The derivative of a constant function is 0. That is,

Size: px
Start display at page:

Download "The derivative of a constant function is 0. That is,"

Transcription

1 NOTES : DIFFERENTIATION RULES Name: LESSON. DERIVATIVE OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS Date: Perio: Mrs. Nguyen s Initial: Eample : Prove f ( ) 4 is not ifferentiable at. Practice Problems: Fin f '( ) using the efinition.. f ( ). f ( ) 4. f ( ) 7 The Constant Rule The erivative of a constant function is 0. That is, if c is a real number, then c 0. Eamples: Mrs. Nguyen AP Calculus AB Chapter Notes Page

2 The Power Rule If n is a rational number, then the function given n by f ( ) is ifferentiable an n n n For f to be ifferentiable at 0, n must be a number such that containing 0. n is efine on an interval Eamples: The Constant Multiple Rule The Sum an Difference Rules If f is a ifferentiable function an c is a real number, then cf is also ifferentiable an cf ( ) cf '( ) The sum (or ifference) of two ifferentiable functions f an g is itself ifferentiable. Moreover, the erivative of f g (or f g) is the sum (or ifference) of the erivatives of f an g. f ( ) g ( ) f '( ) g '( ) f ( ) g ( ) f '( ) g '( ) Eamples: Eamples: Practice Problems: Use the basic ifferentiation rules to fin the erivative of the following problems. 4. f ( ) 5 5. gq ( ) 4 6. q mz ( ) z 4z z 7. ( ) 6 7 h 8. q ( ) 9. q ( ) p Mrs. Nguyen AP Calculus AB Chapter Notes Page

3 Eample : Given f ( ) e, fin f '( ) using the efinition. Derivative of Natural Eponential Function e e y" y"' Practice Problems: 0. For what values of oes f( ) 6 87 have a horizontal tangent?. At what point on the curve f ( ) e is the tangent line parallel to y 5?. Fin an equation of the normal line to the parabola ). Differentiate: y u u u 5 u Mrs. Nguyen AP Calculus AB Chapter Notes Page

4 LESSON. THE PRODUCT AND QUOTIENT RULES Recap Power Rule: Eponential Rule: Sum/ifference Rule: Constant multiple Rule: Eample: Fin f '( ) f( ) The Prouct Rule The prouct of two ifferentiable functions f an g is itself ifferentiable. Moreover, the erivative of fg is: f ( g ) ( ) f ( g ) '( ) g ( ) f '( ) Eamples: Fin f '( ) f( ) Proof of the Prouct Rule The Quotient Rule The quotient of two ifferentiable functions f an g is itself ifferentiable at all values of for which. Moreover, the erivative of f/g is: g( ) 0 A trick to remember this rule: LowDHigh HighDLow Low f( ) g( ) f '( ) f( ) g'( ) g( ) g ( ) Mrs. Nguyen AP Calculus AB Chapter Notes Page 4

5 Practice Problems: Fin the erivative of the following problems.. f( ) e 5. f( ) 6 e 9 ta ( ) a a 4 sm ( ) m mm 6m 9 5. Fin the equations of the tangent lines to f ( ) that passes through 0,. y Mrs. Nguyen AP Calculus AB Chapter Notes Page 5

6 LESSON. DERIVATIVES OF TRIGONOMETRIC FUNCTIONS Derivatives of Trigonometric Functions Proofs sin cos tan sec sec sec tan cos sin cot csc csc csc cot Practice Problems: # 4: Fin the erivative.. f ( ) sin cos sec. f( ). f ( ) e cos 4. f( ) sin cos Mrs. Nguyen AP Calculus AB Chapter Notes Page 6

7 Practice Problems: 5. Fin the points on tangent is horizontal. cos f( ) at which the sin sec 6. Given f( ), fin the value(s) of where tan the function has a horizontal tangent. // Warm-Up:. Fin f '( ) given cos f( ). Fin f '( ) given f ( ) e tan. Given f( ), fin the equations of the tangent lines to f ( ) that are parallel to y. 4. Prove: sin D cos Mrs. Nguyen AP Calculus AB Chapter Notes Page 7

8 LESSON.4 THE CHAIN RULE The Chain Rule If y f( u) u g( ) y f( g( )) y y u an or, equivalently, u ( ( )) '( ( )) '( ) Derivative of Natural Eponential Function is a ifferentiable function of u an is ifferentiable function of, then is a ifferentiable function of Let u be a ifferential function of.. e e Eamples:. y y. 00 y t t y /5 We shoul use the Chain Rule for these problems. Eamples: Theorem 8.5: Derivatives for Bases other than e e u u u. ' Let a be a positive real number a a a a u u ln ' e. ln. a an let u be a ifferential function of.. loga ln a u' 4. loga u ln a u Eample: Fin the erivative. Ol methos: f( ) 7 Chain Rule: f( ) 7 Mrs. Nguyen AP Calculus AB Chapter Notes Page 8

9 Practice Problems: Fin the erivative.. f( ) sin7. f( ). f ( ) sec 4. f( ) 9 e 5. f ( ) cot e 6. f( ) 6 7. f( ) f( ) 6 9. f ( ) cos 0. f ( ) cos Mrs. Nguyen AP Calculus AB Chapter Notes Page 9

10 Warm-Up: Fin the erivative.. f ( ) tan. f ( ) sin cos5. f( ) 4. f ( ) 5. f( ) sin 4 6. If h() 4 an h'(), then fin when. h( ) Mrs. Nguyen AP Calculus AB Chapter Notes Page 0

