i (c) Takig the limit of FaFaa faci? i we otai lim afafaa lim Œ faci? i a Ê F a Fa a f a d i mpmä mpmä i Eample CAS commads: Maple: with( plots ); f := -> ^-*^+*; a := ; := ; F := uapply( it(f(t),t=a..), ); (a) p := plot( [f(),f()], =a.., leged=[y = f(),y = F()], title=67(a) (Sectio.) ): p; df := D(F); () q := solve( df()=, ); pts := [ seq( [,f()], =remove(has,evalf([q]),i) ) ]; p := plot( pts, style=poit, color=lue, symolsize=8, symol=diamod, leged=(,f()) where F ()= ): display( [p,p], title=8() (Sectio.) ); icr := solve( df()>, ); (c) decr := solve( df()<, ); df := D(f); (d) p := plot( [df(),f()], =a.., leged=[y = f (),y = F()], title=67(d) (Sectio.) ): p; q := solve( df()=, ); Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

15 Sectio. The Fudametal Theorem of Calculus 89 pts := [ seq( [,F()], =remove(has,evalf([q]),i) ) ]; p := plot( pts, style=poit, color=lue, symolsize=8, symol=diamod, leged=(,f()) where f ()= ): display( [p,p], title=8(d) (Sectio.) ); 7-7. Eample CAS commads: Maple: a := ; u := -> ^; f := -> sqrt(-^); F := uapply( it( f(t), t=a..u() ), ); df := D(F); () cp := solve( df()=, ); solve( df()>, ); solve( df()<, ); df := D(dF); (c) solve( df()=, ); plot( F(), =-.., title=7(d) (Sectio.) ); 7. Eample CAS commads: Maple: f := `f`; q := Diff( It( f(t), t=a..u() ), ); d := value( q ); 76. Eample CAS commads: Maple: f := `f`; q := Diff( It( f(t), t=a..u() ),, ); value( q ); Eample CAS commads: Mathematica: (assiged fuctio ad values for a, ad may vary) For trascedetal fuctios the FidRoot is eeded istead of the Solve commad. The Map commad eecutes FidRoot over a set of iitial guesses Iitial guesses will vary as the fuctios vary. Clear[, f, F] {a, }= {, }; f[_] = Si[] Cos[/] F[_] = Itegrate[f[t], {t, a, }] Plot[{f[], F[]},{, a, }] /.Map[FidRoot[F[]==, {, }] &,{,,, 6}] /.Map[FidRoot[f[]==, {, }] &,{,,,, 6}] Slightly alter aove commads for 7-8. Clear[, f, F, u] a=; f[_] = u[_] = F[_] = Itegrate[f[t], {t, a, u()}] /.Map[FidRoot[F[]==,{, }] &,{,,, }] /.Map[FidRoot[F[]==,{,}] &,{,,, }] Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

16 9 Chapter Itegratio After determiig a appropriate value for, the followig ca e etered = ; Plot[{F[], {, a, }]. INDEFINTE INTEGRALS AND THE SUBSTITUTION RULE Let u Ê du d Ê du d a a d u du u du u C C. Let u 7 Ê du 7 d Ê 7 du d 7È7 d Î 7 7 d Î a 7u du Î Î Î u du u C a7 C. Let u Ê du d Ê du d 7 a a d u du u du u C C a a. Let u Ê du d Ê du d d d u du u du u C C. Let u Ê du a6 d a d Ê du a d a a a d u du u du u C C 6. Let u Ê du d Ê du d È È È Î Î È È ˆ È Î Î Î Î d ˆ È d u du u du u C ˆ È C 7. Let u Ê du d Ê du d si d si u du cos u C cos C 8. Let u Ê du d Ê du d si a d si u du cos u C cos C 9. Let u t Ê du dt Ê du dt sec t ta t dt sec u ta u du sec u C sec t C t t t t t t. Let u cos Ê du si dt Ê du si dt ˆ cos ˆ si dt u du u C ˆ cos C. Let u r Ê du r dr Ê du 9r dr 9r dr Î Î Î È r u du ()u C 6 a r C. Let u y y Ê du ay 8y dy Ê du ay y dy y y y y dy a a u du u C ay y C Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

17 Î Î. Let u Ê du d Ê du È d Sectio. Idefiite Itegrals ad the Sustitutio Rule 9 È si ˆ Î d si u du ˆ u si u C ˆ Î si ˆ Î C. Let u Ê du d 6 si ˆ C cos ˆ u d cos au du cos au du ˆ si u C si ˆ C. (a) Let u cot ) Ê du csc ) d ) Ê du csc ) d) u u csc ) cot ) d) u du Š C C cot ) C () Let u csc ) Ê du csc ) cot ) d ) Ê du csc ) cot ) d) u u csc ) cot ) d) u du Š C C csc ) C 6. (a) Let u 8 Ê du d Ê du d Î Î Î Š du u du ˆ u C u C È 8 C d È 8 Èu È Î d Ê Ê È8 () Let u 8 du ( 8) () d du du uc È8C d È 8 7. Let u s Ê du ds Ê du ds È s ds Èu ˆ du Î u du ˆ ˆ Î u Î C ( s) C 8. Let u s Ê du ds Ê du ds Î Î ds ˆ du u du ˆ ˆ u C Ès C Ès Èu 9. Let u ) Ê du ) d ) Ê du ) d) ) È ) d) È u ˆ du Î u du ˆ ˆ &Î u C a ) &Î C. Let u 7 y Ê du 6y dy Ê du y dy yè7 y dy Èu ˆ du u du ˆ ˆ u C a7 y C È È È du Ȉ È u u È. Let u Ê du d Ê du d Î Î Î d C C. Let u z Ê du dz Ê du dz cos (z ) dz (cos u) ˆ du cos u du si u C si (z ) C. Let u Ê du d Ê du d a ˆ sec ( ) d sec u du sec u du ta u C ta ( ) C. Let u ta Ê du sec d ta sec d u du u C ta C Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

18 9 Chapter Itegratio. Let u si ˆ Ê du cos ˆ d Ê du cos ˆ d & si ˆ cos ˆ & d u ( du) ˆ u C si ˆ C 6 6. Let u ta ˆ Ê du sec ˆ d Ê du sec ˆ d ( ta ˆ sec ˆ ( ) ) d u ( du) ˆ u C ta ˆ C 8 r r 8 6 r & & & u r Let u Ê du dr Ê 6 du r dr r Š dr u (6 du) 6 u du 6 Š C Š C & r Š & & r u r Š Š 8. Let u 7 Ê du r dr Ê du r dr r 7 dr u ( du) u du C 7 C Î Î Î Î Î Î 9. Let u Ê du d Ê du d si ˆ d (si u) ˆ du si u du ( cos u) C cos ˆ C. Let u csc ˆ v Ê du csc ˆ v cot ˆ v dv Ê du csc ˆ v cot ˆ v dv csc ˆ v cot ˆ v dv du u C csc ˆ v C. Let u cos (t ) Ê du si (t ) dt Ê du si (t ) dt si (t ) du cos (t ) u u cos (t ) dt C C. Let u sec z Ê du sec z ta z dz sec z ta z Èsec z Î Î È Èu dz du u du u C sec z C t t t t t. Let u t Ê du t dt Ê du dt cos ˆ dt (cos u)( du) cos u du si u C si ˆ C È Î Î Èt. Let u t t Ê du t dt Ê du dt Èt cos ˆ Èt dt (cos u)( du) cos u du si u C si ˆ Èt C. Let u si Ê du ˆ cos ˆ d ) Ê du cos d) ) ) ) ) ) ) ) ) ) ) si cos d u du u C si C 6. Let u csc È Ê du csc È cot È ) Š ) ) Š d ) Ê du cot È) csc È) d) cos È È ) È ) ) d ) cot È) csc È) d) du u C csc È) C C È) si È) È) si È) a ˆ ˆ 6 a 7. Let u t Ê du t dt Ê du t dt t t dt u du u C t C Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

