Section 2.1 The Derivative and the Tangent Line Problem

Size: px
Start display at page:

Download "Section 2.1 The Derivative and the Tangent Line Problem"

Transcription

1 Chapter 2 Differentiation Course Number Section 2.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan the relationship between ifferentiability an continuity. Instructor Date Important Vocabulary Define each term or concept. Differentiation aaa aaaaaaa aa aaaaaaa aaa aaaaaaaaaa aa a aaaaaaaaa Differentiable a aaaaaaaa aa aaaaaaaaaaaaaa aa a aa aaa aaaaaaaaaa aaaaaa aa aa I. The Tangent Line Problem (Pages 96 99) Essentially, the problem of fining the tangent line at a point P boils own to aaa aaaaaaa aa aaaaaaa aaa aaaaa aa aaa aaaaaaa aaaa aa aaaaa a. You can approimate this slope using a aaaaaa aaaa through the point of tangency (c, f(c)) an a secon point on the curve (c +, f(c + )). The slope of the secant line through these two aaa a aaa a points is m sec aaaaa. aaa How to fin the slope of the tangent line to a curve at a point The right sie of this equation for the slope of a secant line is calle a aaaaaaaaaa aaaaaaaa. The enominator is the aaaaaa aa a, an the numerator y f ( c ) f ( c ) is the aaaaaa aa a. The beauty of this proceure is that you can obtain more an more accurate approimations of the slope of the tangent line by aaaaaaaa aaaaaa aaaaaa aaa aaaaaa aa aaa aaaaa aa aaaaaaaa. If f is efine on an open interval containing c, an if the limit lim y f ( c ) f ( c) lim 0 0 m eists, then the line passing 31

2 32 Chapter 2 Differentiation through (c, f(c)) with slope m is aaaaaa aaaa aa aaa aaaaa aa a aa aaa aaaaa aaa aaaaa. The slope of the tangent line to the graph of f at the point (c, f(c)) is also calle aa a a a. aaa aaaaa aa aaa aaaaa aa a Eample 1: Fin the slope of the graph of ( ) 9 2 f at the point (4, 7). a aaa Eample 2: Fin the slope of the graph of the point ( 1, 1). a f ( ) at The efinition of a tangent line to a curve oes not cover the possibility of a vertical tangent line. If f is continuous at c an lim ( ) ( ) f c f c 0 or lim ( ) ( ) f c f c 0 vertical line = c passing through (c, f(c)) is aaaaaaa aaaa to the graph of f., the a aaaaaaaa II. The Derivative of a Function (Pages ) The aaaaaaaaaa aa a aa a is given by f '( ) lim ( ) ( ), provie the limit eists. For all f f 0 for which this limit eists, f is a aaaaaaa aa a. How to use the limit efinition to fin the erivative of a function The erivative of a function of gives the aaaaa aa aaa aaaaaaa aaaa to the graph of f at the point (, f()), provie that the graph has a tangent line at this point. A function is ifferentiable on an open interval (a, b) if a aa aaaaaaaaaaaaaa aa aaaaaa aa aaa aaaaaaaa.

3 Section 2.1 The Derivative an the Tangent Line Problem 33 Eample 3: Fin the erivative of a aaaa a aa 2 f ( t) 4t 5. III. Differentiability an Continuity (Pages ) Name some situations in which a function will not be ifferentiable at a point. a aaaaa aaaaaa a aaaaaaaa aaaaaaa aaaa aa a aaaaa aaaa a aaaaa aaaaa How to unerstan the relationship between ifferentiability an continuity If a function f is ifferentiable at = c, then aaaaaaaaaa aa a a a. a aa Complete the following statements. 1. If a function is ifferentiable at = c, then it is continuous at = c. So, ifferentiability aaaaaa continuity. 2. It is possible for a function to be continuous at = c an not be ifferentiable at = c. So, continuity aaaa aaa aaaaa ifferentiability.

4 34 Chapter 2 Differentiation Aitional notes y y y y y y Homework Assignment Page(s) Eercises

5 Section 2.2 Basic Differentiation an Rates of Change 35 Section 2.2 Basic Differentiation an Rates of Change Objective: In this lesson you learne how to fin the erivative of a function using basic ifferentiation rules. Course Number Instructor Date I. The Constant Rule (Page 107) The erivative of a constant function is s. If c is a real number, then [] c II. The Power Rule (Pages ) s. The Power Rule states that if n is a rational number, then the n function f ( ) is ifferentiable an n ss = 0, n must be a number such that. For f to be ifferentiable at ss s s. n 1 is s ss ss How to fin the erivative of a function using the Constant Rule How to fin the erivative of a function using the Power Rule Also, s. 1 Eample 1: Fin the erivative of the function f( ) 3. s s Eample 2: Fin the slope of the graph of ss 5 f ( ) at = 2. III. The Constant Multiple Rule (Pages ) The Constant Multiple Rule states that if f is a ifferentiable function an c is a real number then cf is also ifferentiable an cf ( ) ss s. How to fin the erivative of a function using the Constant Multiple Rule Informally, the Constant Multiple Rule states that ss ss ss ss s ss ss ss.

6 36 Chapter 2 Differentiation Eample 3: Fin the erivative of f( ) 2 5 The Constant Multiple Rule an the Power Rule can be combine into one rule. The combination rule is c n. 2 Eample 4: Fin the erivative of y 5 5 s s IV. The Sum an Difference Rules (Page 111) The Sum an Difference Rules of Differentiation state that the sum (or ifference) of two ifferentiable functions f an g is itself ifferentiable. Moreover, the erivative of f g (or How to fin the erivative of a function using the Sum an Difference Rules f g) is the sum (or ifference) of the erivatives of f an g. That is, f ( ) g ( ) s s s ss s an f ( ) g ( ) s s s ss s Eample 5: Fin the erivative of ss s s ss ss 3 2 f ( ) V. Derivatives of Sine an Cosine Functions (Page 112) sin s s cos s s s How to fin the erivative of the sine function an of the cosine function Eample 6: Differentiate the function ss s ss s s s 2 y 2cos.