11 LESSON.5 IMPLICIT DIFFERENTIATION Functions written in Implicit Form y 5.. y. y y 4 Functions written in Eplicit Form.. y y 5. Not possible to solve for y. Note: To fin the erivative for eample, we nee to use IMPLICIT DIFFERENTIATION (with respect to ). Guielines for Implicit Differentiation. Differentiate both sies of the equation with respect to.. Collect all terms involving y on the left sie of the equation an move all other terms to the right sie of the equation.. Factor y out of the left sie of the equation. 4. Solve for y by iviing both sies of the equation by the left-han factor that oes not contain y. Eample: Fin the erivative.. y y 4. 4 y y 4 Practice Problems: Fin the erivative.. y y 5y 4. y y Mrs. Nguyen AP Calculus AB Chapter Notes Page

12 . e y y y y 4. e cos 5 sin y Practice Problems: 5. Fin the equation of the tangent line to at y 6. Fin the equation of the tangent line to y y 5 at,. 7. Determine the slope of the graph of the relation y y, at 8. Fin y given tan( y) y Fin y given y sin. 0. Fin y given y tan. Mrs. Nguyen AP Calculus AB Chapter Notes Page

13 Derivatives of Inverse Trigonometric Functions MEMORIZE!!! sin tan sec cos cot csc Practice Problems: Fin the erivative.. y tan 5. y sec e Practice Problem : Fin y for 4y 8. Mrs. Nguyen AP Calculus AB Chapter Notes Page

14 LESSON.6 DERIVATIVES OF LOGARITHMIC FUNCTIONS Review y ln Domain: Range: Asymptote: Prouct: Quotient: Power: Change of Base Formula: Derivative of Natural Logarithmic Function Let u be a ifferential function of... u ln, 0 u u' ln, u 0 u u. log a 4. log u a ln a u' ln a u Practice Problems: Fin the erivative.. y ln cos. y ln. 9 y ln 9 4. y log e 5. y log sec 6. y 6 7 Mrs. Nguyen AP Calculus AB Chapter Notes Page 4

15 e sin 7. y ln 9 Logarithmic Differentiation To ifferentiate the function y u. Take ln of each sie: ln y ln u, use the following steps:. Epan lnu completely y' y. Differentiate implicitly: lnu 4. Solve fore y' y lnu 5. Substitute for y an simplify: y' u lnu Practice Problem 6: Fin f '( ) using Logarithmic Differentiation given: 8. y 9. y (cos ) 0. y 5 67 cos 5e 4 Mrs. Nguyen AP Calculus AB Chapter Notes Page 5

16 DERIVATIVES OF INVERSE FUNCTIONS Derivative of Inverse Function g f ( ) ( ) g'( ) f f ' ( ) Proof: Eamples:. f ( ) an g '(). g f ( ) ( ), fin. f ( ) sin, fin f ( ). g ( ) f ( ), fin g '(0) Practice Problems: g ( ) f ( ). Fin g'( ) an g'( c ). f( ) 5 74an g '(4). 5 f ( ) an g '(6) Practice Problem : f (), 6 f '(), f '(), 5 g ( ) f ( ), fin g '() Mrs. Nguyen AP Calculus AB Chapter Notes Page 6

17 LESSON.7 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES Eample : meters. A particle moves along the -ais. Let its position at t secons be given by st () t 6t 9t a. Fin the velocity an acceleration functions. Inclue unit. b. When is the particle at rest? c. When is the particle moving left?. Graph the particle s position on 0, 5. e. Fin the total istance travele in these 5 secons. f. When is it speeing up an slowing own? Mrs. Nguyen AP Calculus AB Chapter Notes Page 7

18 Eample : Given st () 8t t miles an t is ays. a. Fin the total istance travele on, 4. b. Graph the movement. c. Where is it speeing up? Slowing own? Eample : Given f ( ) 5 7. Where is it speeing up? Slowing own? Eample 4: Given P ( ) R ( ) C ( ). The cost to prouce shoes at a factory is $.50 / pair with a $00 start up cost. The owner can sell the shoes at $400 / pair. a. What is the cost, revenue an profit equation for the business? b. What is the marginal cost to make a pair of shoes? c. If the cost function changes to shoes. C ( ) , fin the marginal cost to make 0. Fin C() C(0) with the new cost function an interpret the results. Mrs. Nguyen AP Calculus AB Chapter Notes Page 8

19 LESSON.9 RELATED RATES GOAL STEPS In relate rate problems we compute the rate of change of one quantity in terms of the rate of change of another quantity. We fin an equation that relates two quantities an then use the Chain Rule to ifferentiate both sies with respect to time.. Rea an ientify rates an variables. Ientify equation that relates all rates an variables. Take erivative with respect to time using implicit ifferentiation 4. Plug in an solve Practice Problems:. Air is being pumpe into a spherical balloon so that its volume increases at a rate of 00 cm / sec. How fast is the raius of the balloon increasing when the iameter is 50cm?. A laer 5ft long rests against a vertical wall. It slies own the wall at a rate of ft/ hr, fin how fast is the laer sliing away from the house when the top of the laer is 7ft high on the wall. Assume the house is perpenicular to the groun.. A water tank has the shape of an inverte circular cone with base raius m an height 4m. If the water is being pumpe into the tank at a rate of m /min, fin the rate at which the water level is rising when the water is m eep. 4. A triangle is shrinking. Its base ecreases at a rate of cm /minan its height ecreases at a rate of cm /min. Fin how fast the area of the triangle is changing when the triangle has a base of 6cm an a height of 8cm. Mrs. Nguyen AP Calculus AB Chapter Notes Page 9