19 8. Let u Ê du d Sectio. Idefiite Itegrals ad the Sustitutio Rule 9 É d É d É d È u du u du u C ˆ C Î Î Î & 9. Let u Ê du d Î Î Î É d Èu du u du u C ˆ C. Let u Ê du d Ê du d É d É d È u du u du u C ˆ C Î Î Î 9 9. Let u Ê du d Ê du d É d É d É d È u du u du u C ˆ C Î Î Î Î Î Î È Èu. Let u Ê du d Ê du d É d d du u du u C a C. Let u. The du d ad u. Thus a d au u du au u du u u C a a C. Let u. The du d ad adu d ad u. Thus È d a uèu adu a a uˆ Î u Î Î Î 8 Î Î 8 Î du u u du u u C a a C. Let u. The du d ad adu d ad u. Thus a a d a 7a a C au u adu au u u du u u u C Î Î 6. Let u. The du d ad u. Thus a a d au u du ˆ Î Î u u du 7 Î Î 7 Î Î 7 7 u u C a a C 7. Let u. The du d ad du d ad u. Thus È d au Èu du a a a Î Î &Î Î &Î Î &Î & & & u u du u u C u u C C & 8. Let u Êdu d ad u. So B È Î Î d au Èu du u u du &Î Î &Î & & u u C a a C a Î a u C a C 9. Let u Ê du d ad du d. Thus d d u du u du a a. Let u Ê du d ad u. Thus d a d u au du u u du a u u C a a C Î Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

20 9 Chapter Itegratio. (a) Let u ta Ê du sec d; v u Ê dv u du Ê 6 dv 8u du; w v Ê dw dv 8 ta sec 8u 6 dv 6 dw 6 ata au ( v) w v C u ta C d du 6 w dw 6w C C () Let u ta Ê du ta sec d Ê 6 du 8 ta sec d; v u Ê dv du 8 ta sec 6 du 6 dv ta a ( u) v v u ta d C C C (c) Let u ta Ê du ta sec d Ê 6 du 8 ta sec d 8 ta sec 6 du 6 6 ta a u u ta d C C. (a) Let u Ê du d; v si u Ê dv cos u du; w v Ê dw v dv Ê dw v dv È si ( ) si ( ) cos ( ) d È si u si u cos u du vè v dv Î Î Î È Î w dw w C av C asi u C asi () C () Let u si ( ) Ê du cos ( ) d; v u Ê dv u du Ê dv u du È si ( ) si ( ) cos ( ) d u È u du È Î v dv v dv ˆ Î Î Î Î a a ˆ v C v C u C si () C (c) Let u si ( ) Ê du si ( ) cos ( ) d Ê du si ( ) cos ( ) d È si ( ) si ( ) cos ( ) d È Î u du u du ˆ Î u C Î a si ( ) C. Let u (r ) 6 Ê du 6(r )() dr Ê du (r ) dr; v È u Ê dv du Ê dv du (r ) cos È(r ) 6 È(r ) 6 Èu 6 Èu cos Èu Èu dr Š ˆ du (cos v) ˆ dv si v C si Èu C si È(r ) 6 C 6. Let u cos È Ê du si È si ) ) Š ) Š d ) Ê du d) È È ) È ) si È) È) uî É cos È È Écos È È ) ) ) ) u C Écos È ) si du Î d ) d ) u du ˆ Î u C C. Let u t Ê du 6t dt Ê du t dt a s t at dt u ( du) ˆ u C u C at C; s whe t Ê ( ) C Ê 8 C Ê C Ê s t 6. Let u 8 Ê du d Ê du d Î Î y a 8 d u ( du) ˆ Î u Î C u C a 8 C; y whe Ê (8) C Ê C Ê y a 8 7. Let u t Ê du dt Î Î s 8 si ˆ t dt 8 si u du 8 ˆ u si u C ˆ t si ˆ t C; 6 ˆ ˆ s 8 whe t Ê 8 si C Ê C 8 9 Ê s ˆ t si ˆ t 9 t si ˆ t 9 Î Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

21 Sectio. Idefiite Itegrals ad the Sustitutio Rule 9 8. Let u ) Ê du d) r cos ˆ d cos u du ˆ u si u C ˆ si ˆ ) ) ) ) C; 8 ) ˆ 8 8 ) ˆ ) r si r cos ) ˆ ) 8 ) ) 8 r whe Ê si C Ê C Ê r si Ê Ê 9. Let u t Ê du dt Ê du dt ds dt si ˆ t dt (si u)( du) cos u C cos ˆ t C ; ds at t ad we have cos ˆ ds C Ê C Ê cos ˆ t dt dt Ê s ˆ cos ˆ t dt (cos u ) du si u u C si ˆ t ˆ t C ; ˆ ˆ at t ad s we have si C Ê C Ê s si ˆ t t ( ) Ê s si ˆ t t 6. Let u ta Ê du sec d Ê du sec d; v Ê dv d Ê dv d dy d sec ta d u( du) u C ta C ; dy d at ad we have C Ê C Ê ta asec sec dy d Ê y asec d asec v ˆ dv ta v v C ta C ; at ad y we have () C Ê C Ê y ta 6. Let u t Ê du dt Ê du 6 dt s 6 si t dt (si u)( du) cos u C cos t C; at t ad s we have cos C Ê C Ê s cos t Ê s ˆ cos ( ) 6 m 6. Let u t Ê du dt Ê du dt v cos t dt (cos u)( du) si u C si ( t) C ; at t ad v 8 we have 8 () C Ê C 8 Ê v si ( t) 8 Ê s ( si ( t) 8) dt si u du 8t C cos ( t) 8t C ; at t ad s we have C Ê C Ê s 8t cos ( t) Ê s() 8 cos m 6. All three itegratios are correct. I each case, the derivative of the fuctio o the right is the itegrad o the left, ad each formula has a aritrary costat for geeratig the remaiig atiderivatives. Moreover, cos si C cos C Ê C C ; also cos C C Ê C C C. Î6 Î 6 ma ma 6. (a) Š V si t dt 6 V ˆ cos ( t) V [cos cos ] V ma [ ] () V È V È () 9 volts ma rms Î6 Î6 Î6 a ma a ma ˆ cos t avma a t si t a V V si ( ) si () a V ma Î ma ma ˆ ˆ ˆ ˆ ˆ 6 (c) V si t dt V dt ( cos t) dt ds dt Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

22 96 Chapter Itegratio.6 SUBSTITUTION AND AREA BETWEEN CURVES. (a) Let u y Ê du dy; y Ê u, y Ê u È Î y dy u du Î u ˆ Î () ˆ Î () ˆ (8) ˆ () () Use the same sustitutio for u as i part (a); y Ê u, y Ê u È Î y dy u du Î u ˆ Î () c r È r dr Èu du Î u ˆ Î (). (a) Let u r Ê du r dr Ê du r dr; r Ê u, r Ê u () Use the same sustitutio for u as i part (a); r Ê u, r Ê u r È r dr Èu du c Î ta sec d u u du ta sec d u u du cî c. (a) Let u ta Ê du sec d; Ê u, Ê u () Use the same sustitutio as i part (a); Ê u, Ê u. (a) Let u cos Ê du si d Ê du si d; Ê u, Ê u cos si d u du cu d ( ) () a () Use the same sustitutio as i part (a); Ê u, Ê u cos si d u du t t dt u a u du (a) u t Ê du t dt Ê du t dt; t Ê u, t Ê u () Use the same sustitutio as i part (a); t Ê u, t Ê u t a t dt u du c 6. (a) Let u t Ê du t dt Ê du t dt; t Ê u, t È7 Ê u 8 È 7 8 Î ) Î t at dt u du ˆ ˆ Î u ˆ Î (8) ˆ Î () () Use the same sustitutio as i part (a); t È7 Ê u 8, t Ê u 8 Î cè 7 8 Î Î t at dt u du u du r dr u du a r 7. (a) Let u r Ê du r dr Ê du r dr; r Ê u, r Ê u () Use the same sustitutio as i part (a); r Ê u, r Ê u r & dr u du u () () a r ˆ ˆ 8 8 Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

