130 Chapter 3 Differentiation

Size: px
Start display at page:

Download "130 Chapter 3 Differentiation"

Transcription

1 0 Capter Differentiation 20. (a) (b) 2. C position, A velocity, an B acceleration. Neiter A nor C can be te erivative of B because B's erivative is constant. Grap C cannot be te erivative of A eiter, because A as some negative slopes ile C as only positive values. So, C (being te erivative of neiter A nor B) must be te grap of position. Curve C as bot positive an negative slopes, so its erivative, te velocity, must be A an not B. Tat leaves B for acceleration. 22. C position, B velocity, an A acceleration. Curve C cannot be te erivative of eiter A or B because C as only negative values ile bot A an B ave some positive slopes. So, C represents position. Curve C as no positive slopes, so its erivative, te velocity, must be B. Tat leaves A for acceleration. Inee, A is negative ere B as negative slopes an positive ere B as positive slopes. 2. (a) c(00),000 Ê c 0 av, (b) c() Ê c () Marginal cost c () Ê te marginal cost of proucing 00 macines is c (00) 80 st 20 (c) Te cost of proucing te 0 macine is c(0) c(00) (a) r() ˆ Ê r (), ic is marginal revenue. a (b) r!! b Þ (c) lim r () lim Ä_ Ä_ 0. Te increase in revenue as te number of items increases itout boun ill approac zero. ' % % 25. b(t) 0 0 t 0 t Ê b (t) 0 (2) a0 tb 0 (0 2t) % (a) b (0) 0 bacteria/r (b) b (5) 0 bacteria/r % (c) b (0) 0 bacteria/r 26. Q(t) 200(0 t) 200 a900 60t t b Ê Q (t) 200( 60 2t) Ê Q (0) 8,000 gallons/min is te rate te ater is running at te en of 0 min. Ten Q(0) Q(0) 0 0 0,000 gallons/min is te average rate te ater flos uring te first 0 min. Te negative signs inicate ater is leaving te tank.

2 27. (a) y 6 ˆ t t t t 6 Š Ê 6 2 Section. Te Derivative as a Rate of Cange (b) Te largest value of is 0 m/ en t 2 an te flui level is falling te sloest at tat time. Te smallest value of is m/, en t 0, an te flui level is falling te fastest at tat time. (c) In tis situation, Ÿ 0 Ê te grap of y is alays ecreasing. As increases in value, te slope of te grap of y increases from to 0 over te interval 0 Ÿ t Ÿ 2. V V r r r=2 V 28. (a) V r Ê r Ê (2) 6 ft /ft (b) Wen r 2, r 6 so tat en r canges by unit, e epect V to cange by approimately 6. Terefore en r canges by 0.2 units V canges by approimately (6)(0.2) ft. Note tat V(2.2) V(2).09 ft km/r 55 m/sec m/sec, an D t Ê V t. Tus V Ê t Ê t 25 sec. Wen t 25, D (25) m v! v! v! v!!! 2! 2 6! È È 80È9 ft sec 60 sec min 60 min mi r 5280 ft 0. s v t 6t Ê v v 2t; v 0 Ê t ; 900 v t 6t so tat t Ê 900. Ê v (6)(900) 80 9 ft/sec an, finally, 28 mp. (a) v 0 en t 6.25 sec (b) v 0 en 0 Ÿ t 6.25 Ê bo moves up; v 0 en 6.25 t Ÿ 2.5 Ê bo moves on (c) bo canges irection at t 6.25 sec () bo spees up on (6.25ß2.5] an slos on on [0ß6.25) (e) Te bo is moving fastest at te enpoints t 0 an t 2.5 en it is traveling 200 ft/sec. It's moving sloest at t 6.25 en te spee is 0. (f) Wen t 6.25 te bo is s 625 m from te origin an fartest aay.

3 2 Capter Differentiation 2.. (a) v 0 en t sec (b) v 0 en 0 Ÿ t.5 Ê bo moves on; v 0 en.5 t Ÿ 5 Ê bo moves up (c) bo canges irection at t sec () bo spees up on ˆ an slos on on ß&!ß (e) bo is moving fastest at t 5 en te spee kv(5) k 7 units/sec; it is moving sloest at t en te spee is 0 (f) Wen t 5 te bo is s 2 units from te origin an fartest aay. (a) v 0 en t 6 5 sec È 6È5 6È5 6È5 6È5 (b) v 0 en t Ê bo moves left; v 0 en 0 Ÿ t or t Ÿ Ê bo moves rigt (c) bo canges irection at t sec 6 È5 6 È Š È È È ß ß% ß ß () bo spees up on Š an slos on on 0 Š. (e) Te bo is moving fastest at t 0 an t en it is moving 7 units/sec an sloest at t 6 5 sec 6 È 5 (f) Wen t te bo is at position s 6.0 units an fartest from te origin. È

4 Section. Derivatives of Trigonometric Functions. È 6È5 6È5 6È5 6È5 t Ê bo is moving rigt 6 È5 6 È5 6 Š È an slos on on È È ß ß%!ß ß (a) v 0 en t 6 5 (b) v 0 en 0 Ÿ t or t Ÿ Ê bo is moving left; v 0 en (c) bo canges irection at t sec () bo spees up on Š Š (e) Te bo is moving fastest at 7 units/sec en t 0 an t ; it is moving sloest an stationary at t 6 È5 6 È 5 (f) Wen t te position is s 0.0 units an te bo is fartest from te origin. 5. (a) It takes 5 secons.? F &! & (b) Average spee? t (! (!Þ!') furlongs/sec.? F % (c) Using a symmetric ifference quotient, te orse's spee is approimately? t &* '!Þ!(( furlongs/sec. () Te orse is running te fastest uring te last furlong (beteen te 9t an 0t furlong markers). Tis furlong takes only secons to run, ic is te least amount of time for a furlong. (e) Te orse accelerates te fastest uring te first furlong (beteen markers 0 an ).. DERIVATIVES OF TRIGONOMETRIC FUNCTIONS. y 0 cos Ê 0 (cos ) 0 sin 2. y 5 sin Ê 5 (sin ) 5 cos. y csc È 7 Ê csc cot 0 csc cot 2 È È y cot Ê (cot ) cot a b csc (cot )(2) csc 2 cot 5. y (sec tan )(sec tan ) Ê (sec tan ) (sec tan ) (sec tan ) (sec tan ) (sec tan ) asec tan sec b(sec tan ) asec tan sec b asec tan sec tan sec sec tan basec tan sec tan sec tan sec b 0. Š Note also tat y sec tan atan btan Ê 0.

5 Capter Differentiation (sin cos ) sin (sin cos )(sec tan ) (sec )(cos sin ) cos sin cos sin cos cos sin cos cos 6. y (sin cos ) sec Ê (sin cos ) (sec ) sec (sin cos ) sec Š Note also tat y sin sec cos sec tan Ê sec. cos sin cos cot ( cot ) (cot ) (cot ) ( cot ) ( cot ) acsc b(cot ) acsc b cot ( cot ) ( cot ) 7. y Ê csc csc cot csc cot csc ( cot ) ( cot ) cos ( sin ) (cos ) (cos ) ( sin ) ( sin ) asin b(cos ) acos b sin ( sin ) ( sin ) sin sin cos sin ( sin ) ( sin ) ( sin ) ( sin ) sin 8. y Ê cos tan 9. y sec cot Ê sec tan csc cos ( sin ) (cos )() (cos )() ( sin ) sin cos cos sin cos cos cos 0. y Ê. y sin 2 cos 2 sin Ê a cos (sin )(2) ba(2)( sin ) (cos )(2) b2 cos cos 2 sin 2 sin 2 cos 2 cos cos 2. y cos 2 sin 2 cos Ê a ( sin ) (cos )(2) ba2 cos (sin )(2) b2( sin ) sin 2 cos 2 cos 2 sin 2 sin sin t s t. s tan t e Ê sec t e t s t. s t sec t 5e Ê 2t sec t tan t 5e csc t s ( csc t)( csc t cot t) (csc t)(csc t cot t) csc t (csc t) 5. s Ê csc t cot t csc t cot t csc t cot t csc t cot t 2 csc t cot t ( csc t) ( csc t) sin t s ( cos t)(cos t) (sin t)(sin t) cos t cos t sin t cos t cos t ( cos t) ( cos t) ( cos t) cos t 6. s Ê cos t r 7. r ) sin ) Ê ˆ ) (sin )) (sin ))(2)) a ) cos ) 2 ) sin ) b ) () cos ) sin )) ) ) r ) 8. r ) sin ) cos ) Ê () cos ) (sin ))()) sin ) ) cos ) r 9. r sec ) csc ) Ê ) (sec ))( csc ) cot )) (csc ))(sec ) tan )) ˆ ˆ ˆ cos ) ˆ ˆ ˆ sin ) sec ) csc ) cos ) sin ) sin ) sin ) cos ) cos ) sin ) cos ) r ) 20. r ( sec )) sin ) Ê ( sec )) cos ) (sin ))(sec ) tan )) (cos ) ) tan ) cos ) sec ) p cot q q 2. p & 5tan q Ê sec q p q 22. p ( csc q) cos q Ê ( csc q)( sin q) (cos q)( csc q cot q) ( sin q ) cot q sin q csc q

