Advanced Thermography Investigations

Size: px
Start display at page:

Download "Advanced Thermography Investigations"

Transcription

1 Advanced Thermography Investigations Examples of Thermography to Extend our Knowledge 1

2 Infrared Training Center Global Leader in IR Thermography Training. ISO-9001 Registered NETA accredited in IR Thermography Training Level I, II and III Condition Monitoring Infrared Training Certifications Building Investigation Courses R&D Courses Electrical Application Courses Mechanical Application Courses Roofing Application Courses 2

3 3 Your Presentor Jay Bowen Electrician 34 years Thermographer 17 years Level III Teaching Thermography 16 years Master Electrician - Wisconsin Certified Electrical Inspector - Wisconsin Designer of Electrical Systems - Wisconsin Associate Degree Electronics Technology BPI Certified Building Analysis Involved in construction since 1977 Green Bay, Wisconsin Packer Fan (season ticket holder), Coin Collector, Fishing, Metal Detectorist

4 Missing insulation Things we normally look for! 4

5 Covered real well by ASTM C1060 C a 5

6 Covered real well by RESNET 6

7 Air problems Things we normally look for! 7

8 Covered real well by ASTM E1186 8

9 Moisture Things we normally look for! 9

10 Not Covered real well by specific standards ASTM E (2008) Standard Test Method for Field Determination of Water Penetration of Installed Exterior Windows, Skylights, Doors, and Curtain Walls, by Uniform or Cyclic Static Air Pressure Difference ASTM C Standard Practice for Location of Wet Insulation in Roofing Systems Using Infrared Imaging ASTM E331-00(2009) Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform Static Air Pressure Difference 10

11 Lets step up and look at these another way 11

12 What else can we find with these typical images? Outdoor temp is 10F q U A T q =.25 x.5 x 43= Btu / ft 2 /hr Btu/hr x 24hr x 180 days= 23,220 BTU If we use the camera to get some basic temperatures and we surmise the wall cavity R value. We can determine a heat loss value for this deficiency. 23,220 Btu x 100,000 x x $1.11 = $.264 BTU / get to the CCF or 100 cubic feet. There is roughly 1000 BTU for 1 CF for natural gas. Then the therms per CCF which is what you pay for. 12

13 What else can we find with these typical images? Outdoor temp is 10F q A ( T T ) 1 2 R q = (.5 x 43) / 4 = Btu / ft 2 /hr Btu/hr x 24hr x 180 days= 23,220 BTU If we use the camera to get some basic temperatures and we surmise the wall cavity R value. We can determine a heat loss value for this deficiency. 23,220 Btu x 100,000 x x $1.11 = $.264 BTU / get to the CCF or 100 cubic feet. There is roughly 1000 BTU for 1 CF for natural gas. Then the therms per CCF which is what you pay for. 13

14 Fuels and energy & R-Values BTU Comparison of fuels: 1 cubic foot of natural gas 1,000 BTUs 1 gallon of #2 fuel oil 132,000 BTUs 1 gallon of HD5 propane 91,700 BTUs 1 ton of coal 16 million BTUs 1 kw of electricity 3,413 BTUs 1 ton of wood pellets 13.9 million BTUs 1 cord white birch 20.3 million BTUs Infrared Training Center. All rights reserved. 14

15 What else can we find with these typical images? Outdoor temp is 15F q 1.08 ACH V ( volume) ( T 1 T2 ) 60 q = (1.08 x.05 x 250 x 42)/ 60= 9.45 Btu/hr If we use the camera to get some basic temperatures and we surmise the air volume and ACH. We can determine a heat loss value for this deficiency Btu/hr x 24hr x 180 days= BTU/hr 40824BTU/hr / 100,000 x x $1.11 = $.464 BTU / get to the CCF or cubic feet. There is roughly 1000 BTU for 1 CF for natural gas. Then the therms per CCF which is what you pay for. 15

16 What else can we find with these typical images? Q h A ( T a Ts ) q = 14 x 2 x (70-52)= 504 Btu 504 Btu / hr x 24hr x 10 days = BTU BTU / 100,000 x x $1.11 = $1.375 We can determine a heat loss value for this deficiency. Though this scenario is very difficult as the parameters that are involved are not constant. Q 1060 cfm 60 x q = 60 x 1060 x.075 x.5 x.3= Btu / hr Btu / hr x 24hr x 10 days= BTU BTU / 100,000 x x $1.11 = $1.95 BTU / get to the CCF or cubic feet. There is roughly 1000 BTU for 1 CF for natural gas. Then the therms per CCF which is what you pay for. 17

17 Water evaporating takes quite a lot of heat away calories per gram or 970 Btu/pound -- when it evaporates. That's enough to cool down 1 pound of water by a degree. Latent Heat of Product Evaporation *) (kj/kg) (Btu/lb) Ammonia Aniline Benzene Bromine Carbon bisulphide 160 Carbon dioxide Glycerine Helium 21 9 Hydrogen Iodine Kerosene Methyl chloride 406 Nitrogen Oxygen Propane Propylene Propylene glycol Water

18 Here are 3 other applications not typically encountered by thermographers; Solar collectors and radiant systems efficiency troubleshooting Photo voltaic Collectors troubleshooting R value determination 20

19 Solar collectors Opportunities 21

20 Evacuated Tube 22

21 Evacuated Tube vapor condenses to a liquid (water) vapor rapidly rises to the top boiling point of only around 30 o C (86 o F) space inside evacuated 23

22 Flat panel Copyright by Gary Reysa Reprinted with permission 24

23 Flat Plate Fluid in tubes absorb energy Should never get to the boiling point of the fluids 25

24 Collector Efficiency qout Qout t m t c T 60F c( Toutlet Tinlet ) Qout qout is heat flow in BTU / hr t m 60F is mass flow in lb/hr t F is flow rate in gallons / minute ρ is fluid density in lb / gallon c is specific heat in BTU / (lb-ft) T outlet is outlet temperature in F T inlet is inlet temperature in F q out = 60*F*8.3*1.0*(T outlet - T inlet ) BTU/hr for water 26