23 Sectio.6 Sustitutio ad Area Betwee Curves 97 Î Î 8. (a) Let u v Ê du v dv Ê du Èv dv; v Ê u, v Ê u Èv dv ˆ du u du a v u Î u Î () Use the same sustitutio as i part (a); v Ê u, v Ê u 9 9 Èv * 7 7 dv ˆ du v u a u ˆ Î 9 ˆ 8 7 È 9. (a) Let u Ê du d Ê du d; Ê u, Ê u È Î Î Î Î d du u du u () () È Èu () Use the same sustitutio as i part (a); È Ê u, È Ê u È d du cè È È u d Î Î Î Î È u du ()u () (9) È 9 9 *. (a) Let u 9 Ê du d Ê du d; Ê u 9, Ê u () Use the same sustitutio as i part (a); Ê u, Ê u 9 9 Î Î È d u du u du c È Î6 ( cos t) si t dt u du () () Š u Ê Ê Î ( cos t) si t dt u du () () Î6 Š u 6 6. (a) Let u cos t Ê du si t dt Ê du si t dt; t Ê u, t Ê u cos () Use the same sustitutio as i part (a); t u, t u cos t t t. (a) Let u ta Ê du sec dt Ê du sec dt; t Ê u ta ˆ, t Ê u ˆ t ta t sec dt u ( du) cu d Î ˆ t ta t sec dt u du cu d 8 c Î () Use the same sustitutio as i part (a); t Ê u, t Ê u c Î. (a) Let u si z Ê du cos z dz Ê du cos z dz; z Ê u, z Ê u cos z dz du È ˆ si z Èu () Use the same sustitutio as i part (a); z Ê u si ( ), z Ê u c cos z È si z Èu dz ˆ du si w dw & u du u cî ( cos w) ˆ c d ˆ Ê Ê Î si w dw u du u du ( cos w) ˆ. (a) Let u cos w Ê du si w dw Ê du si w dw; w Ê u, w Ê u () Use the same sustitutio as i part (a); w u, w u Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

24 98 Chapter Itegratio &. Let u t t Ê du at dt; t Ê u, t Ê u Èt& t at dt Î u du Î u Î Î () () È dy Èy 6. Let u Èy Ê du ; y Ê u, y Ê u dy du u du u Èyˆ Èy u c d ˆ ˆ 6 7. Let u cos ) Ê du si ) d ) Ê du si ) d ); ) Ê u, ) Ê u cos ˆ 6 6 Î6 Î Î Î cos ) si ) d) u ˆ du u du Š c ˆ () 8. Let u ta ˆ ) Ê du sec ˆ ) d Ê 6 du sec ˆ ) d ; Ê u ta ˆ ) ) ), ) Ê u ta È Î c & cot ˆ ) sec ˆ ) & u d u (6 du) 6 Š 6 6 ) È u Î È () Î Î È Š È 9. Let u cos t Ê du si t dt Ê du si t dt; t Ê u cos, t Ê u cos * Î Î ( cos t) si t dt u ˆ du Î u du ˆ &Î &Î &Î u 9. Let u si t Ê du cos t dt Ê du cos t dt; t Ê u, t Ê u Î Î Î ( si t) cos t dt u du ˆ &Î u ˆ &Î &Î () ˆ (). Let u y y y Ê du a y y dy; y Ê u, y Ê u () () () 8 8 Î ) Î ay y y ay y dy u du Î u Î Î (8) () Î y 6y y 9 y y dy Î a a u du ˆ Î u Î Î () (9) ( ) 9 *. Let u y 6y y 9 Ê du ay y dy Ê du ay y dy; y Ê u 9, y Ê u Î Î. Let u ) Ê du ) d ) Ê du È) d ); ) Ê u, ) È Ê u È Î È cos ˆ d cos u ˆ du ˆ u si u ) ) ) ˆ si () t cî c u t si. Let u Ê du t dt; t Ê u, t Ê u t si ˆ dt si u du ˆ si u ˆ si ( ) ˆ si c È È Î Î Î Î c Î Î Î 6 u () (). Let u Ê du d Ê du d; Ê u, Ê u, Ê u A d d u du u du u du u du 6. Let u cos Ê du si d; Ê u, Ê u ( cos ) si d u du u Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

25 Sectio.6 Sustitutio ad Area Betwee Curves Let u cos Ê du si d Ê du si d; Ê u cos ( ), Ê u cos Î Î Î Î Î &Î c A (si ) È cos d u ( du) u du u () () 8. Let u si Ê du cos d Ê du cos d; Ê u si ˆ, Ê u Because of symmetry aout, A (cos ) (si ( si )) d (si u) ˆ du si u du [ cos u] ( cos ) ( cos ) c Î cos 9. For the sketch give, a, ; f() g() cos si ; (cos ) A d ( cos ) d si [( ) ( )] Î Î Î Î Î ˆ (cos t). For the sketch give, a, ; f(t) g(t) sec t a si t sec t si t; Î Î Î Î È A sec t si t dt sec t dt si t dt sec t dt dt c Î c Î c Î c Î c Î sec t dt ( cos t) dt [ta t] [t ] È si t cî cî Î Î. For the sketch give, a, ; f() g() a ; & A a d ˆ ˆ c. For the sketch give, c, d ; f(y) g(y) y y ; A ay y dy y dy y dy y y ( ) ( ). For the sketch give, c, d ; f(y) g(y) ay y ay y y y y; A ay y y dy y dy y dy y dy y y y ˆ () (). For the sketch give, a, ; f() g() a ; & A a d ˆ ˆ c. We wat the area etwee the lie y, Ÿ Ÿ, ad the curve y, 78?= the area of a triagle (formed y y ad y ) with ase ad height. Thus, A Š d ()() ˆ We wat the area etwee the -ais ad the curve y, Ÿ Ÿ :6?= the area of a triagle (formed y, y, ad the -ais) with ase ad height. Thus, A d ()() 6 7. AREA A A A: For the sketch give, a ad we fid y solvig the equatios y ad y simultaeously for : Ê Ê ( )( ) Ê or so c c : f() g() a a Ê A a d Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

26 Chapter Itegratio ˆ ( 8 9 ) 9 ; A: For the sketch give, a ad : f() g() a a Ê A a d ˆ ˆ 6 8 c 6 8 9; Therefore, AREA A A AREA A A A: For the sketch give, a ad : f() g() a a 8 Ê A a 8 d (8 6) 8; c 8 A: For the sketch give, a ad : f() g() a a 8 Ê A a8 d (6 8) 8; Therefore, AREA A A AREA A A A A: For the sketch give, a ad : f() g() ( ) a c Ê A a d ˆ ˆ 8 7 ; c 6 6 A: For the sketch give, a ad : f() g() a ( ) a Ê A a d ˆ 8 ˆ 9 8 ; c A: For the sketch give, a ad : f() g() ( ) a Ê A a d ˆ ˆ ; 9 ˆ Therefore, AREA A A A 9 9. AREA A A A A: For the sketch give, a ad : f() g() Š a c (8 ) ; Š a Ê A a d ( 8) ; A: For the sketch give, a ad we fid y solvig the equatios y ad y simultaeously for : Ê Ê ( )( ) Ê,, or so : f() g() Š a Ê A a d a A: For the sketch give, a ad : f() g() Ê A a d ˆ 9 ˆ 8 ˆ ; Therefore, AREA A A A. a, ; f() g() a Ê A a d ˆ 8 8 ˆ 8 8 c 8 ˆ Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