20 5. An oil spill is epaning an the raius is increasing at a rate of m /sec. Fin how fast the size of the spill is increasing when the iameter is 0m. 6. A rocket is tracke by a raar station. The raar is 5 miles from the launch pa. How fast is the rocket rising when it is 4 miles high an its istance from the raar is increasing at a rate of 000 mi / hr. 7. A plane is flying horizontally at an attitue of 4000ft an at 500 ft / sec above the observation platform. A person on the platform watches the plane fly overhea. How fast is the angle of elevation from the platform to the plane changing when the plane is 5000ft from the platform? 8. Mr. Shay (not Mrs. Nguyen) rinks the bloo of freshman out of a cone shape cup. The cone is tall an has an opening of 8. He fille the cup at a rate of in /min. Fin how fast the height of the bloo is increasing when the total bloo is 4 tall. 9. A 6ft tall woman is walking away from a 5ft tall street light. a. How fast is the length of her shaow changing if she walks at a rate of ft / sec when she is 4ft from the light? b. How fast is the tip of her shaow moving? Mrs. Nguyen AP Calculus AB Chapter Notes Page 0

21 LESSON.0 LINEAR APPROXIMATIONS AND DIFFERENTIALS Linear Approimation or Tangent Line Approimation Equation of a tangent line: y f( a) f '( a)( a) The approimation: f ( ) f( a) f '( a)( a) Practice Problems: 4. f ( ) 5 8 Fin the equation of the tangent Fin L ().. Approimate 8. using Linear Approimation. Mrs. Nguyen AP Calculus AB Chapter Notes Page

The derivative of a constant function is 0. That is,

The derivative of a constant function is 0. That is, NOTES 3: DIFFERENTIATION RULES Name: Date: Perio: LESSON 3. DERIVATIVE OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS Eample : Prove f ( ) 6 is not ifferentiable at 4. Practice Problems: Fin f '( ) using the

More information

THEOREM: THE CONSTANT RULE

THEOREM: THE CONSTANT RULE MATH /MYERS/ALL FORMULAS ON THIS REVIEW MUST BE MEMORIZED! DERIVATIVE REVIEW THEOREM: THE CONSTANT RULE The erivative of a constant function is zero. That is, if c is a real number, then c 0 Eample 1:

More information

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis Math 231 - Chapter 2 Essentials of Calculus by James Stewart Prepare by Jason Gais Chapter 2 - Derivatives 21 - Derivatives an Rates of Change Definition A tangent to a curve is a line that intersects

More information

Math 190 Chapter 3 Lecture Notes. Professor Miguel Ornelas

Math 190 Chapter 3 Lecture Notes. Professor Miguel Ornelas Math 190 Chapter 3 Lecture Notes Professor Miguel Ornelas 1 M. Ornelas Math 190 Lecture Notes Section 3.1 Section 3.1 Derivatives of Polynomials an Exponential Functions Derivative of a Constant Function

More information

1 Definition of the derivative

1 Definition of the derivative Math 20A - Calculus by Jon Rogawski Chapter 3 - Differentiation Prepare by Jason Gais Definition of the erivative Remark.. Recall our iscussion of tangent lines from way back. We now rephrase this in terms

More information

MATH2231-Differentiation (2)

MATH2231-Differentiation (2) -Differentiation () The Beginnings of Calculus The prime occasion from which arose my iscovery of the metho of the Characteristic Triangle, an other things of the same sort, happene at a time when I ha

More information

Section 2.1 The Derivative and the Tangent Line Problem

Section 2.1 The Derivative and the Tangent Line Problem Chapter 2 Differentiation Course Number Section 2.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

102 Problems Calculus AB Students Should Know: Solutions. 18. product rule d. 19. d sin x. 20. chain rule d e 3x2) = e 3x2 ( 6x) = 6xe 3x2

102 Problems Calculus AB Students Should Know: Solutions. 18. product rule d. 19. d sin x. 20. chain rule d e 3x2) = e 3x2 ( 6x) = 6xe 3x2 Problems Calculus AB Stuents Shoul Know: Solutions. + ) = + =. chain rule ) e = e = e. ) =. ) = ln.. + + ) = + = = +. ln ) =. ) log ) =. sin ) = cos. cos ) = sin. tan ) = sec. cot ) = csc. sec ) = sec

More information

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions Section 3.4-3.6 The Chain Rule an Implicit Differentiation with Application on Derivative of Logarithm Functions Ruipeng Shen September 3r, 5th Ruipeng Shen MATH 1ZA3 September 3r, 5th 1 / 3 The Chain

More information

CHAPTER 3 DERIVATIVES (continued)

CHAPTER 3 DERIVATIVES (continued) CHAPTER 3 DERIVATIVES (continue) 3.3. RULES FOR DIFFERENTIATION A. The erivative of a constant is zero: [c] = 0 B. The Power Rule: [n ] = n (n-1) C. The Constant Multiple Rule: [c *f()] = c * f () D. The

More information

Chapter 2 The Derivative Business Calculus 155

Chapter 2 The Derivative Business Calculus 155 Chapter The Derivative Business Calculus 155 Section 11: Implicit Differentiation an Relate Rates In our work up until now, the functions we neee to ifferentiate were either given explicitly, x such as