25 Density of water vs. temperature Temperature - t - ( o F) Specific Volume - v - (ft 3 /lb) Weight Density - ρ - (lb/ft 3 ) (lb/gallon)

26 Specific heat of water Temperature ( o F) Density (lb m /ft 3 ) Specific Heat (Btu/lb m degr) Viscosity (10-7 lb f sec/ft 2 )

27 Specific Heat Capacity of Ethylene Glycol mixed Water Solutions c p - of ethylene glycol based water solutions at various temperatures Specific Heat - c p - (Btu/lb. o F) Temperature Ethylene Glycol Solution (% by volume) ( o F) ( o C) ) 1) 1) 1) ) ) 1) ) 2) 2) 2) 2) ) 2) 2) 2) 2) 2) below freezing point 2.above boiling point 29

28 Specific Gravity- SG - Temperature Ethylene Glycol Solution (% by volume) ( o F) ( o C) ) 1) 1) 1) ) ) 1) ) 2) 2) 2) 2) 2) ) 2) 2) 2) 2) 2) below freezing point 2.above boiling point 30

29 Specific Heat of Propylene Glycol Solutions Specific Heat - Propylene Glycol Solution(%) by volume c p - (Btu/lb. o F) Specific heat capacity of propylene glycol 1 Btu/(lb mo F) = 4,186.8 J/(kg K) = 1 kcal/(kg o C) 31

30 Propylene Glycol Solution (%) by volume Specific Gravity - SG - 1) Specific Gravity - SG

31 Water based - Then the heat output is Tinlet = 80F Toutlet = 100F Flow Rate = 1.2 gpm q out = 60*Flow*fluid density*heat capacity*(t outlet - T inlet ) BTU/hr q out = 60*1.2*8.3*1.0*(100-80) BTU/hr q out = BTU/hr Assuming clean water 34

32 Glycol based - Then the heat output is Tinlet = 80F Toutlet = 100F Flow Rate = 1.2 gpm q out = 60*Flow*fluid density*heat capacity*(t outlet - T inlet ) BTU/hr q out = 60*1.2*8.82*.86*(100-80) BTU/hr q out = 10,923 BTU/hr Assuming 40% Ethylene glycol and water.86 is the specific heat and the weight is the of water x the specific gravity this mix at

33 Radiant Heating 36

34 Radiant Heating Copyright by Gary Reysa Reprinted with permission 37

35 Glycol based - Then the heat output is Tinlet = 88F Toutlet = 68F Flow Rate =.5 gpm q out = 60*Flow*fluid density*heat capacity*(t outlet - T inlet ) BTU/hr q out = 60*.5*9.06*.768*(88-68) BTU/hr q out = 4175 BTU/hr Assuming 60% Ethylene glycol and water.768 is the specific heat and the weight is the of water x the specific gravity of this mix at

36 Flow Rate = 1 gpm Toutlet = 67F Tinlet = 87F q out = 60*F*fluid density*heat capacity*(t outlet - T inlet ) BTU/hr q out = 60*1*8.595*.895*(87-67) BTU/hr q out = 9231 BTU/hr Assuming 40% propylene glycol and water.895 is the specific heat and the weight is the of water x the specific gravity this mix at

37 Summary We can take very accurate measurements with the cameras, get some data from the system and then make good energy use determinations on the installation. Evaluate system efficiency or distribution of that energy in a uniform and most useful manner. Not many standards would apply to this inspection as the installers and manufacturers would fall under those. 40

38 Solar electric 41

39 Solar electric There is enormous potential to diagnose problems on solar installation sites. High-performance thermal cameras, capable of detecting very small temperature differences and of creating clear images or video of problem areas have hit a price point that promotes the usage of these tools to the solar panel industry 42

40 Solar electric Thermal imagery can identify soiled or shaded individual cells within the systems as hotter areas of resistance. In a photovoltaic installation, efficiency is a function, in part, of temperature; cooler panels run more efficiently. As individual cells fail, they can begin to heat up, rather than collect energy, and this heat increase is easy to see with a thermal imaging device. 43

41 Solar electric Array Panel 44

42 Solar electric 45

43 Solar electric 46

44 Cells Very obvious cell problem Not so obvious cell problems 47

45 Cells A cell problem? No connection box 48

46 Cells The patterning will be particular to the cell or panel construction method Thin film arranged in strips 49

47 Cells Cell issue from the back as the front is impractical to image. InfraMation 2011 Harley Denio Oregon Infrared LLC 50

48 Cells Having a wider perspective either from flyover or adjoining structures. This approach puts the entire collector in view as the array isn't approachable from the same roof InfraMation 2011 Harley Denio Oregon Infrared LLC 51

49 Solar Cells Much study is ongoing for research on designs, materials, efficiency, overall application capability. 12/19/ Infrared Training Center. All rights reserved. 52

50 R value of stud framed walls 53

51 An R Value Calculator Many Caveats to understand. Developed by Dr. Bob Madding of Infrared Training Center 54

52 An R Value Calculator The whole concept is based on these premises and the formula. The largest condition is that the surfaces and temperatures all must be non changing for a significant amount of time. 55

53 Example Published R24 SIP Many caveats and understanding. 56

54 Example drywall Fiberglass batt 4 stud 1 sheathing Vinyl siding Calculates to R21 57

55 How much does that cost me? No attic insulation ~R-3 Good attic insulation ~R-40 Assume 33X33 ft = 1000 sq ft Massachusetts weather Heating and AC Oil Heat 58

56 Energy savings estimate Enter Values Degree days found at: 59

57 Energy savings estimate $1400 View Results 60

58 Summary The calculator works well in controlled circumstances. I advise reading the paper presentations from the InfraMation conferences to understand the situations. A full understanding of cameras for proper parameters and the heat transfer of a wall must also be understood. 61

59 Thanks for attending! 62

60 Thank you for attending Jay Bowen Infrared Training Center Senior Moderator and Course Developer Office: 9 Townsend West Nashua, NH TRAIN-IR 63