27 Sectio.6 Sustitutio ad Area Betwee Curves. a, ; f() g() a ( ) c 7 Ê A a d ˆ 9 9 ˆ. a, ; f() g() 8 Ê A a8 d &. Limits of itegratio: Ê Ê ( ) Ê a ad ; f() g() a Ê A a d Limits of itegratio: Ê Ê ( ) Ê a ad ; f() g() a Ê A a d 6. Limits of itegratio: 7 Ê Ê ( )( ) Ê a ad ; f() g() a7 a Ê A a d c ˆ ˆ 6ˆ 7. Limits of itegratio: Ê Ê a a Ê ( )( )( )( ) Ê,,, ; f() g() a ad g() f() a c c c Ê A a d a d a d & & & ˆ ˆ 8 ˆ ˆ ˆ 8 ˆ 8 Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

28 Chapter Itegratio 8. Limits of itegratio: È a Ê or È a Ê or a Ê a,, a; A Èa d Èa d ca Î a Î aa aa a Î Î a aa aa a È, Ÿ 9. Limits of itegratio: y Èk k ad È, 6 y 6 or y ; for Ÿ : È 6 Ê È 6 Ê ( ) 6 Ê 7 6 Ê ( )( 6) Ê, 6 (ut 6 is ot a solutio); for : È 6 Ê 6 Ê 6 Ê ( )( 9) Ê, 9; there are three itersectio poits ad 9 A ˆ 6 È d ˆ 6 È d ˆ È 6 d c * ( 6) Î ( 6) Î Î ( 6) ( ) 6 Î 6 Î Î 9 ˆ ˆ ˆ. Limits of itegratio:, Ÿ or y k k, Ÿ Ÿ for Ÿ ad : Ê 8 8 Ê 6 Ê ; for Ÿ Ÿ : Ê 8 8 Ê Ê ; y symmetry of the graph, A Š a d Š a d 8 ˆ ˆ 6. Limits of itegratio: c ad d ; f(y) g(y) y y Ê A y dy 9 8 y Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

29 . Limits of itegratio: y y Ê (y )(y ) Ê c ad d ; f(y) g(y) (y ) y y y c Ê A ay y dy y ˆ ˆ Sectio.6 Sustitutio ad Area Betwee Curves. Limits of itegratio: y ad 6 y Ê y 6 y Ê y y Ê (y )(y ) Ê c ad d ; f(y) g(y) ˆ Š 6y y y y c y y & 6 6 ˆ Ê A ay y dy y ˆ ˆ 8. Limits of itegratio: y ad y Ê y y Ê y Ê (y )(y ) Ê c ad d ; f(y) g(y) a y y y ay Ê A ay dy y y ˆ ˆ c ˆ. Limits of itegratio: y y ad y y 6 Ê y y y y 6 Ê y y 6 Ê ay ay Ê c ad d ; f(y) g(y) ay yay y 6 y y 6 y c Ê A ay y 6 dy y 6y ˆ 9 8 ˆ Î 6. Limits of itegratio: y ad y Î Ê y y Ê c ad d ; Î f(y) g(y) a y y Ê A ˆ Î y y dy c & y &Î y y ˆ ˆ ˆ Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

30 Chapter Itegratio 7. Limits of itegratio: y ad kykè y Ê y kykèy Ê y y y ay Ê y y y y Ê y y Ê ay ay Ê y or y È Ê y or y Ê y or y. È Sustitutio shows that are ot solutios Ê y ; for Ÿ y Ÿ, f() g() yè y ay Î y y a y, ad y symmetry of the graph, A y yay dy c Î Î y a y c c Î a y dy y a y dy y ˆ () ˆ ˆ 8. AREA A A Limits of itegratio: y ad y y Ê y y y Ê y ay y y(y )(y ) Ê y,, : for Ÿ y Ÿ, f(y) g(y) y y y y y c y y a A Ê A ay y y dy y ˆ ; for Ÿ y Ÿ, f(y) g(y) y y y Ê A y y y dy y Ê ˆ ; Therefore, A 9. Limits of itegratio: y ad y Ê Ê Ê a ( )( ) Ê a ad ; f() g() c & Ê A a d ˆ ˆ ˆ 6. Limits of itegratio: y ad y Ê Ê a () Ê ( )( ) Ê a ad ; f() g() a c Ê A a d ˆ ˆ Copyright Pearso Educatio, Ic. Pulishig as Addiso-Wesley.

CHAPTER 5 INTEGRATION

CHAPTER 5 INTEGRATION CHAPTER 5 INTEGRATION 5. AREA AND ESTIMATING WITH FINITE SUMS. fa Sice f is icreasig o Òß Ó, we use left edpoits to otai lower sums ad right edpoits to otai upper sums. i ) i i ( ( i ˆ i Š ˆ ˆ ˆ ) i i

More information

Math 21B-B - Homework Set 2

Math 21B-B - Homework Set 2 Math B-B - Homework Set Sectio 5.:. a) lim P k= c k c k ) x k, where P is a partitio of [, 5. x x ) dx b) lim P k= 4 ck x k, where P is a partitio of [,. 4 x dx c) lim P k= ta c k ) x k, where P is a partitio

More information

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i) Math PracTest Be sure to review Lab (ad all labs) There are lots of good questios o it a) State the Mea Value Theorem ad draw a graph that illustrates b) Name a importat theorem where the Mea Value Theorem

More information

MAT136H1F - Calculus I (B) Long Quiz 1. T0101 (M3) Time: 20 minutes. The quiz consists of four questions. Each question is worth 2 points. Good Luck!

MAT136H1F - Calculus I (B) Long Quiz 1. T0101 (M3) Time: 20 minutes. The quiz consists of four questions. Each question is worth 2 points. Good Luck! MAT36HF - Calculus I (B) Log Quiz. T (M3) Time: 2 miutes Last Name: Studet ID: First Name: Please mark your tutorial sectio: T (M3) T2 (R4) T3 (T4) T5 (T5) T52 (R5) The quiz cosists of four questios. Each

More information

MATH 10550, EXAM 3 SOLUTIONS

MATH 10550, EXAM 3 SOLUTIONS MATH 155, EXAM 3 SOLUTIONS 1. I fidig a approximate solutio to the equatio x 3 +x 4 = usig Newto s method with iitial approximatio x 1 = 1, what is x? Solutio. Recall that x +1 = x f(x ) f (x ). Hece,

More information

PRACTICE FINAL/STUDY GUIDE SOLUTIONS

PRACTICE FINAL/STUDY GUIDE SOLUTIONS Last edited December 9, 03 at 4:33pm) Feel free to sed me ay feedback, icludig commets, typos, ad mathematical errors Problem Give the precise meaig of the followig statemets i) a f) L ii) a + f) L iii)

More information

Section Volumes by Slicing and Rotation About an Axis

Section Volumes by Slicing and Rotation About an Axis Sectio 6.1 - Volumes y Slicig ad Rotatio Aout a Axis Itroductio Recall that we approximated the area uder a curve y = f HxL y first usig the Riema sum f Ix * k M D x k=1 We otaied the exact value y takig

More information

Calculus I Practice Test Problems for Chapter 5 Page 1 of 9

Calculus I Practice Test Problems for Chapter 5 Page 1 of 9 Calculus I Practice Test Problems for Chapter 5 Page of 9 This is a set of practice test problems for Chapter 5. This is i o way a iclusive set of problems there ca be other types of problems o the actual

More information

AP Calculus BC Review Applications of Derivatives (Chapter 4) and f,

AP Calculus BC Review Applications of Derivatives (Chapter 4) and f, AP alculus B Review Applicatios of Derivatives (hapter ) Thigs to Kow ad Be Able to Do Defiitios of the followig i terms of derivatives, ad how to fid them: critical poit, global miima/maima, local (relative)

More information

INTRODUCTORY MATHEMATICAL ANALYSIS

INTRODUCTORY MATHEMATICAL ANALYSIS INTRODUCTORY MATHEMATICAL ANALYSIS For Busiess, Ecoomics, ad the Life ad Social Scieces Chapter 4 Itegratio 0 Pearso Educatio, Ic. Chapter 4: Itegratio Chapter Objectives To defie the differetial. To defie

More information

CHAPTER 4 Integration

CHAPTER 4 Integration CHAPTER Itegratio Sectio. Atierivatives a Iefiite Itegratio......... 77 Sectio. Area............................. 8 Sectio. Riema Sums a Defiite Itegrals........... 88 Sectio. The Fuametal Theorem of Calculus..........