More information

Implicit Differentiation and Inverse Trigonometric Functions

Implicit Differentiation and Inverse Trigonometric Functions Implicit Differentiation an Inverse Trigonometric Functions MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Summer 2018 Explicit vs. Implicit Functions 0.5 1 y 0.0 y 2 0.5 3 4 1.0 0.5

More information

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12 NAME DATE PERIOD AP CALCULUS AB UNIT ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT 0 0 0/6 0/8 0/9 0/0 X X X X 0/ 0/ 0/5 0/6 QUIZ X X X 0/7 0/8 0/9 0/ 0/ 0/ 0/5 UNIT EXAM X X X TOTAL AP Calculus

More information

Math Test #2 Info and Review Exercises

Math Test #2 Info and Review Exercises Math 180 - Test #2 Info an Review Exercises Spring 2019, Prof. Beyler Test Info Date: Will cover packets #7 through #16. You ll have the entire class to finish the test. This will be a 2-part test. Part

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

Calculus I Practice Test Problems for Chapter 3 Page 1 of 9

Calculus I Practice Test Problems for Chapter 3 Page 1 of 9 Calculus I Practice Test Problems for Chapter 3 Page of 9 This is a set of practice test problems for Chapter 3. This is in no wa an inclusive set of problems there can be other tpes of problems on the

More information

Calculus in the AP Physics C Course The Derivative

Calculus in the AP Physics C Course The Derivative Limits an Derivatives Calculus in the AP Physics C Course The Derivative In physics, the ieas of the rate change of a quantity (along with the slope of a tangent line) an the area uner a curve are essential.

More information

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS

Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS Calculus BC Section II PART A A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS. An isosceles triangle, whose base is the interval from (0, 0) to (c, 0), has its verte on the graph

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

Define each term or concept.

Define each term or concept. Chapter Differentiation Course Number Section.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

Math 1A Midterm 2 Fall 2015 Riverside City College (Use this as a Review)

Math 1A Midterm 2 Fall 2015 Riverside City College (Use this as a Review) Name Date Miterm Score Overall Grae Math A Miterm 2 Fall 205 Riversie City College (Use this as a Review) Instructions: All work is to be shown, legible, simplifie an answers are to be boxe in the space

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function Function Notation requires that we state a function with f () on one sie of an equation an an epression in terms of on the other sie

More information

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like Math 400 3.5 Implicit Differentiation Name We have iscovere (an prove) formulas for fining erivatives of functions like f x x 3x 4x. 3 This amounts to fining y for 3 y x 3x 4x. Notice that in this case,

More information

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes Fin these erivatives of these functions: y.7 Implicit Differentiation -- A Brief Introuction -- Stuent Notes tan y sin tan = sin y e = e = Write the inverses of these functions: y tan y sin How woul we

More information

( ) ( ) ( ) PAL Session Stewart 3.1 & 3.2 Spring 2010

( ) ( ) ( ) PAL Session Stewart 3.1 & 3.2 Spring 2010 PAL Session Stewart 3. & 3. Spring 00 3. Key Terms/Concepts: Derivative of a Constant Function Power Rule Constant Multiple Rule n Sum/Difference Rule ( ) Eercise #0 p. 8 Differentiate the function. f()

More information

Chapter 2 Derivatives

Chapter 2 Derivatives Chapter Derivatives Section. An Intuitive Introuction to Derivatives Consier a function: Slope function: Derivative, f ' For each, the slope of f is the height of f ' Where f has a horizontal tangent line,

More information

Further Differentiation and Applications

Further Differentiation and Applications Avance Higher Notes (Unit ) Prerequisites: Inverse function property; prouct, quotient an chain rules; inflexion points. Maths Applications: Concavity; ifferentiability. Real-Worl Applications: Particle

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function The normal way we see function notation has f () on one sie of an equation an an epression in terms of on the other sie. We know the

More information

Lecture 14 September 26, Today. WH 3 now posted Due Tues. Oct. 2, 2018 Quiz 4 tomorrow. Differentiation summary Related rates

Lecture 14 September 26, Today. WH 3 now posted Due Tues. Oct. 2, 2018 Quiz 4 tomorrow. Differentiation summary Related rates Lecture 4 September 6, 08 WH 3 now poste Due Tues. Oct., 08 Quiz 4 tomorrow Toay Differentiation summary Relate rates Differentiation Summary Basic erivatives (memorize) x x x c = 0 sin x = cos x cos x

More information

18 EVEN MORE CALCULUS

18 EVEN MORE CALCULUS 8 EVEN MORE CALCULUS Chapter 8 Even More Calculus Objectives After stuing this chapter you shoul be able to ifferentiate an integrate basic trigonometric functions; unerstan how to calculate rates of change;

More information

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x)

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x) Limit We say the limit of f () as approaches c equals L an write, lim L. One-Sie Limits (Left an Right-Hane Limits) Suppose a function f is efine near but not necessarily at We say that f has a left-hane

More information

SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 1 8 3

SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 1 8 3 SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 8 3 L P f Q L segments L an L 2 to be tangent to the parabola at the transition points P an Q. (See the figure.) To simplify the equations you ecie to place the

More information

A. Incorrect! The letter t does not appear in the expression of the given integral

A. Incorrect! The letter t does not appear in the expression of the given integral AP Physics C - Problem Drill 1: The Funamental Theorem of Calculus Question No. 1 of 1 Instruction: (1) Rea the problem statement an answer choices carefully () Work the problems on paper as neee (3) Question

More information

Tutorial 1 Differentiation

Tutorial 1 Differentiation Tutorial 1 Differentiation What is Calculus? Calculus 微積分 Differential calculus Differentiation 微分 y lim 0 f f The relation of very small changes of ifferent quantities f f y y Integral calculus Integration

More information

Related Rates. Introduction. We are familiar with a variety of mathematical or quantitative relationships, especially geometric ones.