61 ASTM E881-92(2009) Standard Practice for Exposure of Solar Collector Cover Materials to Natural Weathering Under Conditions Simulating Stagnation Mode Test Methods and Minimum Standards for Certifying Solar Thermal Collectors FSEC Standard CSA F378 Series, Solar collectors F378.1, Glazed and unglazed liquid heating solar collectors F378.2, Air heating solar collectors Photovoltaic and Solar-Thermal Technologies in Residential Building Codes - National Renewable Energy Laboratory ASTM C a Standard Practice for Thermographic Inspection of Insulation Installations in Envelope Cavities of Frame Buildings ASTM C (2007) Standard Practice for Determining Thermal Resistance of Building Envelope Components from the In-Situ Data SRCC Standard 100 Test Methods And Minimum Standards For Certifying Solar Collectors 64

62

Development and Validation of Flat-Plate Collector Testing Procedures

Development and Validation of Flat-Plate Collector Testing Procedures Development and Validation of Flat-Plate Collector Testing Procedures Report for February, 2007 Focus on Energy (FOE) supports solar thermal systems that displace conventional fuels by offering cash-back

More information

Energy Background Energy Forms and Transformations Integrated Science 4 Honors Name: Per:

Energy Background Energy Forms and Transformations Integrated Science 4 Honors Name: Per: Energy Background Energy Forms and Transformations Integrated Science 4 Honors Name: Per: Humans use energy for a variety of purposes, some that are necessary and some that are not. To address the questions

More information

Radiant Heating Panel Thermal Analysis. Prepared by Tim Fleury Harvard Thermal, Inc. October 7, 2003

Radiant Heating Panel Thermal Analysis. Prepared by Tim Fleury Harvard Thermal, Inc. October 7, 2003 Radiant Heating Panel Thermal Analysis Prepared by Tim Fleury Harvard Thermal, Inc. October 7, 2003 Analysis Objective Perform a thermal test on a small sample of the concrete to determine the Thermal

More information

Building Envelope Requirements Overview Page 3-4

Building Envelope Requirements Overview Page 3-4 Building Envelope Requirements Overview Page 3-4 The benefit of a high reflectance surface is obvious: while dark surfaces absorb the sun s energy (visible light, invisible infrared. and ultraviolet radiation)

More information

Tips on Using Infrared During a Home Inspection Jan 5, 2017 Ben Gromicko

Tips on Using Infrared During a Home Inspection Jan 5, 2017 Ben Gromicko Tips on Using Infrared During a Home Inspection Jan 5, 2017 Ben Gromicko ben@internachi.org Register for free live, online classes (and watch the recordings) at NACHI.TV 734 students Puerto Rico Australia

More information

R- 410A R-22 Size (tons) Shipping Weight (lbs) WLAU184AA 1-1/ WLAU182AA 1-1/ WLAU244AA. Model /2

R- 410A R-22 Size (tons) Shipping Weight (lbs) WLAU184AA 1-1/ WLAU182AA 1-1/ WLAU244AA. Model /2 EVAPORATOR COILS A COIL - UNCASED R- 410A or R- 22 SYSTEMS 1 1/2 5 Tons WLAU Use of the AHRI Certified TM Mark indicates a manufacturer s participation in the program. For verification of certification

More information

DESIGN AND COST ANALYSIS OF HEAT TRANSFER EQUIPMENTS

DESIGN AND COST ANALYSIS OF HEAT TRANSFER EQUIPMENTS DESIGN AND COST ANALYSIS OF HEAT TRANSFER EQUIPMENTS Md. Khairul Islam Lecturer Department of Applied Chemistry and Chemical Engineering. University of Rajshahi. What is design? Design includes all the

More information

NEBB Fundamental Formulas

NEBB Fundamental Formulas Approved NEBB - May 1, 17 Page 1 of 8 Version 1.3 A = Area (ft²) IP, (m²) SI M = Mass (lb) IP, (kg) SI ACH = Air Changes per Hour ma = Mixed Air Ak = Effective Area m = meter (metre) AV = Average m³/s

More information

Chapter 3. Basic Principles. Contents

Chapter 3. Basic Principles. Contents Chapter 3. Basic Principles Contents 3.1 Introduction 3.2 Heat 3.3 Sensible Heat 3.4 Latent Heat 3.5 Evaporative Cooling 3.6 Convection 3.7 Transport 3.8 Energy Transfer Mediums 3.9 Radiation 3.10 Greenhouse

More information

HEAT CONTENT DECREASES U D R HEAT CONTENT INCREASESO. Btu/lb

HEAT CONTENT DECREASES U D R HEAT CONTENT INCREASESO. Btu/lb Pressure (psia) LINES OF CONSTANT ENTHALPY PRESSURE P R E S S U R E R I S E S P R E S S HEAT CONTENT DECREASES U R E D R HEAT CONTENT INCREASESO P S Btu/lb Heat Content Pressure (psia) SATURATION CURVE

More information

Today s A/C systems include:

Today s A/C systems include: * www.sgvenergywise.org Replac ing your A/C system REQUIRES a permit from your c ity - it s important. WHY? Because A/C (air conditioning) is a SYSTEM, not just one piece of equipment. The thermostat,

More information

Convert cubic inches to cubic feet: Cubic inches 1728 (12 x 12 x12 = 1728)

Convert cubic inches to cubic feet: Cubic inches 1728 (12 x 12 x12 = 1728) Interior Volume of the Kiln: Sprung or Roman Arch: 12.5 CF = W x L x ( H Side wall + 2/3 of the arch rise) 37.5 Test kiln=? 31.5 Convert cubic inches to cubic feet: Cubic inches 1728 (12 x 12 x12 = 1728)

More information

5. Thermal Design. Objective: Control heat flow to: Maintain comfortable indoor conditions

5. Thermal Design. Objective: Control heat flow to: Maintain comfortable indoor conditions 5. Thermal Design Objective: Control heat flow to: 2. Maintain comfortable indoor conditions 3. Reduce heating/cooling loads, which reduces operating costs 4. Control vapor movement/condensation 5. Design