7 Section 2.2 Basic Differentiation an Rates of Change 37 VI. Rates of Change (Pages ) The erivative can also be use to etermine s ss ss ss s s ss s. How to use erivatives to fin rates of change Give some eamples of real-life applications of rates of change. s s ss s s The function s that gives the position (relative to the origin) of an object as a function of time t is calle a ss ss. The average velocity of an object that is moving in a straight line is foun as follows. Average velocity = ss = ss ss Eample 7: If a ball is roppe from the top of a builing that is 200 feet tall, an air resistance is neglecte, the height s (in feet) of the ball at time t (in secons) is 2 given by s 16t 200. Fin the average velocity of the object over the interval [1, 3]. s ss s If s s() t is the position function for an object moving along a straight line, the (instantaneous) velocity of the object at time t is s s ss vt () = ss. ss In other wors, the velocity function is the s ss the position function. Velocity can be ss ss ss. The ss of an object is the absolute value of its velocity. Spee cannot be ss.

8 38 Chapter 2 Differentiation Eample 8: If a ball is roppe from the top of a builing that is 200 feet tall, an air resistance is neglecte, the height s (in feet) of the ball at time t (in secons) is 2 given by s( t) 16t 200. Fin the velocity of the ball when t = 3. s ss s The position function for a free-falling object (neglecting air resistance) uner the influence of gravity can be represente by the equation s s ss s s s s s s s s, where s 0 is the initial height of the object, v 0 is the initial velocity of the object, an g is the acceleration ue to gravity. On Earth, the value of g is s s ss s. Homework Assignment Page(s) Eercises

9 Section 2.3 Prouct an Quotient Rules an Higher-Orer Derivatives 39 Section 2.3 Prouct an Quotient Rules an Higher-Orer Derivatives Course Number Instructor Objective: In this lesson you learne how to fin the erivative of a function using the Prouct Rule an Quotient Rule. Date I. The Prouct Rule (Pages ) The prouct of two ifferentiable functions f an g is itself ifferentiable. The Prouct Rule states that the erivative of the fg is equal to ss ss ss s How to fin the erivative of a function using the Prouct Rule ss s s ss ss ss. That is, s ss f ( ) g ( ) f ( ) g ( ) g ( ) f ( ). Eample 1: Fin the erivative of ss s s s s s 2 y (4 1)(2 3). The Prouct Rule can be etene to cover proucts that have more than two factors. For eample, if f, g, an h are ifferentiable functions of, then f ( ) g ( ) h ( ) s s ss ss s s Eplain the ifference between the Constant Multiple Rule an the Prouct Rule. s s ss ss ss s ss ss s ss s s ss s ss s ss s s s ss s s ss ss ss

10 40 Chapter 2 Differentiation II. The Quotient Rule (Pages ) The quotient f / g of two ifferentiable functions f an g is itself ifferentiable at all values of for which g ( ) 0. The How to fin the erivative of a function using the Quotient Rule erivative of f / g is given by ss ss s ss ss s ss ss by ss ss. ss, all ivie This is calle the ss s, an is given by f ( ) g( ) f ( ) f ( ) g ( ) 2, g ( ) 0. g( ) g ( ) Eample 2: Fin the erivative of s ss s s y With the Quotient Rule, it is a goo iea to enclose all factors an erivatives ss ss an to pay special attention to ss ss ss. III. Derivatives of Trigonometric Functions (Pages ) tan s s s cot s s s s sec s s s csc s s s s How to fin the erivative of a trigonometric function Eample 3: Differentiate the function f ( ) sin sec. ss s s s s s s s

11 Section 2.3 Prouct an Quotient Rules an Higher-Orer Derivatives 41 IV. Higher-Orer Derivatives (Page 125) The erivative of f ( ) is the secon erivative of f() an is enote by s s. The erivative of f ( ) is the How to fin a higherorer erivative of a function ss s of f() an is enote by f. These are eamples of ss of f(). The following notation is use to enote the ss s s of the function y f () : 6 y 6 D 6 [ y ] (6) y 6 [ f ( )] 6 f (6) ( ) (5) Eample 4: Fin y for ss s s 7 5 y 2. Eample 5: On the moon, a ball is roppe from a height of 100 feet. Its height s (in feet) above the moon s 27 2 surface is given by s t 100. Fin the 10 height, the velocity, an the acceleration of the ball when t = 5 secons. s s s ss s s s ss s s

12 42 Chapter 2 Differentiation Eample 6: Fin y for s s s s y sin. Aitional notes Homework Assignment Page(s) Eercises

13 Section 2.4 The Chain Rule 43 Section 2.4 The Chain Rule Objective: In this lesson you learne how to fin the erivative of a function using the Chain Rule an General Power Rule. Course Number Instructor Date I. The Chain Rule (Pages ) The Chain Rule, one of the most powerful ifferentiation rules, eals with functions. Basically, the Chain Rule states that if y changes y/u times as fast as u, an u changes u/ times as fast as, then y changes ss times as fast as. How to fin the erivative of a composite function using the Chain Rule The Chain Rule states that if y f () u is a ifferentiable function of u, an u g() is a ifferentiable function of, then y f ( g( )) is a ifferentiable function of, an y f ( g ( )) or, equivalently, s. When applying the Chain Rule, it is helpful to think of the composite function f g as having two parts, an inner part an an outer part. The Chain Rule tells you that the erivative of y f () u is the erivative of the ss ss (at the inner function u) times the erivative of the ss ss. That is, y s s s ss. Eample 1: Fin the erivative of s s ss s 2 5 y (3 2).