Related Rates. Introduction. We are familiar with a variety of mathematical or quantitative relationships, especially geometric ones. Relate Rates Introuction We are familiar with a variety of mathematical or quantitative relationships, especially geometric ones For example, for the sies of a right triangle we have a 2 + b 2 = c 2 or

More information

(a) 82 (b) 164 (c) 81 (d) 162 (e) 624 (f) 625 None of these. (c) 12 (d) 15 (e)

(a) 82 (b) 164 (c) 81 (d) 162 (e) 624 (f) 625 None of these. (c) 12 (d) 15 (e) Math 2 (Calculus I) Final Eam Form A KEY Multiple Choice. Fill in the answer to each problem on your computer-score answer sheet. Make sure your name, section an instructor are on that sheet.. Approimate

More information

Chapter 3 Definitions and Theorems

Chapter 3 Definitions and Theorems Chapter 3 Definitions an Theorems (from 3.1) Definition of Tangent Line with slope of m If f is efine on an open interval containing c an the limit Δy lim Δx 0 Δx = lim f (c + Δx) f (c) = m Δx 0 Δx exists,

More information

1. Find the equation of a line passing through point (5, -2) with slope ¾. (State your answer in slope-int. form)

1. Find the equation of a line passing through point (5, -2) with slope ¾. (State your answer in slope-int. form) INTRO TO CALCULUS REVIEW FINAL EXAM NAME: DATE: A. Equations of Lines (Review Chapter) y = m + b (Slope-Intercept Form) A + By = C (Stanar Form) y y = m( ) (Point-Slope Form). Fin the equation of a line

More information

Worksheet 8, Tuesday, November 5, 2013, Answer Key

Worksheet 8, Tuesday, November 5, 2013, Answer Key Math 105, Fall 2013 Worksheet 8, Tuesay, November 5, 2013, Answer Key Reminer: This worksheet is a chance for you not to just o the problems, but rather unerstan the problems. Please iscuss ieas with your

More information

Math 115 Section 018 Course Note

Math 115 Section 018 Course Note Course Note 1 General Functions Definition 1.1. A function is a rule that takes certain numbers as inputs an assigns to each a efinite output number. The set of all input numbers is calle the omain of

More information

Chapter 1 Overview: Review of Derivatives

Chapter 1 Overview: Review of Derivatives Chapter Overview: Review of Derivatives The purpose of this chapter is to review the how of ifferentiation. We will review all the erivative rules learne last year in PreCalculus. In the net several chapters,

More information

Math 1271 Solutions for Fall 2005 Final Exam

Math 1271 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Eam ) Since the equation + y = e y cannot be rearrange algebraically in orer to write y as an eplicit function of, we must instea ifferentiate this relation implicitly

More information

Solutions to Practice Problems Tuesday, October 28, 2008

Solutions to Practice Problems Tuesday, October 28, 2008 Solutions to Practice Problems Tuesay, October 28, 2008 1. The graph of the function f is shown below. Figure 1: The graph of f(x) What is x 1 + f(x)? What is x 1 f(x)? An oes x 1 f(x) exist? If so, what

More information

1 Applications of the Chain Rule

1 Applications of the Chain Rule November 7, 08 MAT86 Week 6 Justin Ko Applications of the Chain Rule We go over several eamples of applications of the chain rule to compute erivatives of more complicate functions. Chain Rule: If z =

More information

Integration Review. May 11, 2013

Integration Review. May 11, 2013 Integration Review May 11, 2013 Goals: Review the funamental theorem of calculus. Review u-substitution. Review integration by parts. Do lots of integration eamples. 1 Funamental Theorem of Calculus In

More information

Exam 3 Review. Lesson 19: Concavity, Inflection Points, and the Second Derivative Test. Lesson 20: Absolute Extrema on an Interval

Exam 3 Review. Lesson 19: Concavity, Inflection Points, and the Second Derivative Test. Lesson 20: Absolute Extrema on an Interval Exam 3 Review Lessons 17-18: Relative Extrema, Critical Numbers, an First Derivative Test (from exam 2 review neee for curve sketching) Critical Numbers: where the erivative of a function is zero or unefine.