More information

Chimney Sizing. Project Name: Location: Type Appliance: Hot Water Heater Incinerator. LP Gas #2 Oil #6 Oil Wood/Coal Waste (Type ) Appliance Input:

Chimney Sizing. Project Name: Location: Type Appliance: Hot Water Heater Incinerator. LP Gas #2 Oil #6 Oil Wood/Coal Waste (Type ) Appliance Input: Chimney Sizing Project Name: Location: Type Appliance: Type Fuel: Appliance Input: Boiler Hot Water Heater Incinerator Natural Gas LP Gas #2 Oil #6 Oil Wood/Coal Waste (Type ) BTU Hp Lbs/hr Height Above

More information

Density of Air & Water Part 2

Density of Air & Water Part 2 Density of Air & Water Part 2 Here is part 2 from Michael Housh from Housh Home Energy in Ohio. Thanks Michael! This is part two in a series on a deeper look into the Sensible Heat Rate Equations. The

More information

Chapter 11. Energy in Thermal Processes

Chapter 11. Energy in Thermal Processes Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

More information

Case 5 Manual Selection of Water Cooled Condenser and Water Cooler

Case 5 Manual Selection of Water Cooled Condenser and Water Cooler Case 5 Manual Selection of Water Cooled Condenser and Water Cooler Copy Right By: Thomas T.S. Wan ) Nov. 19, 2010 All Rights Reserved Case Background: This case is to demonstrate the use of manufacturer

More information

Performance Assessment of PV/T Air Collector by Using CFD

Performance Assessment of PV/T Air Collector by Using CFD Performance Assessment of /T Air Collector by Using CFD Wang, Z. Department of Built Environment, University of Nottingham (email: laxzw4@nottingham.ac.uk) Abstract Photovoltaic-thermal (/T) collector,

More information

Use of Phase-Change Materials to Enhance the Thermal Performance of Building Insulations

Use of Phase-Change Materials to Enhance the Thermal Performance of Building Insulations Introduction Use of Phase-Change Materials to Enhance the Thermal Performance of Building Insulations R. J. Alderman, Alderman Research Ltd., Wilmington, DE David W. Yarbrough, R&D Services, Inc., Cookeville,

More information

P5 Heat and Particles Revision Kinetic Model of Matter: States of matter

P5 Heat and Particles Revision Kinetic Model of Matter: States of matter P5 Heat and Particles Revision Kinetic Model of Matter: States of matter State Size Shape Solid occupies a fixed volume has a fixed shape Liquid occupies a fixed volume takes the shape of its container

More information

HEAT FLOW BASICS. Heat

HEAT FLOW BASICS. Heat HEAT FLOW BASICS all terrestrial objects radiate, at infrared wavelengths that are not visible to the eye but can be detected by an IR sensor Ball State Architecture ENVIRONMENTAL SYSTEMS 1 Grondzik 1

More information

PowerPoint Presentation by: Associated Technical Authors. Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois

PowerPoint Presentation by: Associated Technical Authors. Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois Althouse Turnquist Bracciano PowerPoint Presentation by: Associated Technical Authors Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois Chapter 1 History and Fundamentals of Refrigeration

More information

Heat and Mass Transfer Prof. S. P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No.

Heat and Mass Transfer Prof. S. P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. Heat and Mass Transfer Prof. S. P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. 01 Namaste. My name is S P Sukhatme and along with my colleague professor

More information

HOT /05/2014. Page 1 of 14 GENERAL HOUSE CHARACTERISTICS. Natural Resources CANADA Version sample house report

HOT /05/2014. Page 1 of 14 GENERAL HOUSE CHARACTERISTICS. Natural Resources CANADA Version sample house report Page 1 of 14 File: Application Type: sample house report EnerGuide for New Houses HOT2000 Natural Resources CANADA Version 10.51 Weather Library: C:\H2KEGH~1\Dat\Wth100.dir Weather Data for VANCOUVER,

More information

Product Data. CAPVU Evaporator Coil A Coil --- Uncased Upflow, Downflow CAPVU

Product Data. CAPVU Evaporator Coil A Coil --- Uncased Upflow, Downflow CAPVU CAPVU Evaporator Coil A Coil --- Uncased Upflow, Downflow Product Data CAPVU A06002 The CAPVU evaporator coils incorporate proven standards for reliable system operation and performance throughout the

More information

INDUSTRIAL RESOURCES, INC. Power Plant Fundamentals Training

INDUSTRIAL RESOURCES, INC. Power Plant Fundamentals Training INDUSTRIAL RESOURCES, INC Power Plant Fundamentals Training Module 2 Power Plant Theory Power Plant Fundamentals Training This program is designed to provide you with a fundamental understanding of power

More information

Thermal Fluid System Design. Team Design #1

Thermal Fluid System Design. Team Design #1 Thermal Fluid System Design Team Design #1 Table of Contents Nomenclature Listing.3 Executive Summary.6 Introduction.7 Analysis.8 Results/Discussion..18 Conclusion..29 References..29 Appendix A: Detailed

More information

Section 1: Theory of Heat Unit 2: Matter and Energy

Section 1: Theory of Heat Unit 2: Matter and Energy Section 1: Theory of Heat Unit 2: Matter and Energy Unit Objectives After studying this chapter, you should be able to: define matter. list the three states in which matter is commonly found. define density.

More information

Properties of Water. Polar molecule Cohesion and adhesion High specific heat Density greatest at 4 o C Universal solvent of life

Properties of Water. Polar molecule Cohesion and adhesion High specific heat Density greatest at 4 o C Universal solvent of life Properties of Water Polar molecule Cohesion and adhesion High specific heat Density greatest at 4 o C Universal solvent of life Polarity of Water In a water molecule two hydrogen atoms form single polar

More information

HFM 100 Series. Thermal Conductivity Meter for measurement of insulation and construction materials.