6 sin q cos q p (cos q)(cos q sin q) (sin q cos q)( sin q) cos q q cos q 2. p Ê cos q cos q sin q sin q cos q sin q cos q cos q sec q Section. Derivatives of Trigonometric Functions 5 tan q p ( tan q) asec q b(tan q) asec qb sec q tan q sec q tan q sec q sec q tan q q ( tan q) ( tan q) ( tan q) 2. p Ê 25. (a) y csc Ê y csc cot Ê y a(csc ) acsc b(cot )( csc cot ) b csc csc cot (csc ) acsc cot b (csc ) acsc csc b 2 csc csc (b) y sec Ê y sec tan Ê y (sec ) asec b(tan )(sec tan ) sec sec tan (sec ) asec tan b (sec ) asec sec b 2 sec sec Ð%Ñ 26. (a) y 2 sin Ê y 2 cos Ê y 2( sin ) 2 sin Ê y 2 cos Ê y 2 sin Ð%Ñ (b) y 9 cos Ê y 9 sin Ê y 9 cos Ê y 9( sin ) 9 sin Ê y 9 cos 27. y sin Ê y cos Ê slope of tangent at is y ( ) cos ( ) ; slope of tangent at 0 is y (0) cos (0) ; an slope of tangent at is y ˆ cos 0. Te tangent at ( ß! ) is y 0 ( ), or y ; te tangent at (0ß0) is y 0 ( 0), or y ; an te tangent at ˆ ß is y. 28. y tan Ê y sec Ê slope of tangent at is sec ˆ ; slope of tangent at 0 is sec (0) ; an slope of tangent at is sec ˆ. Te tangent at ˆ tanˆ ß Š ßÈ is y È ˆ ; te tangent at (0ß0) is y ; an te tangent at ˆ ßtan ˆ Š ßÈ is yè ˆ. 29. y sec Ê y sec tan Ê slope of tangent at is sec ˆ tan ˆ 2È ; slope of tangent at is sec ˆ tan ˆ È 2. Te tangent at te point ˆ sec ˆ ˆ ß ß is y 2 È ˆ ; te tangent at te point ˆ sec ˆ ß Š ßÈ2 is y È2 È2ˆ. 0. y cos Ê y sin Ê slope of tangent at È is sin ˆ ; slope of tangent at is sin ˆ. Te tangent at te point ˆ cos ˆ ß ˆ ß is y È ˆ ; te tangent at te point ˆ cos ˆ ˆ ß ß is y

7 6 Capter Differentiation. Yes, y sin Ê y cos ; orizontal tangent occurs ere cos 0 Ê cos Ê 2. No, y 2 sin Ê y 2 cos ; orizontal tangent occurs ere 2 cos 0 Ê cos. But tere are no -values for ic cos.. No, y cot Ê y csc ; orizontal tangent occurs ere csc 0 Ê csc. But tere are no -values for ic csc.. Yes, y 2 cos Ê y 2 sin ; orizontal tangent occurs ere 2 sin 0 Ê 2 sin 5 Ê sin Ê or We ant all points on te curve ere te tangent line as slope 2. Tus, y tan Ê y sec so tat y 2 Ê sec 2 Ê sec È 2 Ê. Ten te tangent line at ˆ ß as equation y 2 ˆ ; te tangent line at ˆ as equation y 2 ˆ ß. 6. We ant all points on te curve y cot ere te tangent line as slope. Tus y cot Ê y csc so tat y Ê csc Ê csc Ê csc Ê. Te tangent line at ˆ ß! is y y cot 2 csc Ê y csc 2 csc cot ˆ ˆ 2 cos sin (a) Wen, ten y ; te tangent line is y 2. (b) To fin te location of te orizontal tangent set y 0 Ê 2 cos 0 Ê raians. Wen, ten y % È is te orizontal tangent. sin 8. y È 2 csc cot Ê y È 2 csc cot csc ˆ Š (a) If, ten y ; te tangent line is y. sin È 2 cos sin È (b) To fin te location of te orizontal tangent set y 0 Ê 2 cos 0 Ê raians. Wen, ten y 2 is te orizontal tangent. 9. lim sin ˆ sin ˆ sin 0 0 Ä 2 0. lim È cos ( csc ) É cos ˆ csc ˆ È cos a 2 b È2 Ä 6 a b 6. lim sec e tan ˆ sec tan ˆ sec tan ˆ sec Ä! sec sec 0

8 2. lim sin ˆ tan sin ˆ tan 0 sin ˆ Ä! tan 2 sec tan 0 2 sec 0 Section. Derivatives of Trigonometric Functions 7. lim tan ˆ sin t sin t tan Š lim tan ( ) 0 t Ä! t t Ä! t. lim cos ˆ ) ) cos lim cos cos ˆ Š Œ ) Ä! sin ) ) Ä! sin ) lim )Ä! sin ) ) s v a 5. s sin t Ê v 2 cos t Ê a 2 sin t Ê j 2 cos t. Terefore, velocity v ˆ È2 m/sec; spee v ˆ È2 m/sec; acceleration a ˆ È 2 m/sec ; jerk j ˆ È 2 m/sec. s v a 6. s sin t cos t Ê v cos t sin t Ê a sin t cos t Ê j cos t sin t. Terefore velocity v ˆ 0 m/sec; spee v ˆ 0 m/sec; acceleration a ˆ È 2 m/sec ; jerk j ˆ 0 m/sec. 7. lim f() sin lim lim 9 ˆ sin ˆ sin 9 so tat f is continuous at 0 Ê lim f() f(0) Ä! Ä! Ä! Ä! Ê 9 c. 8. lim g() lim ( b) b an lim g() lim cos so tat g is continuous at 0 lim g() Ä! c Ä! c Ä! b Ä! b Ê Ä! c lim g() Ê b. No g is not ifferentiable at 0: At 0, te left-an erivative is Ä! b ( b), but te rigt-an erivative is (cos ) sin 0 0. Te left- an rigt-an =0 =0 erivatives can never agree at 0, so g is not ifferentiable at 0 for any value of b (incluing b ). *** % 9. (cos ) sin because (cos ) cos Ê te erivative of cos any number of times tat is a *** % *** multiple of is cos. Tus, iviing 999 by gives Ê (cos ) %* % %*% (cos ) (cos ) sin. *** (cos )(0) ()( sin ) sin 50. (a) y sec Ê ˆ ˆ sin sec tan 5. cos (cos ) cos cos cos Ê (sec ) sec tan (sin )(0) ()(cos ) cos (b) y csc Ê ˆ ˆ cos csc cot Ê sin (sin ) sin sin sin (csc ) csc cot cos (sin )( sin ) (cos )(cos ) sin cos sin (sin ) sin sin (c) y cot Ê csc Ê (cot ) csc sin ( ) sin sin ( ) sin As takes on te values of, 0.5, 0. an 0. te corresponing ase curves of y get closer an closer to te black curve y cos because (sin ) lim cos. Te same Ä! is true as takes on te values of, 0.5, 0. an 0..