More information

Section 7.1: Integration by Parts

Section 7.1: Integration by Parts Section 7.1: Integration by Parts 1. Introuction to Integration Techniques Unlike ifferentiation where there are a large number of rules which allow you (in principle) to ifferentiate any function, the

More information

does NOT exist. WHAT IF THE NUMBER X APPROACHES CANNOT BE PLUGGED INTO F(X)??????

does NOT exist. WHAT IF THE NUMBER X APPROACHES CANNOT BE PLUGGED INTO F(X)?????? MATH 000 Miterm Review.3 Te it of a function f ( ) L Tis means tat in a given function, f(), as APPROACHES c, a constant, it will equal te value L. Tis is c only true if f( ) f( ) L. Tat means if te verticle

More information

Related Rates. Introduction

Related Rates. Introduction Relate Rates Introuction We are familiar with a variet of mathematical or quantitative relationships, especiall geometric ones For eample, for the sies of a right triangle we have a 2 + b 2 = c 2 or the

More information

Solutions to Math 41 Second Exam November 4, 2010

Solutions to Math 41 Second Exam November 4, 2010 Solutions to Math 41 Secon Exam November 4, 2010 1. (13 points) Differentiate, using the metho of your choice. (a) p(t) = ln(sec t + tan t) + log 2 (2 + t) (4 points) Using the rule for the erivative of

More information

Summary: Differentiation

Summary: Differentiation Techniques of Differentiation. Inverse Trigonometric functions The basic formulas (available in MF5 are: Summary: Differentiation ( sin ( cos The basic formula can be generalize as follows: Note: ( sin

More information

MATH 205 Practice Final Exam Name:

MATH 205 Practice Final Exam Name: MATH 205 Practice Final Eam Name:. (2 points) Consier the function g() = e. (a) (5 points) Ientify the zeroes, vertical asymptotes, an long-term behavior on both sies of this function. Clearly label which

More information

Computing Derivatives Solutions

Computing Derivatives Solutions Stuent Stuy Session Solutions We have intentionally inclue more material than can be covere in most Stuent Stuy Sessions to account for groups that are able to answer the questions at a faster rate. Use

More information

MAT 111 Practice Test 2

MAT 111 Practice Test 2 MAT 111 Practice Test 2 Solutions Spring 2010 1 1. 10 points) Fin the equation of the tangent line to 2 + 2y = 1+ 2 y 2 at the point 1, 1). The equation is y y 0 = y 0) So all we nee is y/. Differentiating

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that Inverse Functions Review from Last Time: The Derivative of y = ln Last time we saw that THEOREM 22.0.. The natural log function is ifferentiable an More generally, the chain rule version is ln ) =. ln

More information

Lecture 6: Calculus. In Song Kim. September 7, 2011

Lecture 6: Calculus. In Song Kim. September 7, 2011 Lecture 6: Calculus In Song Kim September 7, 20 Introuction to Differential Calculus In our previous lecture we came up with several ways to analyze functions. We saw previously that the slope of a linear

More information

February 21 Math 1190 sec. 63 Spring 2017

February 21 Math 1190 sec. 63 Spring 2017 February 21 Math 1190 sec. 63 Spring 2017 Chapter 2: Derivatives Let s recall the efinitions an erivative rules we have so far: Let s assume that y = f (x) is a function with c in it s omain. The erivative

More information

Calculus I Homework: Related Rates Page 1

Calculus I Homework: Related Rates Page 1 Calculus I Homework: Relate Rates Page 1 Relate Rates in General Relate rates means relate rates of change, an since rates of changes are erivatives, relate rates really means relate erivatives. The only

More information

MA4001 Engineering Mathematics 1 Lecture 14 Derivatives of Trigonometric Functions Critical Points

MA4001 Engineering Mathematics 1 Lecture 14 Derivatives of Trigonometric Functions Critical Points MA4001 Engineering Mathematics 1 Lecture 14 Derivatives of Trigonometric Functions Critical Points Dr. Sarah Mitchell Autumn 2014 An important limit To calculate the limits of basic trigonometric functions

More information

Chapter 3 Notes, Applied Calculus, Tan

Chapter 3 Notes, Applied Calculus, Tan Contents 3.1 Basic Rules of Differentiation.............................. 2 3.2 The Prouct an Quotient Rules............................ 6 3.3 The Chain Rule...................................... 9 3.4

More information

You should also review L Hôpital s Rule, section 3.6; follow the homework link above for exercises.

You should also review L Hôpital s Rule, section 3.6; follow the homework link above for exercises. BEFORE You Begin Calculus II If it has been awhile since you ha Calculus, I strongly suggest that you refresh both your ifferentiation an integration skills. I woul also like to remin you that in Calculus,

More information

1 The Derivative and Differrentiability

1 The Derivative and Differrentiability 1 The Derivative and Differrentiability 1.1 Derivatives and rate of change Exercise 1 Find the equation of the tangent line to f (x) = x 2 at the point (1, 1). Exercise 2 Suppose that a ball is dropped

More information

Table of Common Derivatives By David Abraham

Table of Common Derivatives By David Abraham Prouct an Quotient Rules: Table of Common Derivatives By Davi Abraham [ f ( g( ] = [ f ( ] g( + f ( [ g( ] f ( = g( [ f ( ] g( g( f ( [ g( ] Trigonometric Functions: sin( = cos( cos( = sin( tan( = sec

More information

23 Implicit differentiation

23 Implicit differentiation 23 Implicit ifferentiation 23.1 Statement The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x an y. If a value of x is given, then a corresponing value of y is etermine. For

More information

Lecture 16: The chain rule

Lecture 16: The chain rule Lecture 6: The chain rule Nathan Pflueger 6 October 03 Introuction Toay we will a one more rule to our toolbo. This rule concerns functions that are epresse as compositions of functions. The iea of a composition

More information

Calculus I Announcements

Calculus I Announcements Slie 1 Calculus I Announcements Office Hours: Amos Eaton 309, Monays 12:50-2:50 Exam 2 is Thursay, October 22n. The stuy guie is now on the course web page. Start stuying now, an make a plan to succee.