HFM 100 Series. Thermal Conductivity Meter for measurement of insulation and construction materials. HFM 100 Series Conforms to International Standards ASTM C518, ISO 8301, and EN 12667 Thermal Conductivity Meter for measurement of insulation and construction materials. Hot Disk TPS -160 to 1000 C HFM

More information

KITCHEN. How can improvements or remodeling save me money? Increase Attic Insulation Add a Ceiling Fan Add Vacancy Sensors

KITCHEN. How can improvements or remodeling save me money? Increase Attic Insulation Add a Ceiling Fan Add Vacancy Sensors www.sgvenergywise.org How can improvements or remodeling save me money? S avings in the K itchen It is the most active room, the heart of the home. It presents the most opportunities to make an impact

More information

Thermodynamics. Thermodynamics is the study of the collective properties of a system containing many bodies (typically of order 10 23!

Thermodynamics. Thermodynamics is the study of the collective properties of a system containing many bodies (typically of order 10 23! Thermodynamics Thermodynamics is the study of the collective properties of a system containing many bodies (typically of order 10 23!) Chapter18 Thermodynamics Thermodynamics is the study of the thermal

More information

WC Engineering Corp Touchton Rd., Bldg. 100, Suite 150 Jacksonville, FL Attn: Michael Jones May 25, 2017

WC Engineering Corp Touchton Rd., Bldg. 100, Suite 150 Jacksonville, FL Attn: Michael Jones May 25, 2017 WC Engineering Corp. 4600 Touchton Rd., Bldg. 100, Suite 150 Jacksonville, FL 32246 Attn: Michael Jones May 25, 2017 Subject: HVAC Calculations per elegantcafedwg.pdf Quote #: QU-51217 Building area: 2,420

More information

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics PHYS102 Previous Exam Problems CHAPTER 18 Temperature, Heat & The First Law of Thermodynamics Equilibrium & temperature scales Thermal expansion Exchange of heat First law of thermodynamics Heat conduction

More information

announcements 4/17/08

announcements 4/17/08 Heat Transfer and the Building Envelope ARCH 331/431 Spring 2008 Lecture 6 announcements 4/17/08 A3: Envelope Heat Transfer Assignment: Available later today (course website) References: Available by this

More information

ANSI/AHRI Standard (Formerly ARI Standard ) 2006 Standard for Performance Rating of Desuperheater/Water Heaters

ANSI/AHRI Standard (Formerly ARI Standard ) 2006 Standard for Performance Rating of Desuperheater/Water Heaters ANSI/AHRI Standard 470-2006 (Formerly ARI Standard 470-2006) 2006 Standard for Performance Rating of Desuperheater/Water Heaters IMPORTANT SAFETY DISCLAIMER AHRI does not set safety standards and does

More information

TÜV Rheinland PTL, LLC 2210 South Roosevelt Street Tempe, AZ Test Report

TÜV Rheinland PTL, LLC 2210 South Roosevelt Street Tempe, AZ Test Report TÜV Rheinland PTL, LLC 2210 South Roosevelt Street Tempe, AZ 85282 Test Report Solar Thermal Collector Testing according to Solar Keymark and EN 12975-1: 2006 and EN 12975-2: 2006 TÜV Report No. RK1-MDS101217

More information

Making Decisions with Insulation

Making Decisions with Insulation More on Heat Transfer from Cheresources.com: FREE Resources Making Decisions with Insulation Article: Basics of Vaporization Questions and Answers: Heat Transfer Experienced-Based Rules for Heat Exchangers

More information

Development and Validation of Flat-Plate Collector Testing Procedures

Development and Validation of Flat-Plate Collector Testing Procedures Development and Validation of Flat-Plate Collector Testing Procedures Report for March, 2007 Focus on Energy (FOE) supports solar thermal systems that displace conventional fuels by offering cash-back

More information

NFRC SOLAR HEAT GAIN COEFFICIENT TEST REPORT. Rendered to: CLEAR FOCUS IMAGING

NFRC SOLAR HEAT GAIN COEFFICIENT TEST REPORT. Rendered to: CLEAR FOCUS IMAGING NFRC 201-2004 SOLAR HEAT GAIN COEFFICIENT TEST REPORT Rendered to: CLEAR FOCUS IMAGING SERIES/MODEL: SunSecure BASE WINDOW: 3/16" Clear Single Glazed PRODUCT TYPE: Window Film on the Interior of Clear

More information

Product Data. CNPHP, CNRHP Evaporator Coil N Coil --- Cased Horizontal CNPHP / CNRHP

Product Data. CNPHP, CNRHP Evaporator Coil N Coil --- Cased Horizontal CNPHP / CNRHP CNPHP, CNRHP Evaporator Coil N Coil --- Cased Horizontal Product Data 06005 This horizontal design N -coil is an evaporator coil designed to provide the highest standards of reliability and durability.

More information

Homework #4 Solution

Homework #4 Solution Homework #4 Solution Problem 6.4 Determine the design winter heat loss tough each of the following components of a building located in Minneapolis, Minnesota: (a) Wall having 648 ft 2 of area and construction

More information

EDULABZ INTERNATIONAL. Heat ASSIGNMENT

EDULABZ INTERNATIONAL. Heat ASSIGNMENT Heat ASSIGNMENT 1. Fill in the blank spaces by choosing the correct words from the list given below : List : substance, thermal capacity, mass, latent, heat, cold, constant, water, J C 1, fusion, hot.

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 [4062]-186 S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 N.B. : (i) Answers

More information

MDSRC Proceedings, December, 2017 Wah/Pakistan. Cooling load analysis by CLTD and RLF. Sher ali nawaz 1 Muzammil shahbaz 2

MDSRC Proceedings, December, 2017 Wah/Pakistan. Cooling load analysis by CLTD and RLF. Sher ali nawaz 1 Muzammil shahbaz 2 Cooling load analysis by CLTD and RLF Sher ali nawaz 1 Muzammil shahbaz 2 Waqas Javid, M.Umer Sohail Department of mechanical engineering Wah engineering college University of wah sheralinawaz15@gmail.com,

More information

Matter & Energy. Objectives: properties and structures of the different states of matter.