More information

MATH Exam 1 Solutions February 24, 2016

MATH Exam 1 Solutions February 24, 2016 MATH 7.57 Exam Solutios February, 6. Evaluate (A) l(6) (B) l(7) (C) l(8) (D) l(9) (E) l() 6x x 3 + dx. Solutio: D We perform a substitutio. Let u = x 3 +, so du = 3x dx. Therefore, 6x u() x 3 + dx = [

More information

668 Chapter 11 Parametric Equatins and Polar Coordinates

668 Chapter 11 Parametric Equatins and Polar Coordinates 668 Chapter Parametric Equatins and Polar Coordinates 5. sin ( sin Á r and sin ( sin Á r Ê not symmetric about the x-axis; sin ( sin r Ê symmetric about the y-axis; therefore not symmetric about the origin

More information

Math 105: Review for Final Exam, Part II - SOLUTIONS

Math 105: Review for Final Exam, Part II - SOLUTIONS Math 5: Review for Fial Exam, Part II - SOLUTIONS. Cosider the fuctio f(x) = x 3 lx o the iterval [/e, e ]. (a) Fid the x- ad y-coordiates of ay ad all local extrema ad classify each as a local maximum

More information

Areas and Distances. We can easily find areas of certain geometric figures using well-known formulas:

Areas and Distances. We can easily find areas of certain geometric figures using well-known formulas: Areas ad Distaces We ca easily fid areas of certai geometric figures usig well-kow formulas: However, it is t easy to fid the area of a regio with curved sides: METHOD: To evaluate the area of the regio

More information

Math 113, Calculus II Winter 2007 Final Exam Solutions

Math 113, Calculus II Winter 2007 Final Exam Solutions Math, Calculus II Witer 7 Fial Exam Solutios (5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute x x + dx The check your aswer usig the Evaluatio Theorem Solutio: I this

More information

y = f x x 1. If f x = e 2x tan -1 x, then f 1 = e 2 2 e 2 p C e 2 D e 2 p+1 4

y = f x x 1. If f x = e 2x tan -1 x, then f 1 = e 2 2 e 2 p C e 2 D e 2 p+1 4 . If f = e ta -, the f = e e p e e p e p+ 4 f = e ta -, so f = e ta - + e, so + f = e p + e = e p + e or f = e p + 4. The slope of the lie taget to the curve - + = at the poit, - is - 5 Differetiate -

More information

Maximum and Minimum Values

Maximum and Minimum Values Sec 4.1 Maimum ad Miimum Values A. Absolute Maimum or Miimum / Etreme Values A fuctio Similarly, f has a Absolute Maimum at c if c f f has a Absolute Miimum at c if c f f for every poit i the domai. f

More information

CHAPTER 4 Integration

CHAPTER 4 Integration CHAPTER Itegratio Sectio. Atierivatives a Iefiite Itegratio......... Sectio. Area............................. Sectio. Riema Sums a Defiite Itegrals........... Sectio. The Fuametal Theorem of Calculus..........

More information

MATH 1A FINAL (7:00 PM VERSION) SOLUTION. (Last edited December 25, 2013 at 9:14pm.)

MATH 1A FINAL (7:00 PM VERSION) SOLUTION. (Last edited December 25, 2013 at 9:14pm.) MATH A FINAL (7: PM VERSION) SOLUTION (Last edited December 5, 3 at 9:4pm.) Problem. (i) Give the precise defiitio of the defiite itegral usig Riema sums. (ii) Write a epressio for the defiite itegral

More information

274 Chapter 4 Applications of Derivatives

274 Chapter 4 Applications of Derivatives 274 Chapter 4 Applicatios of Derivatives Ê % a%) Ê * %) Ê %) Ê. We discard as a etraeous solutio, leavig. Sice D a for % ad D a for %, the critical poit correspods to the miimum distace. The miimum distace

More information

(a) (b) All real numbers. (c) All real numbers. (d) None. to show the. (a) 3. (b) [ 7, 1) (c) ( 7, 1) (d) At x = 7. (a) (b)

(a) (b) All real numbers. (c) All real numbers. (d) None. to show the. (a) 3. (b) [ 7, 1) (c) ( 7, 1) (d) At x = 7. (a) (b) Chapter 0 Review 597. E; a ( + )( + ) + + S S + S + + + + + + S lim + l. D; a diverges by the Itegral l k Test sice d lim [(l ) ], so k l ( ) does ot coverge absolutely. But it coverges by the Alteratig

More information

Math 1314 Lesson 16 Area and Riemann Sums and Lesson 17 Riemann Sums Using GeoGebra; Definite Integrals

Math 1314 Lesson 16 Area and Riemann Sums and Lesson 17 Riemann Sums Using GeoGebra; Definite Integrals Math 1314 Lesso 16 Area ad Riema Sums ad Lesso 17 Riema Sums Usig GeoGebra; Defiite Itegrals The secod questio studied i calculus is the area questio. If a regio coforms to a kow formula from geometry,

More information

TECHNIQUES OF INTEGRATION

TECHNIQUES OF INTEGRATION 7 TECHNIQUES OF INTEGRATION Simpso s Rule estimates itegrals b approimatig graphs with parabolas. Because of the Fudametal Theorem of Calculus, we ca itegrate a fuctio if we kow a atiderivative, that is,

More information

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B) SCORING GUIDELINES (Form B) Questio 5 Let f be a fuctio defied o the closed iterval [,7]. The graph of f, cosistig of four lie segmets, is show above. Let g be the fuctio give by g ftdt. (a) Fid g (, )

More information

Math 176 Calculus Sec. 5.1: Areas and Distances (Using Finite Sums)

Math 176 Calculus Sec. 5.1: Areas and Distances (Using Finite Sums) Math 176 Calculus Sec. 5.1: Areas ad Distaces (Usig Fiite Sums) I. Area A. Cosider the problem of fidig the area uder the curve o the f y=-x 2 +5 over the domai [0, 2]. We ca approximate this area by usig

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute

1. (25 points) Use the limit definition of the definite integral and the sum formulas 1 to compute Math, Calculus II Fial Eam Solutios. 5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute 4 d. The check your aswer usig the Evaluatio Theorem. ) ) Solutio: I this itegral,

More information

Name: Math 10550, Final Exam: December 15, 2007

Name: Math 10550, Final Exam: December 15, 2007 Math 55, Fial Exam: December 5, 7 Name: Be sure that you have all pages of the test. No calculators are to be used. The exam lasts for two hours. Whe told to begi, remove this aswer sheet ad keep it uder

More information

Z ß cos x + si x R du We start with the substitutio u = si(x), so du = cos(x). The itegral becomes but +u we should chage the limits to go with the ew

Z ß cos x + si x R du We start with the substitutio u = si(x), so du = cos(x). The itegral becomes but +u we should chage the limits to go with the ew Problem ( poits) Evaluate the itegrals Z p x 9 x We ca draw a right triagle labeled this way x p x 9 From this we ca read off x = sec, so = sec ta, ad p x 9 = R ta. Puttig those pieces ito the itegralrwe

More information

MATHEMATICS. 61. The differential equation representing the family of curves where c is a positive parameter, is of

MATHEMATICS. 61. The differential equation representing the family of curves where c is a positive parameter, is of MATHEMATICS 6 The differetial equatio represetig the family of curves where c is a positive parameter, is of Order Order Degree (d) Degree (a,c) Give curve is y c ( c) Differetiate wrt, y c c y Hece differetial

More information

Section 13.3 Area and the Definite Integral

Section 13.3 Area and the Definite Integral Sectio 3.3 Area ad the Defiite Itegral We ca easily fid areas of certai geometric figures usig well-kow formulas: However, it is t easy to fid the area of a regio with curved sides: METHOD: To evaluate

More information

1 Approximating Integrals using Taylor Polynomials

1 Approximating Integrals using Taylor Polynomials Seughee Ye Ma 8: Week 7 Nov Week 7 Summary This week, we will lear how we ca approximate itegrals usig Taylor series ad umerical methods. Topics Page Approximatig Itegrals usig Taylor Polyomials. Defiitios................................................