14 44 Chapter 2 Differentiation II. The General Power Rule (Pages ) The General Power Rule is a special case of the s. ss How to fin the erivative of a function using the General Power Rule The General Power Rule states that if y u() n, where u is a ifferentiable function of an n is a rational number, then y s ss or, equivalently, u n ss ss s 4 Eample 2: Fin the erivative of y 3 (2 1) ss s s s ss s. III. Simplifying Derivatives (Page 134) Eample 3: Fin the erivative of y ss s ss s s ss s ss s s s s s 2 3 (1 ) 3 2 an simplify. How to simplify the erivative of a function using algebra

15 Section 2.4 The Chain Rule 45 IV. Trigonometric Functions an the Chain Rule (Pages ) Complete each of the following Chain Rule versions of the erivatives of the si trigonometric functions. How to fin the erivative of a trigonometric function using the Chain Rule sinu s ss ss s cosu s s ss ss s tan u s s ss ss s cot u s s s ss ss s secu s s ss ss s cscu s s s ss ss s Eample 4: Differentiate the function ss s s ss ss y sec4. Eample 5: Differentiate the function ss s ss s s s ss 2 y cos(2 1).

16 46 Chapter 2 Differentiation Aitional notes Homework Assignment Page(s) Eercises

17 Section 2.5 Implicit Differentiation 47 Section 2.5 Implicit Differentiation Objective: In this lesson you learne how to fin the erivative of a function using implicit ifferentiation. Course Number Instructor Date I. Implicit an Eplicit Functions (Page 141) Up to this point in the tet, most functions have been epresse in eplicit form y f (), meaning that ss s ss s s ss s ss ss s. However, some functions are only s by an equation. How to istinguish between functions written in implicit form an eplicit form Give an eample of a function in which y is implicitly efine as a function of. s s ss ss s s s s s ss ss ss ss Implicit ifferentiation is a proceure for taking the erivative of an implicit function when you are unable to ss s ss s ss ss s. To unerstan how to fin y implicitly, realize that the ifferentiation is taking place s s ss s. This means that when you ifferentiate terms involving alone, s ss ss. However, when you ifferentiate terms involving y, you must apply s s because you are assuming that y is efine s as a ifferentiable function of. ss Eample 1: Differentiate the epression with respect to : 2 4 y s ss ss s ss ss s ss

18 48 Chapter 2 Differentiation II. Implicit Differentiation (Pages ) Consier an equation involving an y in which y is a ifferentiable function of. List the four guielines for applying implicit ifferentiation to fin y/. How to use implicit ifferentiation to fin the erivative of a function 1. s s ss ss ss s s ss ss 2. s ss ss ss s s ss ss s ss ss ss ss s ss 3. ss ss s s ss 4. ss Eample 2: Fin y/ for the equation ss s 2 2 4y 1. Homework Assignment Page(s) Eercises

19 Section 2.6 Relate Rates 49 Section 2.6 Relate Rates Objective: In this lesson you learne how to fin a relate rate. I. Fining Relate Variables (Page 149) Another important use of the Chain Rule is to fin the rates of change of two or more relate variables that are changing with respect to s. Course Number Instructor Date How to fin a relate rate Eample 1: The variables an y are ifferentiable functions of 3 t an are relate by the equation y 2 4. When = 2, /t = 1. Fin y/t when = 2. II. Problem Solving with Relate Rates (Pages ) List the guielines for solving a relate-rate problems. 1. ss ss s s ss ss ss s s ss ss How to use relate rates to solve real-life problems 2. ss ss ss ss ss ss ss ss ss ss ss 3. ss ss ss s s s ss ss ss s s ss s ss 4. ss s s ss s s ss ss ss ss ss ss s s ss ss s ss s Eample 2: Write a mathematical moel for the following relate-rate problem situation: The population of a city is ecreasing at the rate of 100 people per month. s s ss ss ss s s ss

20 50 Chapter 2 Differentiation Aitional notes Homework Assignment Page(s) Eercises

Define each term or concept.

Define each term or concept. Chapter Differentiation Course Number Section.1 The Derivative an the Tangent Line Problem Objective: In this lesson you learne how to fin the erivative of a function using the limit efinition an unerstan

More information

MATH2231-Differentiation (2)

MATH2231-Differentiation (2) -Differentiation () The Beginnings of Calculus The prime occasion from which arose my iscovery of the metho of the Characteristic Triangle, an other things of the same sort, happene at a time when I ha

More information

Chapter 3 Definitions and Theorems

Chapter 3 Definitions and Theorems Chapter 3 Definitions an Theorems (from 3.1) Definition of Tangent Line with slope of m If f is efine on an open interval containing c an the limit Δy lim Δx 0 Δx = lim f (c + Δx) f (c) = m Δx 0 Δx exists,

More information

THEOREM: THE CONSTANT RULE

THEOREM: THE CONSTANT RULE MATH /MYERS/ALL FORMULAS ON THIS REVIEW MUST BE MEMORIZED! DERIVATIVE REVIEW THEOREM: THE CONSTANT RULE The erivative of a constant function is zero. That is, if c is a real number, then c 0 Eample 1:

More information

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions

Section The Chain Rule and Implicit Differentiation with Application on Derivative of Logarithm Functions Section 3.4-3.6 The Chain Rule an Implicit Differentiation with Application on Derivative of Logarithm Functions Ruipeng Shen September 3r, 5th Ruipeng Shen MATH 1ZA3 September 3r, 5th 1 / 3 The Chain

More information

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes

3.7 Implicit Differentiation -- A Brief Introduction -- Student Notes Fin these erivatives of these functions: y.7 Implicit Differentiation -- A Brief Introuction -- Stuent Notes tan y sin tan = sin y e = e = Write the inverses of these functions: y tan y sin How woul we

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function The normal way we see function notation has f () on one sie of an equation an an epression in terms of on the other sie. We know the

More information

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1

d dx But have you ever seen a derivation of these results? We ll prove the first result below. cos h 1 Lecture 5 Some ifferentiation rules Trigonometric functions (Relevant section from Stewart, Seventh Eition: Section 3.3) You all know that sin = cos cos = sin. () But have you ever seen a erivation of