9 8 Capter Differentiation 52. cos ( ) cos cos ( ) cos As takes on te values of, 0.5, 0., an 0. te corresponing ase curves of y get closer an closer to te black curve y sin because (cos ) lim sin. Te Ä! same is true as takes on te values of, 0.5, 0., an (a) (b) sina bsina b Te ase curves of y are closer to te black curve y cos tan te corresponing ase curves in Eercise 5 illustrating tat te centere ifference quotient is a better approimation of te erivative of tis function. cosa bcosa b Te ase curves of y are closer to te black curve y sin tan te corresponing ase curves in Eercise 52 illustrating tat te centere ifference quotient is a better approimation of te erivative of tis function. k0kk0k kkkk 5. lim lim lim 0 0 te limits of te centere ifference quotient eists even Ä! 2 Ä! 2 Ê Ä! toug te erivative of f() k koes not eist at y tan Ê y sec, so te smallest value y sec takes on is y en 0; y as no maimum value since sec as no largest value on ˆ ß ; y is never negative since sec.

10 Section. Derivatives of Trigonometric Functions y cot Ê y csc so y as no smallest value since csc as no minimum value on (!ß ); te largest value of y is, en ; te slope is never positive since te largest value y 2 csc takes on is. sin 57. y appears to cross te y-ais at y, since sin sin 2 lim ; y appears to cross te y-ais Ä! sin 2 sin at y 2, since lim 2; y appears to Ä! sin cross te y-ais at y, since lim. Ä! Hoever, none of tese graps actually cross te y-ais since 0 is not in te omain of te functions. Also, sin 5 sin ( ) sin k lim 5, lim, an lim Ä! Ä! Ä! sin 5 sin ( ) k Ê te graps of y, y, an sin k y approac 5,, an k, respectively, as Ä 0. Hoever, te graps o not actually cross te y-ais. sin 58. (a) ˆ sin ˆ sin sin ˆ sin ˆ sin ) lim lim lim lim Ä! Ä! Ä! 80 ) Ä! ) 80 () 80) (converting to raians) cos (b) cos lim Ä! 0, eter is measure in egrees or raians. (c) In egrees, (sin ) lim ) sin lim cos sin ) sin Ä! Ä! lim ˆ cos sin lim ˆ sin cos (sin ) lim ˆ cos (cos ) lim ˆ sin Ä! Ä! Ä! Ä! (sin )(0) (cos ) ˆ cos () In egrees, (cos ) lim ) cos lim sin sin ) cos Ä! Ä! (cos )(cos ) sin sin lim lim ˆ cos sin cos lim sin Ä! ˆ Ä! Ä! (cos ) lim ˆ cos (sin ) lim ˆ sin (cos )(0) (sin ) ˆ sin Ä! Ä! (e) (sin ) ˆ cos ˆ sin ; (sin ) ˆ Š sin ˆ cos ; (cos ) ˆ sin ˆ cos ; (cos ) ˆ Š cos ˆ sin

11 0 Capter Differentiation.5 THE CHAIN RULE AND PARAMETRIC EQUATIONS %. f(u) 6u 9 Ê f (u) 6 Ê f (g()) 6; g() Ê g () 2 ; terefore f (g())g () f(u) 2u Ê f (u) 6u Ê f (g()) 6(8 ) ; g() 8 Ê g () 8; terefore f (g())g () 6(8 ) 8 8(8 ). f(u) sin u Ê f (u) cos u Ê f (g()) cos ( ); g() Ê g () ; terefore f (g())g () (cos ( ))() cos ( ). f(u) cos u Ê f (u) sin u Ê f (g()) sin ˆ ; g() Ê g () ; terefore f (g())g () sin ˆ ˆ sin ˆ 5. f(u) cos u Ê f (u) sin u Ê f (g()) sin (sin ); g() sin Ê g () cos ; terefore f (g())g () (sin (sin )) cos 6. f(u) sin u Ê f (u) cos u Ê f (g()) cos ( cos ); g() cos Ê g () sin ; terefore f (g())g () (cos ( cos ))( sin ) 7. f(u) tan u Ê f (u) sec u Ê f (g()) sec (0 5); g() 0 5 Ê g () 0; terefore f (g())g () asec (0 5) b(0) 0 sec (0 5) 8. f(u) sec u Ê f (u) sec u tan u Ê f (g()) sec a 7btan a 7 b; g() 7 Ê g () 2 7; terefore f (g())g () (2 7) sec a 7 btan a 7b & u % % u 9. Wit u (2 ), y u : 5u 2 0(2 ) * u ) ) u 0. Wit u ( ), y u : 9u ( ) 27( ). Wit u ˆ u, y? : 7u ˆ ˆ ( ) ) 7 u Wit u ˆ u, y? : 0u ˆ 5 ˆ! u 8 u 8 % u. Wit u Š, y? : u ˆ Š ˆ. Wit u ˆ u, y? : 5u ˆ ˆ ˆ & % % 5 5 u u u 5. Wit u tan, y sec u: (sec u tan u) asec b (sec (tan ) tan (tan )) sec u 6. Wit u, y cot u: acsc u bˆ csc ˆ u u u 7. Wit u sin, y u : u cos asin b(cos ) u % u & & 8. Wit u cos, y 5u : a20u b( sin ) 20 acos b(sin )

12 y e Ê y e ( 5) Ê y 5e 20. y e Ê y e ˆ 2 2 Ê y e 2Î 2Î 2Î y e Ê y e (5 7) Ê y 7e 22. y e Ê y e ˆ È 2 Ê y Š 2 e ˆ È ˆ È ˆ È È Section.5 Te Cain Rule an Parametric Equations È Î p Î Î 2È t 2. p t ( t) Ê ( t) ( t) ( t) 2. q È2r r Î q Î Î a2r r b Ê a2r r b a2r r b a2r r b (2 2r) r r r È 2r r s s sin t cos 5t Ê cos t (t) ( sin 5t) (5t) cos t sin 5t (cos t sin 5t) 26. s sin ˆ t cos ˆ t s Ê cos ˆ t ˆ t sin ˆ t ˆ t cos ˆ t sin ˆ t 2 2 ˆ cos t sin t 2 r csc ) cot ) csc ) csc )(cot ) csc )) ) ) (csc ) cot )) (csc ) cot )) 27. r (csc ) cot )) Ê (csc ) cot )) (csc ) cot )) csc ) csc ) cot ) r sec ) tan ) sec ) sec )(tan ) sec )) ) ) (sec ) tan )) (sec ) tan )) 28. r (sec ) tan )) Ê (sec ) tan )) (sec ) tan )) sec ) sec ) tan ) % % % 29. y sin cos Ê asin bsin a b acos bcos () ˆ sin (sin ) % 2 sin ˆ 2 cos (cos ) cos % a sin cos b2 sin aa2 cos b ( sin ) bcos % sin cos 2 sin 2 sin cos cos & & & 0. y sin cos Ê y asin bsin ˆ acos bcos ˆ ' & 5 sin cos sin a b a bˆ aa cos b( sin ) bacos bˆ 5 ' & sin cos sin cos sin cos (. y ( 2) ˆ 7 ' Ê ( 2) ( 2) ( ) ˆ 2 2 ˆ 7 ' ' ( 2) ( ) ˆ ˆ ( 2) 2 Š % y (5 2) ˆ 2 % Ê (5 2) ( 2) ˆ 2 % ˆ 2 2 6(5 2) ˆ ˆ 6 (5 2) % 2 Š % % %. y ( ) ( ) Ê ( ) ( )( ) ( ) ( ) ()( ) ( ) ( ) % ( )( ) % () ( ) ()( ) () ( ) % ( ) % 6( ) ( ) ( ) ( ) 6( ) ( ) ( c 7) ( ) ( ) % %