More information

AP Calculus AB One Last Mega Review Packet of Stuff. Take the derivative of the following. 1.) 3.) 5.) 7.) Determine the limit of the following.

AP Calculus AB One Last Mega Review Packet of Stuff. Take the derivative of the following. 1.) 3.) 5.) 7.) Determine the limit of the following. AP Calculus AB One Last Mega Review Packet of Stuff Name: Date: Block: Take the erivative of the following. 1.) x (sin (5x)).) x (etan(x) ) 3.) x (sin 1 ( x3 )) 4.) x (x3 5x) 4 5.) x ( ex sin(x) ) 6.)

More information

IMPLICIT DIFFERENTIATION

IMPLICIT DIFFERENTIATION Mathematics Revision Guies Implicit Differentiation Page 1 of Author: Mark Kulowski MK HOME TUITION Mathematics Revision Guies Level: AS / A Level AQA : C4 Eecel: C4 OCR: C4 OCR MEI: C3 IMPLICIT DIFFERENTIATION

More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information 5548993 - Further Pure an 3 Moule FP Further Pure 5548993 - Further Pure an 3 Differentiating inverse trigonometric functions Throughout the course you have graually been increasing the number of functions

More information

Mathematics 1210 PRACTICE EXAM II Fall 2018 ANSWER KEY

Mathematics 1210 PRACTICE EXAM II Fall 2018 ANSWER KEY Mathematics 1210 PRACTICE EXAM II Fall 2018 ANSWER KEY 1. Calculate the following: a. 2 x, x(t) = A sin(ωt φ) t2 Solution: Using the chain rule, we have x (t) = A cos(ωt φ)ω = ωa cos(ωt φ) x (t) = ω 2

More information

f(x) f(a) Limit definition of the at a point in slope notation.

f(x) f(a) Limit definition of the at a point in slope notation. Lesson 9: Orinary Derivatives Review Hanout Reference: Brigg s Calculus: Early Transcenentals, Secon Eition Topics: Chapter 3: Derivatives, p. 126-235 Definition. Limit Definition of Derivatives at a point

More information

CHAPTER SEVEN. Solutions for Section x x t t4 4. ) + 4x = 7. 6( x4 3x4

CHAPTER SEVEN. Solutions for Section x x t t4 4. ) + 4x = 7. 6( x4 3x4 CHAPTER SEVEN 7. SOLUTIONS 6 Solutions for Section 7.. 5.. 4. 5 t t + t 5 5. 5. 6. t 8 8 + t4 4. 7. 6( 4 4 ) + 4 = 4 + 4. 5q 8.. 9. We break the antierivative into two terms. Since y is an antierivative

More information

Differentiability, Computing Derivatives, Trig Review

Differentiability, Computing Derivatives, Trig Review Unit #3 : Differentiability, Computing Derivatives, Trig Review Goals: Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an original function Compute

More information

Differentiation Rules Derivatives of Polynomials and Exponential Functions

Differentiation Rules Derivatives of Polynomials and Exponential Functions Derivatives of Polynomials an Exponential Functions Differentiation Rules Derivatives of Polynomials an Exponential Functions Let s start with the simplest of all functions, the constant function f(x)

More information

Math 1720 Final Exam Review 1

Math 1720 Final Exam Review 1 Math 70 Final Eam Review Remember that you are require to evaluate this class by going to evaluate.unt.eu an filling out the survey before minight May 8. It will only take between 5 an 0 minutes, epening

More information

AP Calculus AB Ch. 2 Derivatives (Part I) Intro to Derivatives: Definition of the Derivative and the Tangent Line 9/15/14

AP Calculus AB Ch. 2 Derivatives (Part I) Intro to Derivatives: Definition of the Derivative and the Tangent Line 9/15/14 AP Calculus AB Ch. Derivatives (Part I) Name Intro to Derivatives: Deinition o the Derivative an the Tangent Line 9/15/1 A linear unction has the same slope at all o its points, but non-linear equations

More information

2.1 Derivatives and Rates of Change

2.1 Derivatives and Rates of Change 1a 1b 2.1 Derivatives an Rates of Change Tangent Lines Example. Consier y f x x 2 0 2 x-, 0 4 y-, f(x) axes, curve C Consier a smooth curve C. A line tangent to C at a point P both intersects C at P an

More information

Derivative of a Constant Multiple of a Function Theorem: If f is a differentiable function and if c is a constant, then

Derivative of a Constant Multiple of a Function Theorem: If f is a differentiable function and if c is a constant, then Bob Brown Math 51 Calculus 1 Chapter 3, Section Complete 1 Review of the Limit Definition of the Derivative Write the it efinition of the erivative function: f () Derivative of a Constant Multiple of a

More information

Differentiability, Computing Derivatives, Trig Review. Goals:

Differentiability, Computing Derivatives, Trig Review. Goals: Secants vs. Derivatives - Unit #3 : Goals: Differentiability, Computing Derivatives, Trig Review Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an

More information

More from Lesson 6 The Limit Definition of the Derivative and Rules for Finding Derivatives.