More information

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like

Math Implicit Differentiation. We have discovered (and proved) formulas for finding derivatives of functions like Math 400 3.5 Implicit Differentiation Name We have iscovere (an prove) formulas for fining erivatives of functions like f x x 3x 4x. 3 This amounts to fining y for 3 y x 3x 4x. Notice that in this case,

More information

Basic Differentiation Rules and Rates of Change. The Constant Rule

Basic Differentiation Rules and Rates of Change. The Constant Rule 460_00.q //04 4:04 PM Page 07 SECTION. Basic Differentiation Rules an Rates of Change 07 Section. The slope of a horizontal line is 0. Basic Differentiation Rules an Rates of Change Fin the erivative of

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask

5.4 Fundamental Theorem of Calculus Calculus. Do you remember the Fundamental Theorem of Algebra? Just thought I'd ask 5.4 FUNDAMENTAL THEOREM OF CALCULUS Do you remember the Funamental Theorem of Algebra? Just thought I' ask The Funamental Theorem of Calculus has two parts. These two parts tie together the concept of

More information

Calculus in the AP Physics C Course The Derivative

Calculus in the AP Physics C Course The Derivative Limits an Derivatives Calculus in the AP Physics C Course The Derivative In physics, the ieas of the rate change of a quantity (along with the slope of a tangent line) an the area uner a curve are essential.

More information

Chapter 2 Derivatives

Chapter 2 Derivatives Chapter Derivatives Section. An Intuitive Introuction to Derivatives Consier a function: Slope function: Derivative, f ' For each, the slope of f is the height of f ' Where f has a horizontal tangent line,

More information

Math 1271 Solutions for Fall 2005 Final Exam

Math 1271 Solutions for Fall 2005 Final Exam Math 7 Solutions for Fall 5 Final Eam ) Since the equation + y = e y cannot be rearrange algebraically in orer to write y as an eplicit function of, we must instea ifferentiate this relation implicitly

More information

Lecture 6: Calculus. In Song Kim. September 7, 2011

Lecture 6: Calculus. In Song Kim. September 7, 2011 Lecture 6: Calculus In Song Kim September 7, 20 Introuction to Differential Calculus In our previous lecture we came up with several ways to analyze functions. We saw previously that the slope of a linear

More information

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0.

x f(x) x f(x) approaching 1 approaching 0.5 approaching 1 approaching 0. Engineering Mathematics 2 26 February 2014 Limits of functions Consier the function 1 f() = 1. The omain of this function is R + \ {1}. The function is not efine at 1. What happens when is close to 1?

More information

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x)

x = c of N if the limit of f (x) = L and the right-handed limit lim f ( x) Limit We say the limit of f () as approaches c equals L an write, lim L. One-Sie Limits (Left an Right-Hane Limits) Suppose a function f is efine near but not necessarily at We say that f has a left-hane

More information

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12

TOTAL NAME DATE PERIOD AP CALCULUS AB UNIT 4 ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT /6 10/8 10/9 10/10 X X X X 10/11 10/12 NAME DATE PERIOD AP CALCULUS AB UNIT ADVANCED DIFFERENTIATION TECHNIQUES DATE TOPIC ASSIGNMENT 0 0 0/6 0/8 0/9 0/0 X X X X 0/ 0/ 0/5 0/6 QUIZ X X X 0/7 0/8 0/9 0/ 0/ 0/ 0/5 UNIT EXAM X X X TOTAL AP Calculus

More information

Chapter 1 Overview: Review of Derivatives

Chapter 1 Overview: Review of Derivatives Chapter Overview: Review of Derivatives The purpose of this chapter is to review the how of ifferentiation. We will review all the erivative rules learne last year in PreCalculus. In the net several chapters,

More information

2.1 Derivatives and Rates of Change

2.1 Derivatives and Rates of Change 1a 1b 2.1 Derivatives an Rates of Change Tangent Lines Example. Consier y f x x 2 0 2 x-, 0 4 y-, f(x) axes, curve C Consier a smooth curve C. A line tangent to C at a point P both intersects C at P an

More information

The derivative of a constant function is 0. That is,

The derivative of a constant function is 0. That is, NOTES 3: DIFFERENTIATION RULES Name: Date: Perio: LESSON 3. DERIVATIVE OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS Eample : Prove f ( ) 6 is not ifferentiable at 4. Practice Problems: Fin f '( ) using the

More information

The Explicit Form of a Function

The Explicit Form of a Function Section 3 5 Implicit Differentiation The Eplicit Form of a Function Function Notation requires that we state a function with f () on one sie of an equation an an epression in terms of on the other sie

More information

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis

Math Chapter 2 Essentials of Calculus by James Stewart Prepared by Jason Gaddis Math 231 - Chapter 2 Essentials of Calculus by James Stewart Prepare by Jason Gais Chapter 2 - Derivatives 21 - Derivatives an Rates of Change Definition A tangent to a curve is a line that intersects

More information

The derivative of a constant function is 0. That is,

The derivative of a constant function is 0. That is, NOTES : DIFFERENTIATION RULES Name: LESSON. DERIVATIVE OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS Date: Perio: Mrs. Nguyen s Initial: Eample : Prove f ( ) 4 is not ifferentiable at. Practice Problems: Fin

More information

Tutorial 1 Differentiation

Tutorial 1 Differentiation Tutorial 1 Differentiation What is Calculus? Calculus 微積分 Differential calculus Differentiation 微分 y lim 0 f f The relation of very small changes of ifferent quantities f f y y Integral calculus Integration

More information

3.2 Differentiability

3.2 Differentiability Section 3 Differentiability 09 3 Differentiability What you will learn about How f (a) Might Fail to Eist Differentiability Implies Local Linearity Numerical Derivatives on a Calculator Differentiability

More information

Computing Derivatives Solutions

Computing Derivatives Solutions Stuent Stuy Session Solutions We have intentionally inclue more material than can be covere in most Stuent Stuy Sessions to account for groups that are able to answer the questions at a faster rate. Use

More information

CHAPTER 3 DERIVATIVES (continued)