Matter & Energy. Objectives: properties and structures of the different states of matter. Matter & Energy Objectives: 1. Use the kinetic theory to describe the properties and structures of the different states of matter. 2. Describe energy transfers involved in changes of state. 3. Describe

More information

Shell and Tube Heat Exchange Fundamentals, Design and Case Studies

Shell and Tube Heat Exchange Fundamentals, Design and Case Studies Shell and Tube Heat Exchange Fundamentals, Design and Case Studies by Kirk R. Novak, Krishnan Ramanathan, Tom Steen, and Nick Ziembo, Enerquip, LLC ABSTRACT: As companies examine their total cost of operations,

More information

THERMAL PERFORMANCE OPTIMIZATION OF A FLAT PLATE SOLAR WATER HEATER COLLECTOR USING MATLAB

THERMAL PERFORMANCE OPTIMIZATION OF A FLAT PLATE SOLAR WATER HEATER COLLECTOR USING MATLAB THERMAL PERFORMANCE OPTIMIZATION OF A FLAT PLATE SOLAR WATER HEATER COLLECTOR USING MATLAB 1 H.VETTRIVEL, 2 P.MATHIAZHAGAN 1,2 Assistant professor, Mechanical department, Manalula Vinayakar institute of

More information

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:- UNIVERSITY COLLEGE LONDON University of London EXAMINATION FOR INTERNAL STUDENTS For The Following Qualifications:- B.Sc. M.Sci. Physics 1B28: Thermal Physics COURSE CODE : PHYSIB28 UNIT VALUE : 0.50 DATE

More information

1. The specific heat of silver is 0.05 cal/(g C) and the specific heat of water is 1 cal/(g C)

1. The specific heat of silver is 0.05 cal/(g C) and the specific heat of water is 1 cal/(g C) IDS 10 Winter 009 Additional practice questions for Exam 1 1. The specific heat of silver is 0.05 cal/(g C) and the specific heat of water is 1 cal/(g C) If a certain amount of heat is added to a sample

More information

NATIONAL 5 PHYSICS THERMODYNAMICS

NATIONAL 5 PHYSICS THERMODYNAMICS NATIONAL 5 PHYSICS THERMODYNAMICS HEAT AND TEMPERATURE Heat and temperature are not the same thing! Heat Heat is a type of energy. Like all types of energy it is measured in joules (J). The heat energy

More information

Standard Test Method for Measuring the Steady-State Thermal Transmittance of Fenestration Systems Using Hot Box Methods 1

Standard Test Method for Measuring the Steady-State Thermal Transmittance of Fenestration Systems Using Hot Box Methods 1 Designation: 97 AMERICAN SOCIETY FOR TESTING AND MATERIALS 100 Barr Harbor Dr., West Conshohocken, PA 19428 Reprinted from the Annual Book of ASTM Standards. Copyright ASTM Standard Test Method for Measuring

More information

A. Solar Walls. B. Prototype I

A. Solar Walls. B. Prototype I A Introduction There are many different technologies that are emerging to help develop the future power infrastructure. The importance of these technologies is increasing the sustainability of how our

More information

Heating, Ventilating, Air Conditioning and Refrigerating, Sixth Edition, First Printing ERRATA

Heating, Ventilating, Air Conditioning and Refrigerating, Sixth Edition, First Printing ERRATA 1 Heating, Ventilating, Air Conditioning and Refrigerating, Sixth Edition, First Printing ERRATA (Items in blue added August 14, 2007; previous revision was December 3, 2004) Inside Front Cover: Conversion

More information

TankExampleNov2016. Table of contents. Layout

TankExampleNov2016. Table of contents. Layout Table of contents Task... 2 Calculation of heat loss of storage tanks... 3 Properties ambient air Properties of air... 7 Heat transfer outside, roof Heat transfer in flow past a plane wall... 8 Properties

More information

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale.

6. (6) Show all the steps of how to convert 50.0 F into its equivalent on the Kelvin scale. General Physics I Quiz 8 - Ch. 13 - Temperature & Kinetic Theory July 30, 2009 Name: Make your work clear to the grader. Show formulas used. Give correct units and significant figures. Partial credit is

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture 34 Heat Heat transfer Conduction Convection Radiation http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Thermal physics Heat. Specific

More information

SEM-2017(03HI MECHANICAL ENGINEERING. Paper II. Please read each of the following instructions carefully before attempting questions.

SEM-2017(03HI MECHANICAL ENGINEERING. Paper II. Please read each of the following instructions carefully before attempting questions. We RoU No. 700095 Candidate should write his/her Roll No. here. Total No. of Questions : 7 No. of Printed Pages : 7 SEM-2017(03HI MECHANICAL ENGINEERING Paper II Time ; 3 Hours ] [ Total Marks : 0 Instructions

More information

UNIT FOUR SOLAR COLLECTORS

UNIT FOUR SOLAR COLLECTORS ME 476 Solar Energy UNIT FOUR SOLAR COLLECTORS Flat Plate Collectors Outline 2 What are flat plate collectors? Types of flat plate collectors Applications of flat plate collectors Materials of construction

More information

Solar Matters III Teacher Page

Solar Matters III Teacher Page Solar Matters III Teacher Page Hot or Not? Student Objective The student: will be able to explain how the sun s rays through conduction and convection heat things on the Earth will be able to explain the

More information

Temperature and Its Measurement

Temperature and Its Measurement Temperature and Its Measurement When the physical properties are no longer changing, the objects are said to be in thermal equilibrium. Two or more objects in thermal equilibrium have the same temperature.