More information

For example suppose we divide the interval [0,2] into 5 equal subintervals of length

For example suppose we divide the interval [0,2] into 5 equal subintervals of length Math 1206 Calculus Sec 1: Estimatig with Fiite Sums Abbreviatios: wrt with respect to! for all! there exists! therefore Def defiitio Th m Theorem sol solutio! perpedicular iff or! if ad oly if pt poit

More information

B U Department of Mathematics Math 101 Calculus I

B U Department of Mathematics Math 101 Calculus I B U Departmet of Mathematics Math Calculus I Sprig 5 Fial Exam Calculus archive is a property of Boğaziçi Uiversity Mathematics Departmet. The purpose of this archive is to orgaise ad cetralise the distributio

More information

CHAPTER 5 INTEGRATION

CHAPTER 5 INTEGRATION CHAPTER 5 INTEGRATION 5.1 AREA AND ESTIMATING WITH FINITE SUMS 1. fax x Sce f s creasg o Ò!ß Ó, we use left edpots to ota lower sums ad rght edpots to ota upper sums.! )!! ( (!ˆ 4 4 4Š ˆ ˆ ˆ 4 4 )! (a)

More information

Calculus 2 Test File Spring Test #1

Calculus 2 Test File Spring Test #1 Calculus Test File Sprig 009 Test #.) Without usig your calculator, fid the eact area betwee the curves f() = - ad g() = +..) Without usig your calculator, fid the eact area betwee the curves f() = ad

More information

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is Calculus BC Fial Review Name: Revised 7 EXAM Date: Tuesday, May 9 Remiders:. Put ew batteries i your calculator. Make sure your calculator is i RADIAN mode.. Get a good ight s sleep. Eat breakfast. Brig:

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

Honors Calculus Homework 13 Solutions, due 12/8/5

Honors Calculus Homework 13 Solutions, due 12/8/5 Hoors Calculus Homework Solutios, due /8/5 Questio Let a regio R i the plae be bouded by the curves y = 5 ad = 5y y. Sketch the regio R. The two curves meet where both equatios hold at oce, so where: y

More information

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0.

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0. THE SOLUTION OF NONLINEAR EQUATIONS f( ) = 0. Noliear Equatio Solvers Bracketig. Graphical. Aalytical Ope Methods Bisectio False Positio (Regula-Falsi) Fied poit iteratio Newto Raphso Secat The root of

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

FINALTERM EXAMINATION Fall 9 Calculus & Aalytical Geometry-I Questio No: ( Mars: ) - Please choose oe Let f ( x) is a fuctio such that as x approaches a real umber a, either from left or right-had-side,

More information

Riemann Sums y = f (x)

Riemann Sums y = f (x) Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid

More information

18.01 Calculus Jason Starr Fall 2005

18.01 Calculus Jason Starr Fall 2005 Lecture 18. October 5, 005 Homework. Problem Set 5 Part I: (c). Practice Problems. Course Reader: 3G 1, 3G, 3G 4, 3G 5. 1. Approximatig Riema itegrals. Ofte, there is o simpler expressio for the atiderivative

More information

Calculus 2 Test File Fall 2013

Calculus 2 Test File Fall 2013 Calculus Test File Fall 013 Test #1 1.) Without usig your calculator, fid the eact area betwee the curves f() = 4 - ad g() = si(), -1 < < 1..) Cosider the followig solid. Triagle ABC is perpedicular to

More information

HOMEWORK #10 SOLUTIONS

HOMEWORK #10 SOLUTIONS Math 33 - Aalysis I Sprig 29 HOMEWORK # SOLUTIONS () Prove that the fuctio f(x) = x 3 is (Riema) itegrable o [, ] ad show that x 3 dx = 4. (Without usig formulae for itegratio that you leart i previous

More information

CHAPTER 4 APPLICATIONS OF DERIVATIVES

CHAPTER 4 APPLICATIONS OF DERIVATIVES CHAPTER APPLICATIONS OF DERIVATIVES. EXTREME VALUES OF FUNCTIONS. A absolute miimum at c, a absolute maimum at b. Theorem guaratees the eistece of such etreme values because h is cotiuous o [aß b].. A

More information

Chapter 2 The Monte Carlo Method

Chapter 2 The Monte Carlo Method Chapter 2 The Mote Carlo Method The Mote Carlo Method stads for a broad class of computatioal algorithms that rely o radom sampligs. It is ofte used i physical ad mathematical problems ad is most useful

More information

Student s Printed Name:

Student s Printed Name: Studet s Prited Name: Istructor: XID: C Sectio: No questios will be aswered durig this eam. If you cosider a questio to be ambiguous, state your assumptios i the margi ad do the best you ca to provide

More information

For example suppose we divide the interval [0,2] into 5 equal subintervals of length

For example suppose we divide the interval [0,2] into 5 equal subintervals of length Math 120c Calculus Sec 1: Estimatig with Fiite Sums I Area A Cosider the problem of fidig the area uder the curve o the fuctio y!x 2 + over the domai [0,2] We ca approximate this area by usig a familiar

More information

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS

MIDTERM 3 CALCULUS 2. Monday, December 3, :15 PM to 6:45 PM. Name PRACTICE EXAM SOLUTIONS MIDTERM 3 CALCULUS MATH 300 FALL 08 Moday, December 3, 08 5:5 PM to 6:45 PM Name PRACTICE EXAM S Please aswer all of the questios, ad show your work. You must explai your aswers to get credit. You will

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

4.1 SIGMA NOTATION AND RIEMANN SUMS

4.1 SIGMA NOTATION AND RIEMANN SUMS .1 Sigma Notatio ad Riema Sums Cotemporary Calculus 1.1 SIGMA NOTATION AND RIEMANN SUMS Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each

More information

Math 142, Final Exam. 5/2/11.