CHAPTER 3 DERIVATIVES (continued) CHAPTER 3 DERIVATIVES (continue) 3.3. RULES FOR DIFFERENTIATION A. The erivative of a constant is zero: [c] = 0 B. The Power Rule: [n ] = n (n-1) C. The Constant Multiple Rule: [c *f()] = c * f () D. The

More information

1 Definition of the derivative

1 Definition of the derivative Math 20A - Calculus by Jon Rogawski Chapter 3 - Differentiation Prepare by Jason Gais Definition of the erivative Remark.. Recall our iscussion of tangent lines from way back. We now rephrase this in terms

More information

1 Lecture 20: Implicit differentiation

1 Lecture 20: Implicit differentiation Lecture 20: Implicit ifferentiation. Outline The technique of implicit ifferentiation Tangent lines to a circle Derivatives of inverse functions by implicit ifferentiation Examples.2 Implicit ifferentiation

More information

February 21 Math 1190 sec. 63 Spring 2017

February 21 Math 1190 sec. 63 Spring 2017 February 21 Math 1190 sec. 63 Spring 2017 Chapter 2: Derivatives Let s recall the efinitions an erivative rules we have so far: Let s assume that y = f (x) is a function with c in it s omain. The erivative

More information

SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 1 8 3

SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 1 8 3 SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 8 3 L P f Q L segments L an L 2 to be tangent to the parabola at the transition points P an Q. (See the figure.) To simplify the equations you ecie to place the

More information

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule

Unit #6 - Families of Functions, Taylor Polynomials, l Hopital s Rule Unit # - Families of Functions, Taylor Polynomials, l Hopital s Rule Some problems an solutions selecte or aapte from Hughes-Hallett Calculus. Critical Points. Consier the function f) = 54 +. b) a) Fin

More information

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that Inverse Functions Review from Last Time: The Derivative of y = ln Last time we saw that THEOREM 22.0.. The natural log function is ifferentiable an More generally, the chain rule version is ln ) =. ln

More information

AP Calculus AB Ch. 2 Derivatives (Part I) Intro to Derivatives: Definition of the Derivative and the Tangent Line 9/15/14

AP Calculus AB Ch. 2 Derivatives (Part I) Intro to Derivatives: Definition of the Derivative and the Tangent Line 9/15/14 AP Calculus AB Ch. Derivatives (Part I) Name Intro to Derivatives: Deinition o the Derivative an the Tangent Line 9/15/1 A linear unction has the same slope at all o its points, but non-linear equations

More information

Implicit Differentiation and Inverse Trigonometric Functions

Implicit Differentiation and Inverse Trigonometric Functions Implicit Differentiation an Inverse Trigonometric Functions MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Summer 2018 Explicit vs. Implicit Functions 0.5 1 y 0.0 y 2 0.5 3 4 1.0 0.5

More information

Antiderivatives and Indefinite Integration

Antiderivatives and Indefinite Integration 60_00.q //0 : PM Page 8 8 CHAPTER Integration Section. EXPLORATION Fining Antierivatives For each erivative, escribe the original function F. a. F b. F c. F. F e. F f. F cos What strateg i ou use to fin

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Implicit Differentiation Using the Chain Rule In the previous section we focuse on the erivatives of composites an saw that THEOREM 20 (Chain Rule) Suppose that u = g(x) is ifferentiable

More information

f(x) f(a) Limit definition of the at a point in slope notation.

f(x) f(a) Limit definition of the at a point in slope notation. Lesson 9: Orinary Derivatives Review Hanout Reference: Brigg s Calculus: Early Transcenentals, Secon Eition Topics: Chapter 3: Derivatives, p. 126-235 Definition. Limit Definition of Derivatives at a point

More information

With the Chain Rule. y x 2 1. and. with respect to second axle. dy du du dx. Rate of change of first axle. with respect to third axle

With the Chain Rule. y x 2 1. and. with respect to second axle. dy du du dx. Rate of change of first axle. with respect to third axle 0 CHAPTER Differentiation Section The Chain Rule Fin the erivative of a composite function using the Chain Rule Fin the erivative of a function using the General Power Rule Simplif the erivative of a function

More information

More from Lesson 6 The Limit Definition of the Derivative and Rules for Finding Derivatives.

More from Lesson 6 The Limit Definition of the Derivative and Rules for Finding Derivatives. Math 1314 ONLINE More from Lesson 6 The Limit Definition of the Derivative an Rules for Fining Derivatives Eample 4: Use the Four-Step Process for fining the erivative of the function Then fin f (1) f(

More information

By writing (1) as y (x 5 1). (x 5 1), we can find the derivative using the Product Rule: y (x 5 1) 2. we know this from (2)

By writing (1) as y (x 5 1). (x 5 1), we can find the derivative using the Product Rule: y (x 5 1) 2. we know this from (2) 3.5 Chain Rule 149 3.5 Chain Rule Introuction As iscusse in Section 3.2, the Power Rule is vali for all real number exponents n. In this section we see that a similar rule hols for the erivative of a power

More information

Definition of Tangent Line with Slope m: If f is defined on an open interval containing x, and if the limit y f( c x) f( c) f( c x) f( c) lim lim lim

Definition of Tangent Line with Slope m: If f is defined on an open interval containing x, and if the limit y f( c x) f( c) f( c x) f( c) lim lim lim Derivatives and the Tangent Line Problem Objective: Find the slope of the tangent line to a curve at a point. Use the limit definition to find the derivative of a function. Understand the relationship

More information

23 Implicit differentiation

23 Implicit differentiation 23 Implicit ifferentiation 23.1 Statement The equation y = x 2 + 3x + 1 expresses a relationship between the quantities x an y. If a value of x is given, then a corresponing value of y is etermine. For

More information

A. Incorrect! The letter t does not appear in the expression of the given integral

A. Incorrect! The letter t does not appear in the expression of the given integral AP Physics C - Problem Drill 1: The Funamental Theorem of Calculus Question No. 1 of 1 Instruction: (1) Rea the problem statement an answer choices carefully () Work the problems on paper as neee (3) Question