More information

Product Data. CNPVP, CNRVP, CNPVT, CNRVT, CNPVU, CNRVU Evaporator Coil N Coil Cased and Uncased Upflow, Downflow

Product Data. CNPVP, CNRVP, CNPVT, CNRVT, CNPVU, CNRVU Evaporator Coil N Coil Cased and Uncased Upflow, Downflow CNPVP, CNRVP, CNPVT, CNRVT, CNPVU, CNRVU Evaporator Coil N Coil Cased and Uncased Upflow, Downflow Product Data CN(P,R)VP CN(P,R)VT (Transition) A06008 A06007 This vertical design N -coil is a furnace

More information

Coolant. Circuits Chip

Coolant. Circuits Chip 1) A square isothermal chip is of width w=5 mm on a side and is mounted in a subtrate such that its side and back surfaces are well insulated, while the front surface is exposed to the flow of a coolant

More information

Shell and Tube Heat Exchangers. Basic Calculations

Shell and Tube Heat Exchangers. Basic Calculations Shell and Tube Heat Exchangers Basic Calculations Instructor: Jurandir Primo, PE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.pdhonline.org

More information

AR/IA 241 LN 231 Lecture 4: Fundamental of Energy

AR/IA 241 LN 231 Lecture 4: Fundamental of Energy Faculty of Architecture and Planning Thammasat University A/IA 24 LN 23 Lecture 4: Fundamental of Energy Author: Asst. Prof. Chalermwat Tantasavasdi. Heat For a specific substance, the heat given to the

More information

2.0 KEY EQUATIONS. Evaporator Net Refrigeration Effect. Compressor Work. Net Condenser Effect

2.0 KEY EQUATIONS. Evaporator Net Refrigeration Effect. Compressor Work. Net Condenser Effect 2.0 KEY EQUATIONS Evaporator Net Refrigeration Effect Q net refrigeration effect [] = (H 1 H 4 ) lb (Refrig Flow Rate) (60) min lb min hr H 1 = leaving evaporator enthalpy lb ; H 4 = entering evaporator

More information

The Effects of Infrared-Blocking Pigments and Deck Venting on Stone-Coated Metal Residential Roofs

The Effects of Infrared-Blocking Pigments and Deck Venting on Stone-Coated Metal Residential Roofs ORN L/TM-2006/9 The Effects of Infrared-Blocking Pigments and Deck Venting on Stone-Coated Metal Residential Roofs William A, Miller, Ph.D. Building Envelopes Program Oak Ridge National Laboratory January

More information

Mohammed Rashnur Rahman, N.M. Aftabul Alam Bhuiya, and Md. Rasel Miah

Mohammed Rashnur Rahman, N.M. Aftabul Alam Bhuiya, and Md. Rasel Miah International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 8 No. 3 Sep. 2014, pp. 1148-1157 2014 Innovative Space of Scientific Research Journals http://www.ijias.issr-journals.org/ Theoretical

More information

RETA Book 1 Chapter 1 Fundamental Items

RETA Book 1 Chapter 1 Fundamental Items RETA Book 1 Chapter 1 Fundamental Items Peter Thomas, P.E. Resource Compliance RETA Certification Levels CARO Certified Assistant Refrigeration Operator CARO is an entry-level credential that is designed

More information

NFRC THERMAL TEST SUMMARY REPORT January 27, 1999 Test Specimen

NFRC THERMAL TEST SUMMARY REPORT January 27, 1999 Test Specimen * This is not the original copy of the test report if you would like an original copy, please contact our East Brunswick office or the NCTL to request a copy. ALL SEASONS DOOR & WINDOW, INC. REPORT NO:

More information

METHOD OF IN-SITU MEASUREMENT OF THERMAL INSULATION PERFORMANCE OF BUILDING ELEMENTS USING INFRARED CAMERA

METHOD OF IN-SITU MEASUREMENT OF THERMAL INSULATION PERFORMANCE OF BUILDING ELEMENTS USING INFRARED CAMERA METHOD OF IN-SITU MEASUREMENT OF THERMAL INSULATION PERFORMANCE OF BUILDING ELEMENTS USING INFRARED CAMERA Shinsuke Kato 1, Katsuichi Kuroki 2, and Shinji Hagihara 2 1 Institute of Industrial Science,

More information

Thermal Process Control Lap 4 Thermal Energy. Notes:

Thermal Process Control Lap 4 Thermal Energy. Notes: Thermal Process Control Lap 4 Thermal Energy Notes: 1) Temperature Measurement a) Define temperature i) A measure of the amount of heat contained in a solid, liquid, or gas ii) Result of molecular motion

More information

Properties of Water. Polar molecule Cohesion and adhesion High specific heat Density greatest at 4 o C Universal solvent of life

Properties of Water. Polar molecule Cohesion and adhesion High specific heat Density greatest at 4 o C Universal solvent of life Water Properties of Water Polar molecule Cohesion and adhesion High specific heat Density greatest at 4 o C Universal solvent of life Polarity of Water In a water molecule two hydrogen atoms form single

More information

UNIT CONVERSIONS User Guide & Disclaimer

UNIT CONVERSIONS User Guide & Disclaimer v.5.4 www.hvacnotebook.com UNIT CONVERSIONS User Guide & Disclaimer (FREE SAMPLE VERSION) Conversion Spreadsheets Distance Weight 34 Simple User Interface Click On Any Yellow Cells And Enter (Replace With)

More information

CAE 463/524 Building Enclosure Design Fall 2012

CAE 463/524 Building Enclosure Design Fall 2012 CAE 463/524 Building Enclosure Design Fall 2012 Lecture 8: Fenestration (+ exam review) Dr. Brent Stephens, Ph.D. Department of Civil, Architectural and Environmental Engineering Illinois Institute of

More information

Watch:

Watch: Physics 106 Everyday Physics Fall 2013 Energy and Power Prelab Media links are provided in each section. If the link doesn t work, copy and paste URL into your browser window. Be patient with the ads you

More information

Rate in Thermal Systems

Rate in Thermal Systems Rate in Thermal Systems Overview Rate in Thermal Systems 1 Fundamental Concepts What is the prime mover in the thermal system? temperature difference ( T) What does rate measure in the thermal system?

More information

II/IV B.Tech (Regular) DEGREE EXAMINATION. (1X12 = 12 Marks) Answer ONE question from each unit.