13 2 Capter Differentiation ' & '. y (2 5) a 5 b Ê (2 5) (6) a 5 b (2 5) a 5 b ( )(2 5) (2) & 2a 5b (2 5) 6a 5b ' 5. y e e Êy e ab ab e e a be e y a 2be Êy a 2b e a2b a2b e e 7. y a 2 2be Êy a 2 2b e ˆ 5 a2 2b e ˆ 5 e 2 5Î2 2 5Î2 5Î2 2 5Î y a9 6 2be Êy a9 6 2b e a ba8 6b e a be 9. () tan ˆ 2È 7 Ê () ˆ tan ˆ Î 2 tan ˆ Î 2 () 0 sec ˆ Î 2 Î Î ˆ 2 tan ˆ 2 sec ˆ 2È tan ˆ 2È È sec ˆ 2È tan ˆ 2È 0. k() sec ˆ Ê k () ˆ sec sec ˆ a b sec ˆ tan ˆ ˆ 2 sec ˆ sec ˆ tan ˆ ˆ 2 sec ˆ 2 sec ˆ sec ˆ tan ˆ È ( cos ))(cos )) (sin ))( sin )) cos ) cos ) ) cos ) cos ) (cos )). f( )) ˆ sin ) Ê f ()) 2 ˆ sin ) ˆ sin ) 2 sin ) (2 sin )) acos ) cos ) sin ) b (2 sin )) (cos ) ) 2 sin ) (cos )) (cos )) (cos )) (sin t)( sin t) (cos t)(cos t) sin t sin t sin t ( cos t) (sin t) 2. g(t) ˆ cos t Ê g (t) ˆ cos t ˆ cos t sin t asin t cos t cos tb ( cos t) cos t r. r sin a) b cos (2)) Ê ) sin a) b( sin 2 )) ) (2)) cos (2)) acos a) bb ) a) b sin a) b( sin 2 ))(2) (cos 2 )) acos a) bb(2 )) 2 sin a) bsin ()) 2 ) cos (2)) cos a) b. r Š sec È tan ˆ r Ê Š sec È ˆ sec ˆ tan ˆ ) ) Š sec È ) tan È ) Š ) ) ) ) ) È) sec sec tan È ) ˆ ˆ sec È) tan È) Š sec È ) ) ) ) ) È) ) tan ) tan sec ˆ È) ) t q t t t Èt Èt Èt Èt 5. q sin Š Ê cos Š Š cos Š Èt() t ˆ Èt ˆ Èt t È t t È b t 2(t ) t t 2 t Èt t Èt Î 2(t ) Î 2(t ) Èt 2 t cos Š cos Š Š Š cos Š 6. q cot ˆ sin t q Ê csc ˆ sin t ˆ sin t ˆ csc ˆ sin t ˆ t cos t sin t t t t t t ) ) ) ) ) ) ) ) ) ) 7. y cos Š e Ê sin Š e Š e Š sin Š e Š e a) b 2) e sin Š e ) ) ) ) 8. y ) e cos 5 ) Ê a) bˆ e cos 5 ) a) cos 5) be ( 2 )) 5(sin 5 )) ˆ ) e ) ) e ( cos 5) 2 ) cos 5) 5 ) sin 5 )) ) ) 9. y sin ( t 2) Ê 2 sin ( t 2) sin ( t 2) 2 sin ( t 2) cos ( t 2) ( t 2) 2 sin( t2) cos( t2)

14 Section.5 Te Cain Rule an Parametric Equations 50. y sec t Ê (2 sec t) (sec t) (2 sec t)(sec t tan t) ( t) 2 sec t tan t % & & 8 sin 2t ( cos 2t) 5. y ( cos 2t) Ê ( cos 2t) ( cos 2t) ( cos 2t) ( sin 2t) (2t) & 52. y ˆ cot ˆ t Ê 2 ˆ cot ˆ t ˆ cot ˆ t 2 ˆ cot ˆ t ˆ csc ˆ t ˆ t csc ˆ t ˆ cot ˆ t 2 cos at b 2 cos at b 2 cos at b 5. y e Ê e 2cosat b asinat bb 2sinat bcosat be sinatî2b sinatî2b 2 sinatî2b sinatî2b 2sinatÎ2b sinatî2b y ˆ e Ê ˆ e e cosˆ t cosˆ t e e cosˆ t e 55. y sin acos (2t 5) b Ê cos (cos (2t 5)) cos (2t 5) cos (cos (2t 5)) ( sin (2t 5)) (2t 5) 2 cos (cos (2t 5))(sin (2t 5)) 56. y cos ˆ 5 sin ˆ t Ê sin ˆ 5 sin ˆ t ˆ 5 sin ˆ t sin ˆ 5 sin ˆ t ˆ 5 cos ˆ t ˆ t 5 sin ˆ 5 sin ˆ t ˆ cos ˆ t % ˆ t ˆ t ˆ t % ˆ t ˆ t ˆ t 57. y % tan ˆ t Ê % tan ˆ t % tan ˆ t % tan ˆ t tan ˆ t tan ˆ t 2 tan tan sec tan tan sec y c cos (7t) Ê c cos (7t) 2 cos (7t)( sin (7t))(7) 7 c cos (7t) (cos (7t) sin (7t)) Î Î Î Î t sin at b È cosat b 59. y a cos at bb Ê a cos at bb a cos at bb a cos at bb ˆ sin at b at b a cos at bb asin at b b 2t 60. y sin ŒÉ È t Ê cos ŒÉ Èt ŒÉ Èt cos ŒÉ È t ˆ Èt 2 cos ŒÉ Èt cos ŒÉ Èt ÉÈt 2Èt ÉtÈt ÉÈt ˆ ˆ 2ˆ ˆ ˆ 6 ˆ 6 ˆ 6 ˆ 6 ˆ ˆ % 6 ˆ ˆ 2 6. y ˆ Ê y ˆ ˆ ˆ Ê y ˆ ˆ ˆ ˆ Î Î Î Î Î ˆ È ˆ ˆ È ˆ 62. y ˆ È Ê y ˆ È ˆ ˆ È Ê y ( 2) Î ˆ È ˆ È ˆ È Î ˆ È È È ˆ È Š ˆ È Š 6. y cot ( ) Ê y csc ( )() csc ( ) Ê y ˆ 2 (csc ( ) csc ( )) csc ( )( csc ( ) cot ( ) ( )) 2 csc ( ) cot ( )

15 Capter Differentiation 6. y 9 tan ˆ Ê y 9 ˆ sec ˆ ˆ sec ˆ Ê y 2 sec ˆ ˆ sec ˆ tan ˆ ˆ 2 sec ˆ tan ˆ y e 5 Êy 2e 5 Êy 2 e a2b2e a 2be y sina e b Ê y cosa e b a e 2e b a 2be cosa e b Ê (Use triple prouct rule: Dafgb f g fg fg ) y a2 2be cosa e ba 2be cosa e ba 2be a sina e b a e 2e bb a 2be cosa e be a bsina e b È & % È 67. g() Ê g () Ê g() an g () ; f(u) u Ê f (u) 5u Ê f (g()) f () 5; 5 terefore, (f g) () f (g()) g () 5 ( ) u ˆ u 68. g() ( ) Ê g () ( ) ( ) Ê g( ) an g ( ) ; f(u) Ê f (u) Ê f (g( )) f ; terefore, (f g) ( ) f (g( ))g ( ) 69. g() 5È 5 5 Ê g () Ê g() 5 an g () ; f(u) cot ˆ u Ê f (u) csc ˆ u ˆ È u csc ˆ Ê f (g()) f (5) csc ˆ ; terefore, (f g) () f (g())g () = 70. g() Ê g () Ê g ˆ an g ˆ ; f(u) u sec u Ê f (u) 2 sec u sec u tan u 2 sec u tan u Ê f ˆ g ˆ f ˆ 2 sec tan 5; terefore, (f g) ˆ f ˆ g ˆ g ˆ 5 2u u 7. g() 0 Ê g () 20 Ê g(0) an g (0) ; f(u) Ê f (u) 2u 2 u a b Ê f (g(0)) f () 0; terefore, (f g) (0) f (g(0))g (0) 0 0 au b(2) (2u)(2u) u a b u u u u u (u )() (u )() 2(u )(2) (u ) u (u ) (u ) (u ) g() Ê g () Ê g( ) 0 an g ( ) 2; f(u) ˆ u u u Ê f (u) 2 ˆ ˆ 2 ˆ Ê f (g( )) f (0) ; terefore, (f g) ( ) f (g( ))g ( ) ( )(2) 8 7. (a) y 2f() Ê 2f () Ê ¹ 2f (2) 2 ˆ 2 =2 = (b) y f() g() Ê f () g () Ê ¹ f () g () 2 5 = f() g()f () f()g () g(2)f (2) f(2)g (2) (2) ˆ (8)( ) 7 g() [g()] ¹ [g(2)] 6 =2 (c) y f() g() Ê f()g () g()f () Ê ¹ f()g () g()f () 5 ( )(2 ) 5 8 () y Ê Ê =2 Î Î f () f (2) ˆ È 2 Èf() ¹ Èf(2) È8 6È8 È2 2 =2 (e) y f(g()) Ê f (g())g () Ê ¹ f (g(2))g (2) f (2)( ) ( ) (f) y (f()) Ê (f()) f () Ê 5 = Î Î a b a b a b Î Î =2 (g) y (g()) Ê 2(g()) g () Ê ¹ 2(g()) g () 2( ) 5 () y (f()) (g()) Ê (f()) (g()) 2f() f () 2g() g () Ê ¹ a (f(2)) (g(2)) b a 2f(2)f (2) 2g(2)g (2) b a 8 2 b ˆ ( ) 5 È7