More information

Summary: Differentiation

Summary: Differentiation Techniques of Differentiation. Inverse Trigonometric functions The basic formulas (available in MF5 are: Summary: Differentiation ( sin ( cos The basic formula can be generalize as follows: Note: ( sin

More information

MATH 205 Practice Final Exam Name:

MATH 205 Practice Final Exam Name: MATH 205 Practice Final Eam Name:. (2 points) Consier the function g() = e. (a) (5 points) Ientify the zeroes, vertical asymptotes, an long-term behavior on both sies of this function. Clearly label which

More information

in Trigonometry Name Section 6.1 Law of Sines Important Vocabulary

in Trigonometry Name Section 6.1 Law of Sines Important Vocabulary Name Chapter 6 Additional Topics in Trigonometry Section 6.1 Law of Sines Objective: In this lesson you learned how to use the Law of Sines to solve oblique triangles and how to find the areas of oblique

More information

18 EVEN MORE CALCULUS

18 EVEN MORE CALCULUS 8 EVEN MORE CALCULUS Chapter 8 Even More Calculus Objectives After stuing this chapter you shoul be able to ifferentiate an integrate basic trigonometric functions; unerstan how to calculate rates of change;

More information

DT7: Implicit Differentiation

DT7: Implicit Differentiation Differentiation Techniques 7: Implicit Differentiation 143 DT7: Implicit Differentiation Moel 1: Solving for y Most of the functions we have seen in this course are like those in Table 1 (an the first

More information

Section 7.1: Integration by Parts

Section 7.1: Integration by Parts Section 7.1: Integration by Parts 1. Introuction to Integration Techniques Unlike ifferentiation where there are a large number of rules which allow you (in principle) to ifferentiate any function, the

More information

Limits and Their Properties

Limits and Their Properties Chapter 1 Limits and Their Properties Course Number Section 1.1 A Preview of Calculus Objective: In this lesson you learned how calculus compares with precalculus. I. What is Calculus? (Pages 42 44) Calculus

More information

Product and Quotient Rules and Higher-Order Derivatives. The Product Rule

Product and Quotient Rules and Higher-Order Derivatives. The Product Rule 330_003.q 11/3/0 :3 PM Page 119 SECTION.3 Prouct an Quotient Rules an Higher-Orer Derivatives 119 Section.3 Prouct an Quotient Rules an Higher-Orer Derivatives Fin the erivative o a unction using the Prouct

More information

The Derivative and the Tangent Line Problem. The Tangent Line Problem

The Derivative and the Tangent Line Problem. The Tangent Line Problem 96 CHAPTER Differentiation Section ISAAC NEWTON (6 77) In aition to his work in calculus, Newton mae revolutionar contributions to phsics, incluing the Law of Universal Gravitation an his three laws of

More information

Differentiability, Computing Derivatives, Trig Review. Goals:

Differentiability, Computing Derivatives, Trig Review. Goals: Secants vs. Derivatives - Unit #3 : Goals: Differentiability, Computing Derivatives, Trig Review Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an

More information

*Finding the tangent line at a point P boils down to finding the slope of the tangent line at point P.

*Finding the tangent line at a point P boils down to finding the slope of the tangent line at point P. The Derivative & Tangent Line Problem *Finding the tangent line at a point P boils down to finding the slope of the tangent line at point P. 1 The Derivative & Tangent Line Problem We can approximate using

More information

3.6. Implicit Differentiation. Implicitly Defined Functions

3.6. Implicit Differentiation. Implicitly Defined Functions 3.6 Implicit Differentiation 205 3.6 Implicit Differentiation 5 2 25 2 25 2 0 5 (3, ) Slope 3 FIGURE 3.36 The circle combines the graphs of two functions. The graph of 2 is the lower semicircle an passes

More information

18.01 Single Variable Calculus Fall 2006

18.01 Single Variable Calculus Fall 2006 MIT OpenCourseWare http://ocw.mit.eu 8.0 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.eu/terms. Lecture 8.0 Fall 2006 Unit

More information

102 Problems Calculus AB Students Should Know: Solutions. 18. product rule d. 19. d sin x. 20. chain rule d e 3x2) = e 3x2 ( 6x) = 6xe 3x2

102 Problems Calculus AB Students Should Know: Solutions. 18. product rule d. 19. d sin x. 20. chain rule d e 3x2) = e 3x2 ( 6x) = 6xe 3x2 Problems Calculus AB Stuents Shoul Know: Solutions. + ) = + =. chain rule ) e = e = e. ) =. ) = ln.. + + ) = + = = +. ln ) =. ) log ) =. sin ) = cos. cos ) = sin. tan ) = sec. cot ) = csc. sec ) = sec

More information

Differentiability, Computing Derivatives, Trig Review

Differentiability, Computing Derivatives, Trig Review Unit #3 : Differentiability, Computing Derivatives, Trig Review Goals: Determine when a function is ifferentiable at a point Relate the erivative graph to the the graph of an original function Compute

More information

Chapter Primer on Differentiation

Chapter Primer on Differentiation Capter 0.01 Primer on Differentiation After reaing tis capter, you soul be able to: 1. unerstan te basics of ifferentiation,. relate te slopes of te secant line an tangent line to te erivative of a function,.