More from Lesson 6 The Limit Definition of the Derivative and Rules for Finding Derivatives. Math 1314 ONLINE More from Lesson 6 The Limit Definition of the Derivative an Rules for Fining Derivatives Eample 4: Use the Four-Step Process for fining the erivative of the function Then fin f (1) f(

More information

by using the derivative rules. o Building blocks: d

by using the derivative rules. o Building blocks: d Calculus for Business an Social Sciences - Prof D Yuen Eam Review version /9/01 Check website for any poste typos an upates Eam is on Sections, 5, 6,, 1,, Derivatives Rules Know how to fin the formula

More information

Math 210 Midterm #1 Review

Math 210 Midterm #1 Review Math 20 Miterm # Review This ocument is intene to be a rough outline of what you are expecte to have learne an retaine from this course to be prepare for the first miterm. : Functions Definition: A function

More information

Final Exam Study Guide and Practice Problems Solutions

Final Exam Study Guide and Practice Problems Solutions Final Exam Stuy Guie an Practice Problems Solutions Note: These problems are just some of the types of problems that might appear on the exam. However, to fully prepare for the exam, in aition to making

More information

Basic Differentiation Rules and Rates of Change. The Constant Rule

Basic Differentiation Rules and Rates of Change. The Constant Rule 460_00.q //04 4:04 PM Page 07 SECTION. Basic Differentiation Rules an Rates of Change 07 Section. The slope of a horizontal line is 0. Basic Differentiation Rules an Rates of Change Fin the erivative of

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 3 Differentiation Rules 3.1 The Derivative of Polynomial and Exponential Functions In this section we learn how to differentiate constant functions, power functions, polynomials, and exponential functions.

More information

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1 Lecture 5 Some ifferentiation rules Trigonometric functions (Relevant section from Stewart, Seventh Eition: Section 3.3) You all know that sin = cos cos = sin. () But have you ever seen a erivation of

More information

18.01 Single Variable Calculus Fall 2006

18.01 Single Variable Calculus Fall 2006 MIT OpenCourseWare http://ocw.mit.eu 8.0 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.eu/terms. Lecture 8.0 Fall 2006 Unit

More information

Implicit Differentiation and Related Rates

Implicit Differentiation and Related Rates Implicit Differentiation an Relate Rates Up until now ou have been fining the erivatives of functions that have alrea been solve for their epenent variable. However, there are some functions that cannot

More information

Flash Card Construction Instructions

Flash Card Construction Instructions Flash Car Construction Instructions *** THESE CARDS ARE FOR CALCULUS HONORS, AP CALCULUS AB AND AP CALCULUS BC. AP CALCULUS BC WILL HAVE ADDITIONAL CARDS FOR THE COURSE (IN A SEPARATE FILE). The left column

More information

DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS

DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS THE DERIVATIVE AS A FUNCTION f x = lim h 0 f x + h f(x) h Last class we examine the limit of the ifference quotient at a specific x as h 0,

More information

Derivative Methods: (csc(x)) = csc(x) cot(x)

Derivative Methods: (csc(x)) = csc(x) cot(x) EXAM 2 IS TUESDAY IN QUIZ SECTION Allowe:. A Ti-30x IIS Calculator 2. An 8.5 by inch sheet of hanwritten notes (front/back) 3. A pencil or black/blue pen Covers: 3.-3.6, 0.2, 3.9, 3.0, 4. Quick Review

More information

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

Exam 2 Review Solutions

Exam 2 Review Solutions Exam Review Solutions 1. True or False, an explain: (a) There exists a function f with continuous secon partial erivatives such that f x (x, y) = x + y f y = x y False. If the function has continuous secon

More information

y. ( sincos ) (sin ) (cos ) + (cos ) (sin ) sin + cos cos. 5. 6.. y + ( )( ) ( + )( ) ( ) ( ) s [( t )( t + )] t t [ t ] t t s t + t t t ( t )( t) ( t + )( t) ( t ) t ( t ) y + + / / ( + + ) / / /....

More information

dx dx [x2 + y 2 ] = y d [tan x] + tan x = 2x + 2y = y sec 2 x + tan x dy dy = tan x dy dy = [tan x 2y] dy dx = 2x y sec2 x [1 + sin y] = sin(xy)

dx dx [x2 + y 2 ] = y d [tan x] + tan x = 2x + 2y = y sec 2 x + tan x dy dy = tan x dy dy = [tan x 2y] dy dx = 2x y sec2 x [1 + sin y] = sin(xy) Math 7 Activit: Implicit & Logarithmic Differentiation (Solutions) Implicit Differentiation. For each of the following equations, etermine x. a. tan x = x 2 + 2 tan x] = x x x2 + 2 ] = tan x] + tan x =

More information

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson

JUST THE MATHS UNIT NUMBER DIFFERENTIATION 2 (Rates of change) A.J.Hobson JUST THE MATHS UNIT NUMBER 10.2 DIFFERENTIATION 2 (Rates of change) by A.J.Hobson 10.2.1 Introuction 10.2.2 Average rates of change 10.2.3 Instantaneous rates of change 10.2.4 Derivatives 10.2.5 Exercises

More information

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x . Fin erivatives of the following functions: (a) f() = tan ( 2 + ) ( ) 2 (b) f() = ln 2 + (c) f() = sin() Solution: Math 80, Eam 2, Fall 202 Problem Solution (a) The erivative is compute using the Chain

More information

3.2 Differentiability

3.2 Differentiability Section 3 Differentiability 09 3 Differentiability What you will learn about How f (a) Might Fail to Eist Differentiability Implies Local Linearity Numerical Derivatives on a Calculator Differentiability

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Implicit Differentiation Using the Chain Rule In the previous section we focuse on the erivatives of composites an saw that THEOREM 20 (Chain Rule) Suppose that u = g(x) is ifferentiable

More information