16 Section.5 Te Cain Rule an Parametric Equations (a) y 5f() g() Ê 5f () g () Ê ¹ 5f () g () 5 ˆ ˆ = =0 ˆ (b) y f()(g()) Ê f() a(g()) g () b (g()) f () Ê ¹ f(0)(g(0)) g (0) (g(0)) f (0) ()() () (5) 6 f() (g() )f () f() g () (g() )f () f()g () g() (g() ) = (g() ) ( ) ˆ () ˆ 8 ( ) (c) y Ê Ê ¹ () y f(g()) Ê f (g())g () Ê ¹ f (g(0))g (0) f () ˆ ˆ ˆ 9 =0 (e) y g(f()) Ê g (f())f () Ê ¹ g (f(0))f (0) g ()(5) ˆ (5) 8 0 =0! ¹ = ˆ ˆ 2 ˆ 2 (f) y a f() b Ê 2 a f() b a f () b Ê 2( f()) a f () b 2( ) (g) y f( g()) Ê f ( g()) a g () b Ê ¹ f (0 g(0)) a g (0) b f () ˆ =0 9 ˆ ˆ 75. s s ): s cos s sin s sin so tat s s ) ) Ê ) Ê ˆ 5 5 ) ) ) ) )= 2 = 76. : y 7 5 Ê 2 7 Ê ¹ 9 so tat 9 u u u 5 u 5 u 5 u u u u u ( ) u u () ( ), again as epecte ( ) ( ) c ( ) a b 77. Wit y, e soul get for bot (a) an (b): (a) y 7 Ê ; u 5 5 Ê 5; terefore, 5, as epecte (b) y Ê ; u ( ) Ê ( ) () ; terefore Î Î u u ˆ u È u È È 78. Wit y, e soul get for bot (a) an (b): (a) y u Ê u ; u È Ê ; terefore, u È È, as epecte. È u u Î u Èu u Èu È (b) y u Ê ; u Ê ; terefore,, again as epecte. 79. y 2 tan ˆ Ê ˆ 2 sec ˆ sec (a) ¹ sec ˆ slope of tangent is 2; tus, y() 2 tan ˆ Ê 2 an y () Ê tangent line is = given by y 2 ( ) Ê y 2 (b) y sec ˆ an te smallest value te secant function can ave in 2 is Ê te minimum value of y is an tat occurs en sec ˆ Ê sec ˆ Ê sec ˆ Ê (a) y sin 2 Ê y 2 cos 2 Ê y (0) 2 cos (0) 2 Ê tangent to y sin 2 at te origin is y 2; y sin ˆ Ê y cos ˆ Ê y (0) cos 0 Ê tangent to y sin ˆ at te origin is y. Te tangents are perpenicular to eac oter at te origin since te prouct of teir slopes is. (b) y sin (m) Ê y m cos (m) Ê y (0) m cos 0 m; y sin ˆ Ê y cos ˆ m m m Ê y (0) cos (0). Since m ˆ, te tangent lines are perpenicular at te origin. m m m

17 6 Capter Differentiation (c) y sin (m) Ê y m cos (m). Te largest value cos (m) can attain is at 0 Ê te largest value y can attain is km kbecause ky k km cos (m) k kmkkcos mk kmk km k. Also, y sin ˆ Ÿ m Ê y cos ˆ Ê ky k cos ˆ Ÿ cos ˆ Ÿ Ê te largest value y can attain is. m m m m m m kmk m () y sin (m) Ê y m cos (m) Ê y (0) m Ê slope of curve at te origin is m. Also, sin (m) completes m perios on [0ß2]. Terefore te slope of te curve y sin (m) at te origin is te same as te number of perios it completes on [0ß 2]. In particular, for large m, e can tink of compressing te grap of y sin orizontally ic gives more perios complete on [0ß2], but also increases te slope of te grap at te origin. 8. cos 2t, y sin 2t, 0 Ÿ t Ÿ 82. cos ( t), y sin ( t), 0 Ÿ t Ÿ Ê cos 2t sin 2t Ê y Ê cos ( t) sin ( t) Ê y, y! 8. cos t, y 2 sin t, 0 Ÿ t Ÿ 2 8. sin t, y 5 cos t, 0 Ÿ t Ÿ 2 6 cos t sin t y 6 sin t 25 cos t y Ê Ê Ê Ê 85. t, y 9t, _ t _ Ê y 86. Èt, y t, t 0 Ê Èy or y, Ÿ 0

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1 Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 969) Quick Review..... f ( ) ( ) ( ) 0 ( ) f ( ) f ( ) sin π sin π 0 f ( ). < < < 6. < c c < < c 7. < < < < < 8. 9. 0. c < d d < c

More information

Chapter 2 Limits and Continuity

Chapter 2 Limits and Continuity 4 Section. Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 6) Quick Review.. f () ( ) () 4 0. f () 4( ) 4. f () sin sin 0 4. f (). 4 4 4 6. c c c 7. 8. c d d c d d c d c 9. 8 ( )(

More information

Differentiation Rules and Formulas

Differentiation Rules and Formulas Differentiation Rules an Formulas Professor D. Olles December 1, 01 1 Te Definition of te Derivative Consier a function y = f(x) tat is continuous on te interval a, b]. Ten, te slope of te secant line

More information

Derivatives of trigonometric functions

Derivatives of trigonometric functions Derivatives of trigonometric functions 2 October 207 Introuction Toay we will ten iscuss te erivates of te si stanar trigonometric functions. Of tese, te most important are sine an cosine; te erivatives

More information

Chapter Primer on Differentiation

Chapter Primer on Differentiation Capter 0.01 Primer on Differentiation After reaing tis capter, you soul be able to: 1. unerstan te basics of ifferentiation,. relate te slopes of te secant line an tangent line to te erivative of a function,.

More information

Chapter 4 Derivatives [ ] = ( ) ( )= + ( ) + + = ()= + ()+ Exercise 4.1. Review of Prerequisite Skills. 1. f. 6. d. 4. b. lim. x x. = lim = c.

Chapter 4 Derivatives [ ] = ( ) ( )= + ( ) + + = ()= + ()+ Exercise 4.1. Review of Prerequisite Skills. 1. f. 6. d. 4. b. lim. x x. = lim = c. Capter Derivatives Review of Prerequisite Skills. f. p p p 7 9 p p p Eercise.. i. ( a ) a ( b) a [ ] b a b ab b a. d. f. 9. c. + + ( ) ( + ) + ( + ) ( + ) ( + ) + + + + ( ) ( + ) + + ( ) ( ) ( + ) + 7

More information

Derivatives. if such a limit exists. In this case when such a limit exists, we say that the function f is differentiable.

Derivatives. if such a limit exists. In this case when such a limit exists, we say that the function f is differentiable. Derivatives 3. Derivatives Definition 3. Let f be a function an a < b be numbers. Te average rate of cange of f from a to b is f(b) f(a). b a Remark 3. Te average rate of cange of a function f from a to

More information

SECTION 2.1 BASIC CALCULUS REVIEW

SECTION 2.1 BASIC CALCULUS REVIEW Tis capter covers just te very basics of wat you will nee moving forwar onto te subsequent capters. Tis is a summary capter, an will not cover te concepts in-ept. If you ve never seen calculus before,

More information

Differential Calculus Definitions, Rules and Theorems

Differential Calculus Definitions, Rules and Theorems Precalculus Review Differential Calculus Definitions, Rules an Teorems Sara Brewer, Alabama Scool of Mat an Science Functions, Domain an Range f: X Y a function f from X to Y assigns to eac x X a unique

More information

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point.

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point. Popper 6: Review of skills: Find tis difference quotient. f ( x ) f ( x) if f ( x) x Answer coices given in audio on te video. Section.1 Te Definition of te Derivative We are interested in finding te slope

More information

This file is /conf/snippets/setheader.pg you can use it as a model for creating files which introduce each problem set.