More information

The Chain Rule. y x 2 1 y sin x. and. Rate of change of first axle. with respect to second axle. dy du. du dx. Rate of change of first axle

The Chain Rule. y x 2 1 y sin x. and. Rate of change of first axle. with respect to second axle. dy du. du dx. Rate of change of first axle . The Chain Rule 9. The Chain Rule Fin the erivative of a composite function using the Chain Rule. Fin the erivative of a function using the General Power Rule. Simplif the erivative of a function using

More information

Math 210 Midterm #1 Review

Math 210 Midterm #1 Review Math 20 Miterm # Review This ocument is intene to be a rough outline of what you are expecte to have learne an retaine from this course to be prepare for the first miterm. : Functions Definition: A function

More information

Derivative of a Constant Multiple of a Function Theorem: If f is a differentiable function and if c is a constant, then

Derivative of a Constant Multiple of a Function Theorem: If f is a differentiable function and if c is a constant, then Bob Brown Math 51 Calculus 1 Chapter 3, Section Complete 1 Review of the Limit Definition of the Derivative Write the it efinition of the erivative function: f () Derivative of a Constant Multiple of a

More information

Summer Review Packet (Limits & Derivatives) 1. Answer the following questions using the graph of ƒ(x) given below.

Summer Review Packet (Limits & Derivatives) 1. Answer the following questions using the graph of ƒ(x) given below. Name AP Calculus BC Summer Review Packet (Limits & Derivatives) Limits 1. Answer the following questions using the graph of ƒ() given below. (a) Find ƒ(0) (b) Find ƒ() (c) Find f( ) 5 (d) Find f( ) 0 (e)

More information

Chapter 5 Analytic Trigonometry

Chapter 5 Analytic Trigonometry Chapter 5 Analytic Trigonometry Section 1 Section 2 Section 3 Section 4 Section 5 Using Fundamental Identities Verifying Trigonometric Identities Solving Trigonometric Equations Sum and Difference Formulas

More information

by using the derivative rules. o Building blocks: d

by using the derivative rules. o Building blocks: d Calculus for Business an Social Sciences - Prof D Yuen Eam Review version /9/01 Check website for any poste typos an upates Eam is on Sections, 5, 6,, 1,, Derivatives Rules Know how to fin the formula

More information

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs Lectures - Week 10 Introuction to Orinary Differential Equations (ODES) First Orer Linear ODEs When stuying ODEs we are consiering functions of one inepenent variable, e.g., f(x), where x is the inepenent

More information

CHAPTER 3 DIFFERENTIATION

CHAPTER 3 DIFFERENTIATION CHAPTER 3 DIFFERENTIATION 3.1 THE DERIVATIVE AND THE TANGENT LINE PROBLEM You will be able to: - Find the slope of the tangent line to a curve at a point - Use the limit definition to find the derivative

More information

DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS

DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS DERIVATIVES: LAWS OF DIFFERENTIATION MR. VELAZQUEZ AP CALCULUS THE DERIVATIVE AS A FUNCTION f x = lim h 0 f x + h f(x) h Last class we examine the limit of the ifference quotient at a specific x as h 0,

More information

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x

Math 180, Exam 2, Fall 2012 Problem 1 Solution. (a) The derivative is computed using the Chain Rule twice. 1 2 x x . Fin erivatives of the following functions: (a) f() = tan ( 2 + ) ( ) 2 (b) f() = ln 2 + (c) f() = sin() Solution: Math 80, Eam 2, Fall 202 Problem Solution (a) The erivative is compute using the Chain

More information

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule

Outline. MS121: IT Mathematics. Differentiation Rules for Differentiation: Part 1. Outline. Dublin City University 4 The Quotient Rule MS2: IT Mathematics Differentiation Rules for Differentiation: Part John Carroll School of Mathematical Sciences Dublin City University Pattern Observe You may have notice the following pattern when we

More information

Derivatives of Trigonometric Functions

Derivatives of Trigonometric Functions Derivatives of Trigonometric Functions 9-8-28 In this section, I ll iscuss its an erivatives of trig functions. I ll look at an important it rule first, because I ll use it in computing the erivative of

More information

Solutions to Practice Problems Tuesday, October 28, 2008

Solutions to Practice Problems Tuesday, October 28, 2008 Solutions to Practice Problems Tuesay, October 28, 2008 1. The graph of the function f is shown below. Figure 1: The graph of f(x) What is x 1 + f(x)? What is x 1 f(x)? An oes x 1 f(x) exist? If so, what

More information

Integration Review. May 11, 2013

Integration Review. May 11, 2013 Integration Review May 11, 2013 Goals: Review the funamental theorem of calculus. Review u-substitution. Review integration by parts. Do lots of integration eamples. 1 Funamental Theorem of Calculus In

More information

Topic 2.3: The Geometry of Derivatives of Vector Functions

Topic 2.3: The Geometry of Derivatives of Vector Functions BSU Math 275 Notes Topic 2.3: The Geometry of Derivatives of Vector Functions Textbook Sections: 13.2 From the Toolbox (what you nee from previous classes): Be able to compute erivatives scalar-value functions

More information

Section 2.7 Derivatives of powers of functions

Section 2.7 Derivatives of powers of functions Section 2.7 Derivatives of powers of functions (3/19/08) Overview: In this section we iscuss the Chain Rule formula for the erivatives of composite functions that are forme by taking powers of other functions.

More information

Math 115 Section 018 Course Note

Math 115 Section 018 Course Note Course Note 1 General Functions Definition 1.1. A function is a rule that takes certain numbers as inputs an assigns to each a efinite output number. The set of all input numbers is calle the omain of

More information

( ) ( ) ( ) PAL Session Stewart 3.1 & 3.2 Spring 2010

( ) ( ) ( ) PAL Session Stewart 3.1 & 3.2 Spring 2010 PAL Session Stewart 3. & 3. Spring 00 3. Key Terms/Concepts: Derivative of a Constant Function Power Rule Constant Multiple Rule n Sum/Difference Rule ( ) Eercise #0 p. 8 Differentiate the function. f()

More information

Final Exam Study Guide and Practice Problems Solutions

Final Exam Study Guide and Practice Problems Solutions Final Exam Stuy Guie an Practice Problems Solutions Note: These problems are just some of the types of problems that might appear on the exam. However, to fully prepare for the exam, in aition to making

More information

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x =

cosh x sinh x So writing t = tan(x/2) we have 6.4 Integration using tan(x/2) 2t 1 + t 2 cos x = 1 t2 sin x = 6.4 Integration using tan/ We will revisit the ouble angle ientities: sin = sin/ cos/ = tan/ sec / = tan/ + tan / cos = cos / sin / tan = = tan / sec / tan/ tan /. = tan / + tan / So writing t = tan/ we