Math 142, Final Exam. 5/2/11. Math 4, Fial Exam 5// No otes, calculator, or text There are poits total Partial credit may be give Write your full ame i the upper right corer of page Number the pages i the upper right corer Do problem

More information

2 ) 5. (a) (1)(3) + (1)(2) = 5 (b) {area of shaded region in Fig. 24b} < 5

2 ) 5. (a) (1)(3) + (1)(2) = 5 (b) {area of shaded region in Fig. 24b} < 5 Odd Aswers: Chapter Four Cotemporary Calculus PROBLEM ANSWERS Chapter Four Sectio 4.. (a) ()() + (8)(4) = 5 (b) ()() ()(8) = 76. bh + b(h h) = bh + bh bh = b ( h + H ) 5. (a) ()() + ()() = 5 (b) {area

More information

2018 MAΘ National Convention Mu Individual Solutions ( ) ( ) + + +

2018 MAΘ National Convention Mu Individual Solutions ( ) ( ) + + + 8 MΘ Natioal ovetio Mu Idividual Solutios b a f + f + + f + + + ) (... ) ( l ( ) l ( ) l ( 7) l ( ) ) l ( 8) ) a( ) cos + si ( ) a' ( ) cos ( ) a" ( ) si ( ) ) For a fuctio to be differetiable at c, it

More information

CHAPTER 10 INFINITE SEQUENCES AND SERIES

CHAPTER 10 INFINITE SEQUENCES AND SERIES CHAPTER 10 INFINITE SEQUENCES AND SERIES 10.1 Sequeces 10.2 Ifiite Series 10.3 The Itegral Tests 10.4 Compariso Tests 10.5 The Ratio ad Root Tests 10.6 Alteratig Series: Absolute ad Coditioal Covergece

More information

n n 2 + 4i = lim 2 n lim 1 + 4x 2 dx = 1 2 tan ( 2i 2 x x dx = 1 2 tan 1 2 = 2 n, x i = a + i x = 2i

n n 2 + 4i = lim 2 n lim 1 + 4x 2 dx = 1 2 tan ( 2i 2 x x dx = 1 2 tan 1 2 = 2 n, x i = a + i x = 2i . ( poits) Fid the limits. (a) (6 poits) lim ( + + + 3 (6 poits) lim h h h 6 微甲 - 班期末考解答和評分標準 +h + + + t3 dt. + 3 +... + 5 ) = lim + i= + i. Solutio: (a) lim i= + i = lim i= + ( i ) = lim x i= + x i =

More information

7.) Consider the region bounded by y = x 2, y = x - 1, x = -1 and x = 1. Find the volume of the solid produced by revolving the region around x = 3.

7.) Consider the region bounded by y = x 2, y = x - 1, x = -1 and x = 1. Find the volume of the solid produced by revolving the region around x = 3. Calculus Eam File Fall 07 Test #.) Fid the eact area betwee the curves f() = 8 - ad g() = +. For # - 5, cosider the regio bouded by the curves y =, y = 3 + 4. Produce a solid by revolvig the regio aroud

More information

AP Calculus AB 2006 Scoring Guidelines Form B

AP Calculus AB 2006 Scoring Guidelines Form B AP Calculus AB 6 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

More information

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations Chapter The Solutio of Numerical Algebraic ad Trascedetal Equatios Itroductio I this chapter we shall discuss some umerical methods for solvig algebraic ad trascedetal equatios. The equatio f( is said

More information

Chapter 5: Take Home Test

Chapter 5: Take Home Test Chapter : Take Home Test AB Calulus - Hardtke Name Date: Tuesday, / MAY USE YOUR CALCULATOR FOR THIS PAGE. Roud aswers to three plaes. Sore: / Show diagrams ad work to justify eah aswer.. Approimate the

More information

4.1 Sigma Notation and Riemann Sums

4.1 Sigma Notation and Riemann Sums 0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas

More information

The Definite Integral. Day 3 Riemann Sums

The Definite Integral. Day 3 Riemann Sums The Defiite Itegral Day 3 Riema Sums 2 2 1. If x xy y 9, the a vertical taget exists at ( A) 2 3, 3 ( B) 3,2 3 ( C) 2 3, 3 ( D) 3,2 3 ( E) 2 3, 3 2. Use a local lieariazatio for f x 9 ta x about x 0, the

More information

AP CALCULUS - AB LECTURE NOTES MS. RUSSELL

AP CALCULUS - AB LECTURE NOTES MS. RUSSELL AP CALCULUS - AB LECTURE NOTES MS. RUSSELL Sectio Number: 4. Topics: Area -Sigma Notatio Part: of Sigma Notatio Upper boud Recall ai = a+ a + a3 + L + a idex i= Lower boud Example : Evaluate each summatio.

More information

Math 21C Brian Osserman Practice Exam 2

Math 21C Brian Osserman Practice Exam 2 Math 1C Bria Osserma Practice Exam 1 (15 pts.) Determie the radius ad iterval of covergece of the power series (x ) +1. First we use the root test to determie for which values of x the series coverges

More information

6.) Find the y-coordinate of the centroid (use your calculator for any integrations) of the region bounded by y = cos x, y = 0, x = - /2 and x = /2.

6.) Find the y-coordinate of the centroid (use your calculator for any integrations) of the region bounded by y = cos x, y = 0, x = - /2 and x = /2. Calculus Test File Sprig 06 Test #.) Fid the eact area betwee the curves f() = 8 - ad g() = +. For # - 5, cosider the regio bouded by the curves y =, y = +. Produce a solid by revolvig the regio aroud

More information

Calculus 2 - D. Yuen Final Exam Review (Version 11/22/2017. Please report any possible typos.)

Calculus 2 - D. Yuen Final Exam Review (Version 11/22/2017. Please report any possible typos.) Calculus - D Yue Fial Eam Review (Versio //7 Please report ay possible typos) NOTE: The review otes are oly o topics ot covered o previous eams See previous review sheets for summary of previous topics

More information

LESSON 2: SIMPLIFYING RADICALS

LESSON 2: SIMPLIFYING RADICALS High School: Workig with Epressios LESSON : SIMPLIFYING RADICALS N.RN.. C N.RN.. B 5 5 C t t t t t E a b a a b N.RN.. 4 6 N.RN. 4. N.RN. 5. N.RN. 6. 7 8 N.RN. 7. A 7 N.RN. 8. 6 80 448 4 5 6 48 00 6 6 6

More information

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t Itroductio to Differetial Equatios Defiitios ad Termiolog Differetial Equatio: A equatio cotaiig the derivatives of oe or more depedet variables, with respect to oe or more idepedet variables, is said

More information

AP Calculus BC 2011 Scoring Guidelines Form B

AP Calculus BC 2011 Scoring Guidelines Form B AP Calculus BC Scorig Guidelies Form B The College Board The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success ad opportuity. Fouded i 9, the College

More information

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim Math 3, Sectio 2. (25 poits) Why we defie f(x) dx as we do. (a) Show that the improper itegral diverges. Hece the improper itegral x 2 + x 2 + b also diverges. Solutio: We compute x 2 + = lim b x 2 + =

More information

MTH Assignment 1 : Real Numbers, Sequences

MTH Assignment 1 : Real Numbers, Sequences MTH -26 Assigmet : Real Numbers, Sequeces. Fid the supremum of the set { m m+ : N, m Z}. 2. Let A be a o-empty subset of R ad α R. Show that α = supa if ad oly if α is ot a upper boud of A but α + is a

More information

1988 AP Calculus BC: Section I

1988 AP Calculus BC: Section I 988 AP Calculus BC: Sectio I 9 Miutes No Calculator Notes: () I this eamiatio, l deotes the atural logarithm of (that is, logarithm to the base e). () Uless otherwise specified, the domai of a fuctio f

More information

TEMASEK JUNIOR COLLEGE, SINGAPORE JC One Promotion Examination 2014 Higher 2

TEMASEK JUNIOR COLLEGE, SINGAPORE JC One Promotion Examination 2014 Higher 2 TEMASEK JUNIOR COLLEGE, SINGAPORE JC Oe Promotio Eamiatio 04 Higher MATHEMATICS 9740 9 Septemer 04 Additioal Materials: Aswer paper 3 hours List of Formulae (MF5) READ THESE INSTRUCTIONS FIRST Write your

More information

The Fundamental Theorem(s) of Calculus

The Fundamental Theorem(s) of Calculus The Fudametal Theorem(s) of Calculus Major Problem Give a fuctio y f x over a iterval a, b with f x 0 o this iterval, fid the area uder the curve ad above the iterval o the x-axis. Furtherig the Approximatio

More information

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 3. (a) (b) (c) (d) (e) 5. (a) (b) (c) (d) (e) 7. (a) (b) (c) (d) (e)