This file is /conf/snippets/setheader.pg you can use it as a model for creating files which introduce each problem set. Yanimov Almog WeBWorK assignment number Sections 3. 3.2 is ue : 08/3/207 at 03:2pm CDT. Te (* replace wit url for te course ome page *) for te course contains te syllabus, graing policy an oter information.

More information

Chapter 3. Derivatives

Chapter 3. Derivatives Section. Capter Derivatives Section. Eploration Derivative of a Function (pp. ) Reaing te Graps. Te grap in Figure.b represents te rate of cange of te ept of te water in te itc wit respect to time. Since

More information

1 Lecture 13: The derivative as a function.

1 Lecture 13: The derivative as a function. 1 Lecture 13: Te erivative as a function. 1.1 Outline Definition of te erivative as a function. efinitions of ifferentiability. Power rule, erivative te exponential function Derivative of a sum an a multiple

More information

Using the definition of the derivative of a function is quite tedious. f (x + h) f (x)

Using the definition of the derivative of a function is quite tedious. f (x + h) f (x) Derivative Rules Using te efinition of te erivative of a function is quite teious. Let s prove some sortcuts tat we can use. Recall tat te efinition of erivative is: Given any number x for wic te limit

More information

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a?

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a? Solutions to Test 1 Fall 016 1pt 1. Te grap of a function f(x) is sown at rigt below. Part I. State te value of eac limit. If a limit is infinite, state weter it is or. If a limit does not exist (but is

More information

160 Chapter 3: Differentiation

160 Chapter 3: Differentiation 3. Differentiation Rules 159 3. Differentiation Rules Tis section introuces a few rules tat allow us to ifferentiate a great variety of functions. By proving tese rules ere, we can ifferentiate functions

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

In Leibniz notation, we write this rule as follows. DERIVATIVE OF A CONSTANT FUNCTION. For n 4 we find the derivative of f x x 4 as follows: lim

In Leibniz notation, we write this rule as follows. DERIVATIVE OF A CONSTANT FUNCTION. For n 4 we find the derivative of f x x 4 as follows: lim .1 DERIVATIVES OF POLYNOIALS AND EXPONENTIAL FUNCTIONS c =c slope=0 0 FIGURE 1 Te grap of ƒ=c is te line =c, so fª()=0. In tis section we learn ow to ifferentiate constant functions, power functions, polnomials,

More information

does NOT exist. WHAT IF THE NUMBER X APPROACHES CANNOT BE PLUGGED INTO F(X)??????

does NOT exist. WHAT IF THE NUMBER X APPROACHES CANNOT BE PLUGGED INTO F(X)?????? MATH 000 Miterm Review.3 Te it of a function f ( ) L Tis means tat in a given function, f(), as APPROACHES c, a constant, it will equal te value L. Tis is c only true if f( ) f( ) L. Tat means if te verticle

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value AB Calculus Unit Review Key Concepts Average and Instantaneous Speed Definition of Limit Properties of Limits One-sided and Two-sided Limits Sandwic Teorem Limits as x ± End Beaviour Models Continuity

More information

A: Derivatives of Circular Functions. ( x) The central angle measures one radian. Arc Length of r

A: Derivatives of Circular Functions. ( x) The central angle measures one radian. Arc Length of r 4: Derivatives of Circular Functions an Relate Rates Before we begin, remember tat we will (almost) always work in raians. Raians on't ivie te circle into parts; tey measure te size of te central angle

More information

Math 242: Principles of Analysis Fall 2016 Homework 7 Part B Solutions

Math 242: Principles of Analysis Fall 2016 Homework 7 Part B Solutions Mat 22: Principles of Analysis Fall 206 Homework 7 Part B Solutions. Sow tat f(x) = x 2 is not uniformly continuous on R. Solution. Te equation is equivalent to f(x) = 0 were f(x) = x 2 sin(x) 3. Since

More information

lim 1 lim 4 Precalculus Notes: Unit 10 Concepts of Calculus

lim 1 lim 4 Precalculus Notes: Unit 10 Concepts of Calculus Syllabus Objectives: 1.1 Te student will understand and apply te concept of te limit of a function at given values of te domain. 1. Te student will find te limit of a function at given values of te domain.

More information

236 Chapter 4 Applications of Derivatives

236 Chapter 4 Applications of Derivatives 26 Chapter Applications of Derivatives Î$ &Î$ Î$ 5 Î$ 0 "Î$ 5( 2) $È 26. (a) g() œ ( 5) œ 5 Ê g () œ œ Ê critical points at œ 2 and œ 0 Ê g œ ± )(, increasing on ( _ß 2) and (!ß _), decreasing on ( 2 ß!)!

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY (Section 3.2: Derivative Functions and Differentiability) 3.2.1 SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY LEARNING OBJECTIVES Know, understand, and apply te Limit Definition of te Derivative

More information

Chapter 2 Limits and Continuity. Section 2.1 Rates of Change and Limits (pp ) Section Quick Review 2.1

Chapter 2 Limits and Continuity. Section 2.1 Rates of Change and Limits (pp ) Section Quick Review 2.1 Section. 6. (a) N(t) t (b) days: 6 guppies week: 7 guppies (c) Nt () t t t ln ln t ln ln ln t 8. 968 Tere will be guppies ater ln 8.968 days, or ater nearly 9 days. (d) Because it suggests te number o

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

Calculus I, Fall Solutions to Review Problems II

Calculus I, Fall Solutions to Review Problems II Calculus I, Fall 202 - Solutions to Review Problems II. Find te following limits. tan a. lim 0. sin 2 b. lim 0 sin 3. tan( + π/4) c. lim 0. cos 2 d. lim 0. a. From tan = sin, we ave cos tan = sin cos =

More information

668 Chapter 11 Parametric Equatins and Polar Coordinates

668 Chapter 11 Parametric Equatins and Polar Coordinates 668 Chapter Parametric Equatins and Polar Coordinates 5. sin ( sin Á r and sin ( sin Á r Ê not symmetric about the x-axis; sin ( sin r Ê symmetric about the y-axis; therefore not symmetric about the origin

More information

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x.

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x. Problem. Let f x x. Using te definition of te derivative prove tat f x x Solution. Te function f x is only defined wen x 0, so we will assume tat x 0 for te remainder of te solution. By te definition of

More information

The Derivative The rate of change

The Derivative The rate of change Calculus Lia Vas Te Derivative Te rate of cange Knowing and understanding te concept of derivative will enable you to answer te following questions. Let us consider a quantity wose size is described by

More information

y = 3 2 x 3. The slope of this line is 3 and its y-intercept is (0, 3). For every two units to the right, the line rises three units vertically.

y = 3 2 x 3. The slope of this line is 3 and its y-intercept is (0, 3). For every two units to the right, the line rises three units vertically. Mat 2 - Calculus for Management and Social Science. Understanding te basics of lines in te -plane is crucial to te stud of calculus. Notes Recall tat te and -intercepts of a line are were te line meets

More information

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3.

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3. Capter Functions and Graps Section. Ceck Point Exercises. Te slope of te line y x+ is. y y m( x x y ( x ( y ( x+ point-slope y x+ 6 y x+ slope-intercept. a. Write te equation in slope-intercept form: x+

More information

2.4 Exponential Functions and Derivatives (Sct of text)

2.4 Exponential Functions and Derivatives (Sct of text) 2.4 Exponential Functions an Derivatives (Sct. 2.4 2.6 of text) 2.4. Exponential Functions Definition 2.4.. Let a>0 be a real number ifferent tan. Anexponential function as te form f(x) =a x. Teorem 2.4.2

More information

3. True. 7. True. 9. True 11. True 13. True. 11. a.

3. True. 7. True. 9. True 11. True 13. True. 11. a. EXPLORING CONCEPTS WITH TECHNOLOGY, Page. Use Dot mode. Enter te unction as Y X *X

More information

The derivative of a constant function is 0. That is,

The derivative of a constant function is 0. That is, NOTES 3: DIFFERENTIATION RULES Name: Date: Perio: LESSON 3. DERIVATIVE OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS Eample : Prove f ( ) 6 is not ifferentiable at 4. Practice Problems: Fin f '( ) using the

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist Mat 1120 Calculus Test 2. October 18, 2001 Your name Te multiple coice problems count 4 points eac. In te multiple coice section, circle te correct coice (or coices). You must sow your work on te oter