More information

Linear and quadratic approximation

Linear and quadratic approximation Linear an quaratic approximation November 11, 2013 Definition: Suppose f is a function that is ifferentiable on an interval I containing the point a. The linear approximation to f at a is the linear function

More information

Differentiation ( , 9.5)

Differentiation ( , 9.5) Chapter 2 Differentiation (8.1 8.3, 9.5) 2.1 Rate of Change (8.2.1 5) Recall that the equation of a straight line can be written as y = mx + c, where m is the slope or graient of the line, an c is the

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Thus far, the functions we have been concerne with have been efine explicitly. A function is efine explicitly if the output is given irectly in terms of the input. For instance,

More information

Trigonometric Functions

Trigonometric Functions 72 Chapter 4 Trigonometric Functions 4 Trigonometric Functions To efine the raian measurement system, we consier the unit circle in the y-plane: (cos,) A y (,0) B So far we have use only algebraic functions

More information

Differentiation Rules and Formulas

Differentiation Rules and Formulas Differentiation Rules an Formulas Professor D. Olles December 1, 01 1 Te Definition of te Derivative Consier a function y = f(x) tat is continuous on te interval a, b]. Ten, te slope of te secant line

More information

Flash Card Construction Instructions

Flash Card Construction Instructions Flash Car Construction Instructions *** THESE CARDS ARE FOR CALCULUS HONORS, AP CALCULUS AB AND AP CALCULUS BC. AP CALCULUS BC WILL HAVE ADDITIONAL CARDS FOR THE COURSE (IN A SEPARATE FILE). The left column

More information

2.3 Product and Quotient Rules and Higher-Order Derivatives

2.3 Product and Quotient Rules and Higher-Order Derivatives Chapter Dierentiation. Prouct an Quotient Rules an Higher-Orer Derivatives Fin the erivative o a unction using the Prouct Rule. Fin the erivative o a unction using the Quotient Rule. Fin the erivative

More information

Recapitulation of Mathematics

Recapitulation of Mathematics Unit I Recapitulation of Mathematics Basics of Differentiation Rolle s an Lagrange s Theorem Tangent an Normal Inefinite an Definite Integral Engineering Mathematics I Basics of Differentiation CHAPTER

More information

UNDERSTANDING INTEGRATION

UNDERSTANDING INTEGRATION UNDERSTANDING INTEGRATION Dear Reaer The concept of Integration, mathematically speaking, is the "Inverse" of the concept of result, the integration of, woul give us back the function f(). This, in a way,

More information

y. ( sincos ) (sin ) (cos ) + (cos ) (sin ) sin + cos cos. 5. 6.. y + ( )( ) ( + )( ) ( ) ( ) s [( t )( t + )] t t [ t ] t t s t + t t t ( t )( t) ( t + )( t) ( t ) t ( t ) y + + / / ( + + ) / / /....

More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information

Module FP2. Further Pure 2. Cambridge University Press Further Pure 2 and 3 Hugh Neill and Douglas Quadling Excerpt More information 5548993 - Further Pure an 3 Moule FP Further Pure 5548993 - Further Pure an 3 Differentiating inverse trigonometric functions Throughout the course you have graually been increasing the number of functions

More information

does NOT exist. WHAT IF THE NUMBER X APPROACHES CANNOT BE PLUGGED INTO F(X)??????

does NOT exist. WHAT IF THE NUMBER X APPROACHES CANNOT BE PLUGGED INTO F(X)?????? MATH 000 Miterm Review.3 Te it of a function f ( ) L Tis means tat in a given function, f(), as APPROACHES c, a constant, it will equal te value L. Tis is c only true if f( ) f( ) L. Tat means if te verticle

More information

Math 1A Midterm 2 Fall 2015 Riverside City College (Use this as a Review)

Math 1A Midterm 2 Fall 2015 Riverside City College (Use this as a Review) Name Date Miterm Score Overall Grae Math A Miterm 2 Fall 205 Riversie City College (Use this as a Review) Instructions: All work is to be shown, legible, simplifie an answers are to be boxe in the space

More information

Differentiation Rules Derivatives of Polynomials and Exponential Functions

Differentiation Rules Derivatives of Polynomials and Exponential Functions Derivatives of Polynomials an Exponential Functions Differentiation Rules Derivatives of Polynomials an Exponential Functions Let s start with the simplest of all functions, the constant function f(x)

More information

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim QF101: Quantitative Finance September 5, 2017 Week 3: Derivatives Facilitator: Christopher Ting AY 2017/2018 I recoil with ismay an horror at this lamentable plague of functions which o not have erivatives.

More information

1 Limits Finding limits graphically. 1.3 Finding limits analytically. Examples 1. f(x) = x3 1. f(x) = f(x) =

1 Limits Finding limits graphically. 1.3 Finding limits analytically. Examples 1. f(x) = x3 1. f(x) = f(x) = Theorem 13 (i) If p(x) is a polynomial, then p(x) = p(c) 1 Limits 11 12 Fining its graphically Examples 1 f(x) = x3 1, x 1 x 1 The behavior of f(x) as x approximates 1 x 1 f(x) = 3 x 2 f(x) = x+1 1 f(x)

More information

(a 1 m. a n m = < a 1/N n

(a 1 m. a n m = < a 1/N n Notes on a an log a Mat 9 Fall 2004 Here is an approac to te eponential an logaritmic functions wic avois any use of integral calculus We use witout proof te eistence of certain limits an assume tat certain

More information

Chapter 3 Notes, Applied Calculus, Tan

Chapter 3 Notes, Applied Calculus, Tan Contents 3.1 Basic Rules of Differentiation.............................. 2 3.2 The Prouct an Quotient Rules............................ 6 3.3 The Chain Rule...................................... 9 3.4

More information