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 1. (a) (b) (c) (d) (e) 3. (a) (b) (c) (d) (e) 5. (a) (b) (c) (d) (e) 7. (a) (b) (c) (d) (e) Math 0560, Exam 3 November 6, 07 The Hoor Code is i effect for this examiatio. All work is to be your ow. No calculators. The exam lasts for hour ad 5 mi. Be sure that your ame is o every page i case pages

More information

f t dt. Write the third-degree Taylor polynomial for G

f t dt. Write the third-degree Taylor polynomial for G AP Calculus BC Homework - Chapter 8B Taylor, Maclauri, ad Power Series # Taylor & Maclauri Polyomials Critical Thikig Joural: (CTJ: 5 pts.) Discuss the followig questios i a paragraph: What does it mea

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES I geeral, it is difficult to fid the exact sum of a series. We were able to accomplish this for geometric series ad the series /[(+)]. This is

More information

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1

Assignment 1 : Real Numbers, Sequences. for n 1. Show that (x n ) converges. Further, by observing that x n+2 + x n+1 Assigmet : Real Numbers, Sequeces. Let A be a o-empty subset of R ad α R. Show that α = supa if ad oly if α is ot a upper boud of A but α + is a upper boud of A for every N. 2. Let y (, ) ad x (, ). Evaluate

More information

Lesson 10: Limits and Continuity

Lesson 10: Limits and Continuity www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals

More information

Integrals, areas, Riemann sums

Integrals, areas, Riemann sums Itegrals, areas, Riema sums October 5, 2017 Itegrals, areas, Riema sums We had the ith breakfast yesterday morig: There are still lots of slots available Breakfast #10, ext Moday (October 9) at 9AM. Itegrals,

More information

Lecture 6: Integration and the Mean Value Theorem. slope =

Lecture 6: Integration and the Mean Value Theorem. slope = Math 8 Istructor: Padraic Bartlett Lecture 6: Itegratio ad the Mea Value Theorem Week 6 Caltech 202 The Mea Value Theorem The Mea Value Theorem abbreviated MVT is the followig result: Theorem. Suppose

More information

JEE ADVANCED 2013 PAPER 1 MATHEMATICS

JEE ADVANCED 2013 PAPER 1 MATHEMATICS Oly Oe Optio Correct Type JEE ADVANCED 0 PAPER MATHEMATICS This sectio cotais TEN questios. Each has FOUR optios (A), (B), (C) ad (D) out of which ONLY ONE is correct.. The value of (A) 5 (C) 4 cot cot

More information

The type of limit that is used to find TANGENTS and VELOCITIES gives rise to the central idea in DIFFERENTIAL CALCULUS, the DERIVATIVE.

The type of limit that is used to find TANGENTS and VELOCITIES gives rise to the central idea in DIFFERENTIAL CALCULUS, the DERIVATIVE. NOTES : LIMITS AND DERIVATIVES Name: Date: Period: Iitial: LESSON.1 THE TANGENT AND VELOCITY PROBLEMS Pre-Calculus Mathematics Limit Process Calculus The type of it that is used to fid TANGENTS ad VELOCITIES

More information

THE INTEGRAL TEST AND ESTIMATES OF SUMS

THE INTEGRAL TEST AND ESTIMATES OF SUMS THE INTEGRAL TEST AND ESTIMATES OF SUMS. Itroductio Determiig the exact sum of a series is i geeral ot a easy task. I the case of the geometric series ad the telescoig series it was ossible to fid a simle

More information

Area As A Limit & Sigma Notation

Area As A Limit & Sigma Notation Area As A Limit & Sigma Notatio SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should referece Chapter 5.4 of the recommeded textbook (or the equivalet chapter i your

More information

Chapter 9: Numerical Differentiation

Chapter 9: Numerical Differentiation 178 Chapter 9: Numerical Differetiatio Numerical Differetiatio Formulatio of equatios for physical problems ofte ivolve derivatives (rate-of-chage quatities, such as velocity ad acceleratio). Numerical

More information

Archimedes - numbers for counting, otherwise lengths, areas, etc. Kepler - geometry for planetary motion

Archimedes - numbers for counting, otherwise lengths, areas, etc. Kepler - geometry for planetary motion Topics i Aalysis 3460:589 Summer 007 Itroductio Ree descartes - aalysis (breaig dow) ad sythesis Sciece as models of ature : explaatory, parsimoious, predictive Most predictios require umerical values,

More information

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0,

x x x Using a second Taylor polynomial with remainder, find the best constant C so that for x 0, Math Activity 9( Due with Fial Eam) Usig first ad secod Taylor polyomials with remaider, show that for, 8 Usig a secod Taylor polyomial with remaider, fid the best costat C so that for, C 9 The th Derivative

More information

Topic 5 [434 marks] (i) Find the range of values of n for which. (ii) Write down the value of x dx in terms of n, when it does exist.

Topic 5 [434 marks] (i) Find the range of values of n for which. (ii) Write down the value of x dx in terms of n, when it does exist. Topic 5 [44 marks] 1a (i) Fid the rage of values of for which eists 1 Write dow the value of i terms of 1, whe it does eist Fid the solutio to the differetial equatio 1b give that y = 1 whe = π (cos si

More information

INTEGRATION BY PARTS (TABLE METHOD)

INTEGRATION BY PARTS (TABLE METHOD) INTEGRATION BY PARTS (TABLE METHOD) Suppose you wat to evaluate cos d usig itegratio by parts. Usig the u dv otatio, we get So, u dv d cos du d v si cos d si si d or si si d We see that it is ecessary

More information

We first write the integrand into partial fractions and then integrate. By EXAMPLE 27 we have the identity

We first write the integrand into partial fractions and then integrate. By EXAMPLE 27 we have the identity Solutios 8 Complete solutios to Miscellaeous Eercise 8. We ave v v v m KE m vdv m v. We ave l l EA EA EAl W d. We ave W k d k k. Multiplyig bot sides by μ gives ( ) T dt T T μθ l T l ( T) l ( T) l T T

More information

VICTORIA JUNIOR COLLEGE Preliminary Examination. Paper 1 September 2015

VICTORIA JUNIOR COLLEGE Preliminary Examination. Paper 1 September 2015 VICTORIA JUNIOR COLLEGE Prelimiary Eamiatio MATHEMATICS (Higher ) 70/0 Paper September 05 Additioal Materials: Aswer Paper Graph Paper List of Formulae (MF5) 3 hours READ THESE INSTRUCTIONS FIRST Write

More information

SYDE 112, LECTURE 2: Riemann Sums

SYDE 112, LECTURE 2: Riemann Sums SYDE, LECTURE : Riema Sums Riema Sums Cosider the problem of determiig the area below the curve f(x) boud betwee two poits a ad b. For simple geometrical fuctios, we ca easily determie this based o ituitio.

More information

Math ~ Final Exam Review Guide* *This is only a guide, for your benefit, and it in no way replaces class notes, homework, or studying

Math ~ Final Exam Review Guide* *This is only a guide, for your benefit, and it in no way replaces class notes, homework, or studying Math 1210 9 ~ Fial Exam Review Guide* *This is oly a guide, for your eefit, ad it i o way replaces class otes, homework, or studyig Geeral Tips for Studyig: 1. Review this guide, class otes, ad the text

More information

AP Calculus BC 2007 Scoring Guidelines Form B

AP Calculus BC 2007 Scoring Guidelines Form B AP Calculus BC 7 Scorig Guidelies Form B The College Board: Coectig Studets to College Success The College Board is a ot-for-profit membership associatio whose missio is to coect studets to college success

More information

Chapter 5.4 Practice Problems

Chapter 5.4 Practice Problems EXPECTED SKILLS: Chapter 5.4 Practice Problems Uderstad ad kow how to evaluate the summatio (sigma) otatio. Be able to use the summatio operatio s basic properties ad formulas. (You do ot eed to memorize

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information