More information

Derivatives of Exponentials

Derivatives of Exponentials mat 0 more on derivatives: day 0 Derivatives of Eponentials Recall tat DEFINITION... An eponential function as te form f () =a, were te base is a real number a > 0. Te domain of an eponential function

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

Tutorial 1 Differentiation

Tutorial 1 Differentiation Tutorial 1 Differentiation What is Calculus? Calculus 微積分 Differential calculus Differentiation 微分 y lim 0 f f The relation of very small changes of ifferent quantities f f y y Integral calculus Integration

More information

The derivative of a constant function is 0. That is,

The derivative of a constant function is 0. That is, NOTES : DIFFERENTIATION RULES Name: LESSON. DERIVATIVE OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS Date: Perio: Mrs. Nguyen s Initial: Eample : Prove f ( ) 4 is not ifferentiable at. Practice Problems: Fin

More information

CHAPTER 3: DERIVATIVES

CHAPTER 3: DERIVATIVES (Answers to Exercises for Capter 3: Derivatives) A.3.1 CHAPTER 3: DERIVATIVES SECTION 3.1: DERIVATIVES, TANGENT LINES, and RATES OF CHANGE 1) a) f ( 3) f 3.1 3.1 3 f 3.01 f ( 3) 3.01 3 f 3.001 f ( 3) 3.001

More information

CHAPTER 2 LIMITS AND CONTINUITY

CHAPTER 2 LIMITS AND CONTINUITY CHAPTER LIMITS AND CONTINUITY RATES OF CHANGE AND LIMITS (a) Does not eist As approaches from the right, g() approaches 0 As approaches from the left, g() approaches There is no single number L that all

More information

y. ( sincos ) (sin ) (cos ) + (cos ) (sin ) sin + cos cos. 5. 6.. y + ( )( ) ( + )( ) ( ) ( ) s [( t )( t + )] t t [ t ] t t s t + t t t ( t )( t) ( t + )( t) ( t ) t ( t ) y + + / / ( + + ) / / /....

More information

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12) *

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12) * OpenStax-CNX moule: m39313 1 Differential Calculus: Differentiation (First Principles, Rules) an Sketcing Graps (Grae 12) * Free Hig Scool Science Texts Project Tis work is prouce by OpenStax-CNX an license

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

Differential Calculus (The basics) Prepared by Mr. C. Hull

Differential Calculus (The basics) Prepared by Mr. C. Hull Differential Calculus Te basics) A : Limits In tis work on limits, we will deal only wit functions i.e. tose relationsips in wic an input variable ) defines a unique output variable y). Wen we work wit

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES (Section.0: Difference Quotients).0. SECTION.0: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES Define average rate of cange (and average velocity) algebraically and grapically. Be able to identify, construct,

More information

Exponentials and Logarithms Review Part 2: Exponentials

Exponentials and Logarithms Review Part 2: Exponentials Eponentials and Logaritms Review Part : Eponentials Notice te difference etween te functions: g( ) and f ( ) In te function g( ), te variale is te ase and te eponent is a constant. Tis is called a power

More information

Derivatives. By: OpenStaxCollege

Derivatives. By: OpenStaxCollege By: OpenStaxCollege Te average teen in te United States opens a refrigerator door an estimated 25 times per day. Supposedly, tis average is up from 10 years ago wen te average teenager opened a refrigerator

More information

MATH Fall 08. y f(x) Review Problems for the Midterm Examination Covers [1.1, 4.3] in Stewart

MATH Fall 08. y f(x) Review Problems for the Midterm Examination Covers [1.1, 4.3] in Stewart MATH 121 - Fall 08 Review Problems for te Midterm Eamination Covers [1.1, 4.3] in Stewart 1. (a) Use te definition of te derivative to find f (3) wen f() = π 1 2. (b) Find an equation of te tangent line

More information

CHAPTER 3 DERIVATIVES (continued)

CHAPTER 3 DERIVATIVES (continued) CHAPTER 3 DERIVATIVES (continue) 3.3. RULES FOR DIFFERENTIATION A. The erivative of a constant is zero: [c] = 0 B. The Power Rule: [n ] = n (n-1) C. The Constant Multiple Rule: [c *f()] = c * f () D. The

More information

Lecture Notes Di erentiating Trigonometric Functions page 1

Lecture Notes Di erentiating Trigonometric Functions page 1 Lecture Notes Di erentiating Trigonometric Functions age (sin ) 7 sin () sin 8 cos 3 (tan ) sec tan + 9 tan + 4 (cot ) csc cot 0 cot + 5 sin (sec ) cos sec tan sec jj 6 (csc ) sin csc cot csc jj c Hiegkuti,

More information

Solutions Manual for Precalculus An Investigation of Functions

Solutions Manual for Precalculus An Investigation of Functions Solutions Manual for Precalculus An Investigation of Functions David Lippman, Melonie Rasmussen 1 st Edition Solutions created at Te Evergreen State College and Soreline Community College 1.1 Solutions

More information

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015 Mat 3A Discussion Notes Week 4 October 20 and October 22, 205 To prepare for te first midterm, we ll spend tis week working eamples resembling te various problems you ve seen so far tis term. In tese notes

More information

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x)

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x) Calculus. Gradients and te Derivative Q f(x+) δy P T δx R f(x) 0 x x+ Let P (x, f(x)) and Q(x+, f(x+)) denote two points on te curve of te function y = f(x) and let R denote te point of intersection of

More information

MATH1901 Differential Calculus (Advanced)

MATH1901 Differential Calculus (Advanced) MATH1901 Dierential Calculus (Advanced) Capter 3: Functions Deinitions : A B A and B are sets assigns to eac element in A eactl one element in B A is te domain o te unction B is te codomain o te unction

More information

MATH2231-Differentiation (2)

MATH2231-Differentiation (2) -Differentiation () The Beginnings of Calculus The prime occasion from which arose my iscovery of the metho of the Characteristic Triangle, an other things of the same sort, happene at a time when I ha

More information

University Mathematics 2

University Mathematics 2 University Matematics 2 1 Differentiability In tis section, we discuss te differentiability of functions. Definition 1.1 Differentiable function). Let f) be a function. We say tat f is differentiable at

More information

Exercises Copyright Houghton Mifflin Company. All rights reserved. EXERCISES {x 0 x < 6} 3. {x x 2} 2

Exercises Copyright Houghton Mifflin Company. All rights reserved. EXERCISES {x 0 x < 6} 3. {x x 2} 2 Eercises. CHAPTER Functions EXERCISES.. { 0 < 6}. a. Since and m, ten y, te cange in y, is y m. { } 7. For (, ) and (, ), te slope is Since and m, ten y, te cange in y, is y m 0 9. For (, 0) and (, ),

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition an Cain Rules James K. Peterson Department of Biological Sciences an Department of Matematical Sciences Clemson University November 2, 2018 Outline Function Composition an Continuity

More information

THEOREM: THE CONSTANT RULE

THEOREM: THE CONSTANT RULE MATH /MYERS/ALL FORMULAS ON THIS REVIEW MUST BE MEMORIZED! DERIVATIVE REVIEW THEOREM: THE CONSTANT RULE The erivative of a constant function is zero. That is, if c is a real number, then c 0 Eample 1:

More information

. Compute the following limits.

. Compute the following limits. Today: Tangent Lines and te Derivative at a Point Warmup:. Let f(x) =x. Compute te following limits. f( + ) f() (a) lim f( +) f( ) (b) lim. Let g(x) = x. Compute te following limits. g(3 + ) g(3) (a) lim

More information

CHAPTER (A) When x = 2, y = 6, so f( 2) = 6. (B) When y = 4, x can equal 6, 2, or 4.

CHAPTER (A) When x = 2, y = 6, so f( 2) = 6. (B) When y = 4, x can equal 6, 2, or 4. SECTION 3-1 101 CHAPTER 3 Section 3-1 1. No. A correspondence between two sets is a function only if eactly one element of te second set corresponds to eac element of te first set. 3. Te domain of a function

More information

Practice Problem Solutions: Exam 1

Practice Problem Solutions: Exam 1 Practice Problem Solutions: Exam 1 1. (a) Algebraic Solution: Te largest term in te numerator is 3x 2, wile te largest term in te denominator is 5x 2 3x 2 + 5. Tus lim x 5x 2 2x 3x 2 x 5x 2 = 3 5 Numerical

More information

Exam 1 Solutions. x(x 2) (x + 1)(x 2) = x

Exam 1 Solutions. x(x 2) (x + 1)(x 2) = x Eam Solutions Question (0%) Consider f() = 2 2 2 2. (a) By calculating relevant its, determine te equations of all vertical asymptotes of te grap of f(). If tere are none, say so. f() = ( 2) ( + )( 2)

More information

Tangent Lines-1. Tangent Lines

Tangent Lines-1. Tangent Lines Tangent Lines- Tangent Lines In geometry, te tangent line to a circle wit centre O at a point A on te circle is defined to be te perpendicular line at A to te line OA. Te tangent lines ave te special property

More information

1 Limits and Continuity

1 Limits and Continuity 1 Limits and Continuity 1.0 Tangent Lines, Velocities, Growt In tion 0.2, we estimated te slope of a line tangent to te grap of a function at a point. At te end of tion 0.3, we constructed a new function

More information

f(x + h) f(x) f (x) = lim

f(x + h) f(x) f (x) = lim Introuction 4.3 Some Very Basic Differentiation Formulas If a ifferentiable function f is quite simple, ten it is possible to fin f by using te efinition of erivative irectly: f () 0 f( + ) f() However,

More information

Higher Derivatives. Differentiable Functions

Higher Derivatives. Differentiable Functions Calculus 1 Lia Vas Higer Derivatives. Differentiable Functions Te second derivative. Te derivative itself can be considered as a function. Te instantaneous rate of cange of tis function is te second derivative.

More information

Introduction to Derivatives

Introduction to Derivatives Introduction to Derivatives 5-Minute Review: Instantaneous Rates and Tangent Slope Recall te analogy tat we developed earlier First we saw tat te secant slope of te line troug te two points (a, f (a))

More information

0.1 Differentiation Rules

0.1 Differentiation Rules 0.1 Differentiation Rules From our previous work we ve seen tat it can be quite a task to calculate te erivative of an arbitrary function. Just working wit a secon-orer polynomial tings get pretty complicate

More information

Math Module Preliminary Test Solutions

Math Module Preliminary Test Solutions SSEA Summer 207 Mat Module Preliminar Test Solutions. [3 points] Find all values of tat satisf =. Solution: = ( ) = ( ) = ( ) =. Tis means ( ) is positive. Tat is, 0, wic implies. 2. [6 points] Find all

More information

A.P. CALCULUS (AB) Outline Chapter 3 (Derivatives)

A.P. CALCULUS (AB) Outline Chapter 3 (Derivatives) A.P. CALCULUS (AB) Outline Capter 3 (Derivatives) NAME Date Previously in Capter 2 we determined te slope of a tangent line to a curve at a point as te limit of te slopes of secant lines using tat point

More information

102 Problems Calculus AB Students Should Know: Solutions. 18. product rule d. 19. d sin x. 20. chain rule d e 3x2) = e 3x2 ( 6x) = 6xe 3x2

102 Problems Calculus AB Students Should Know: Solutions. 18. product rule d. 19. d sin x. 20. chain rule d e 3x2) = e 3x2 ( 6x) = 6xe 3x2 Problems Calculus AB Stuents Shoul Know: Solutions. + ) = + =. chain rule ) e = e = e. ) =. ) = ln.. + + ) = + = = +. ln ) =. ) log ) =. sin ) = cos. cos ) = sin. tan ) = sec. cot ) = csc. sec ) = sec

More information

(a 1 m. a n m = < a 1/N n

(a 1 m. a n m = < a 1/N n Notes on a an log a Mat 9 Fall 2004 Here is an approac to te eponential an logaritmic functions wic avois any use of integral calculus We use witout proof te eistence of certain limits an assume tat certain

More information

Calculus in the AP Physics C Course The Derivative

Calculus in the AP Physics C Course The Derivative Limits an Derivatives Calculus in the AP Physics C Course The Derivative In physics, the ieas of the rate change of a quantity (along with the slope of a tangent line) an the area uner a curve are essential.

More information

1.5 Functions and Their Rates of Change

1.5 Functions and Their Rates of Change 66_cpp-75.qd /6/8 4:8 PM Page 56 56 CHAPTER Introduction to Functions and Graps.5 Functions and Teir Rates of Cange Identif were a function is increasing or decreasing Use interval notation Use and interpret

More information

Calculus I Practice Exam 1A

Calculus I Practice Exam 1A Calculus I Practice Exam A Calculus I Practice Exam A Tis practice exam empasizes conceptual connections and understanding to a greater degree tan te exams tat are usually administered in introductory

More information

MTH-112 Quiz 1 Name: # :

MTH-112 Quiz 1 Name: # : MTH- Quiz Name: # : Please write our name in te provided space. Simplif our answers. Sow our work.. Determine weter te given relation is a function. Give te domain and range of te relation.. Does te equation

More information

Section 2.1 The Derivative and the Tangent Line Problem

Section 2.1 The Derivative and the Tangent Line Problem Chapter 2 Differentiation Course Number Section 2.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

MATH 3208 MIDTERM REVIEW. (B) {x 4 x 5 ; x ʀ} (D) {x x ʀ} Use the given functions to answer questions # 3 5. determine the value of h(7).

MATH 3208 MIDTERM REVIEW. (B) {x 4 x 5 ; x ʀ} (D) {x x ʀ} Use the given functions to answer questions # 3 5. determine the value of h(7). MATH 08 MIDTERM REVIEW. If () = (f + g)() wat is te domain of () { 5 4 ; ʀ} { 4 4 ; ʀ} { 4 5 ; ʀ} { ʀ}. Given p() = and g() = wic function represents k() k() = p() g() + + Use te given functions to answer

More information

Math 115 Section 018 Course Note

Math 115 Section 018 Course Note Course Note 1 General Functions Definition 1.1. A function is a rule that takes certain numbers as inputs an assigns to each a efinite output number. The set of all input numbers is calle the omain of

More information

11.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR

11.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR SECTION 11.6 DIRECTIONAL DERIVATIVES AND THE GRADIENT VECTOR 633 wit speed v o along te same line from te opposite direction toward te source, ten te frequenc of te sound eard b te observer is were c is

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

1 Definition of the derivative

1 Definition of the derivative Math 20A - Calculus by Jon Rogawski Chapter 3 - Differentiation Prepare by Jason Gais Definition of the erivative Remark.. Recall our iscussion of tangent lines from way back. We now rephrase this in terms

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019 ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 6. Differential Calculus 6.. Differentiation from First Principles. In tis capter, we will introduce

More information

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12 NAME DATE PERIOD AP CALCULUS AB UNIT ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT 0 0 0/6 0/8 0/9 0/0 X X X X 0/ 0/ 0/5 0/6 QUIZ X X X 0/7 0/8 0/9 0/ 0/ 0/ 0/5 UNIT EXAM X X X TOTAL AP Calculus

More information

. h I B. Average velocity can be interpreted as the slope of a tangent line. I C. The difference quotient program finds the exact value of f ( a)

. h I B. Average velocity can be interpreted as the slope of a tangent line. I C. The difference quotient program finds the exact value of f ( a) Capter Review Packet (questions - ) KEY. In eac case determine if te information or statement is correct (C) or incorrect (I). If it is incorrect, include te correction. f ( a ) f ( a) I A. represents

More information

DEFINITION OF A DERIVATIVE

DEFINITION OF A DERIVATIVE DEFINITION OF A DERIVATIVE Section 2.1 Calculus AP/Dual, Revised 2017 viet.dang@umbleisd.net 2.1: Definition of a Derivative 1 DEFINITION A. Te derivative of a function allows you to find te SLOPE OF THE

More information

5.1 We will begin this section with the definition of a rational expression. We

5.1 We will begin this section with the definition of a rational expression. We Basic Properties and Reducing to Lowest Terms 5.1 We will begin tis section wit te definition of a rational epression. We will ten state te two basic properties associated wit rational epressions and go

More information

MAT01A1: Differentiation of Polynomials & Exponential Functions + the Product & Quotient Rules

MAT01A1: Differentiation of Polynomials & Exponential Functions + the Product & Quotient Rules MAT01A1: Differentiation of Polynomials & Exponential Functions + te Prouct & Quotient Rules Dr Craig 22 Marc 2017 Semester Test 1 Scripts will be available for collection from Tursay morning. For marking

More information