II/IV B.Tech (Regular) DEGREE EXAMINATION. (1X12 = 12 Marks) Answer ONE question from each unit. Page 1 of 8 Hall Ticket Number: 14CH 404 II/IV B.Tech (Regular) DEGREE EXAMINATION June, 2016 Chemical Engineering Fourth Semester Engineering Thermodynamics Time: Three Hours Maximum : 60 Marks Answer

More information

ENVIRONMENTALLY SOUND R 410A REFRIGERANT

ENVIRONMENTALLY SOUND R 410A REFRIGERANT ENVIRONMENTALLY SOUND REFRIGERANT N4H3 Performance Series Product Specifications EFFICIENT 13 SEER HEAT PUMP ENVIRONMENTALLY SOUND R 410A REFRIGERANT 1½ THRU 5 TONS SPLIT SYSTEM 208 / 230 Volt, 1 phase,

More information

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k)

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k) Tutorial 1 1. Explain in detail the mechanism of forced convection. Show by dimensional analysis (Rayleigh method) that data for forced convection may be correlated by an equation of the form Nu = φ (Re,

More information

END4X, ENW4X, ENA4X. Product Specifications VERTICAL EVAPORATOR COILS ALL N COIL MODELS CASED N COILS UNCASED N COILS ENA4X WARRANTY*

END4X, ENW4X, ENA4X. Product Specifications VERTICAL EVAPORATOR COILS ALL N COIL MODELS CASED N COILS UNCASED N COILS ENA4X WARRANTY* ENVIRONMENTALLY SOUND REFRIGERANT VERTICAL EVAPORATOR COILS ALL N COIL MODELS 1½ thru 5 Tons Available for environmentally sound R 410A systems Copper tube / aluminum fin N coil with latest high tech fin

More information

PREVIEW COPY. Generating Steam in the Power Plant. Table of Contents. Transforming Energy Into Work...3. Combustion and How It Works...

PREVIEW COPY. Generating Steam in the Power Plant. Table of Contents. Transforming Energy Into Work...3. Combustion and How It Works... Generating Steam in the Power Plant Table of Contents Lesson One Lesson Two Lesson Three Lesson Four Lesson Five Transforming Energy Into Work...3 Boiler Operation...19 Boiler Maintenance...37 Combustion

More information

Page 1 SPH3U. Heat. What is Heat? Thermal Physics. Waterloo Collegiate Institute. Some Definitions. Still More Heat

Page 1 SPH3U. Heat. What is Heat? Thermal Physics. Waterloo Collegiate Institute. Some Definitions. Still More Heat SPH3U Thermal Physics electrons and holes in semiconductors An Introductory ourse in Thermodynamics converting energy into work magnetism thin films and surface chemistry thermal radiation (global warming)

More information

Broughton High School. Thermal Energy. Physical Science Workbook Chapter 6 Thermal Energy 2016 Mr. Davis

Broughton High School. Thermal Energy. Physical Science Workbook Chapter 6 Thermal Energy 2016 Mr. Davis 1 Thermal Energy Vocabulary for Chapter 6 Thermal Energy Broughton High School Physical Science Vocabulary No.# Term Page # Definition 2 1. Degrees 2. Higher Specific Heat 3. Heat of Vaporization 4. Radiation

More information

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID SMJ 4463: HEAT TRANSFER INSTRUCTOR: PM DR MAZLAN ABDUL WAHID http://www.fkm.utm.my/~mazlan TEXT: Introduction to Heat Transfer by Incropera, DeWitt, Bergman, Lavine 5 th Edition, John Wiley and Sons DR

More information

the distance of conduction (the thickness), the greater the heat flow.

the distance of conduction (the thickness), the greater the heat flow. R-Values In heat conduction, the rate of heat flow depends on the temperature difference between sides, the thickness, and the area in contact. The greater the temperature difference, the greater the heat

More information

THE ENERGY 68,SAVING TDVI. exible Combine Modular 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 HP 60, 62, 64, 66 HP

THE ENERGY 68,SAVING TDVI. exible Combine Modular 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 HP 60, 62, 64, 66 HP I N V E RT E R ion Range exible Combine Modular TDV I TDV I TDV I INVERTER INVERTER INVERTER 14, 16, 18, 20, 22 HP TDV I 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 HP INVERTER INVERTER INVERTER TDV I INVERTER

More information

Chapter 11. Energy in Thermal Processes

Chapter 11. Energy in Thermal Processes Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

More information

Chapter 11: Heat Exchangers. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 11: Heat Exchangers. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 11: Heat Exchangers Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Recognize numerous types of

More information

Thermodynamics Test Wednesday 12/20

Thermodynamics Test Wednesday 12/20 Thermodynamics Test Wednesday 12/20 HEAT AND TEMPERATURE 1 Temperature Temperature: A measure of how hot (or cold) something is Specifically, a measure of the average kinetic energy of the particles in

More information

Energy and the Environment

Energy and the Environment Energy and the Environment Energy physics definition the capacity to do work and conjunction used to connect grammatically coordinate words, phrases, or clauses the Environment the aggregate of surrounding

More information

SHORTCUT CALCULATIONS AND GRAPHICAL COMPRESSOR SELECTION PROCEDURES

SHORTCUT CALCULATIONS AND GRAPHICAL COMPRESSOR SELECTION PROCEDURES APPENDIX B SHORTCUT CALCULATIONS AND GRAPHICAL COMPRESSOR SELECTION PROCEDURES B.1 SELECTION GUIDE FOR ELLIOTT MULTISTAGE CENTRIFUGAL COMPRESSORS* * Reprinted from a 1994 Elliott Company sales bulletin.

More information

Gay E. Canough Solar Math. PV Installer s Class: Units and Math

Gay E. Canough Solar Math. PV Installer s Class: Units and Math Gay E. Canough 1.1--Solar Math October 2012 PV Installer s Class: Units and Math 1 Units Electricity Fluid KW, a unit of power Horsepower, a unit of power KWh, a unit of energy BTU, a unit of energy Voltage

More information

ESRL Module 8. Heat Transfer - Heat Recovery Steam Generator Numerical Analysis

ESRL Module 8. Heat Transfer - Heat Recovery Steam Generator Numerical Analysis ESRL Module 8. Heat Transfer - Heat Recovery Steam Generator Numerical Analysis Prepared by F. Carl Knopf, Chemical Engineering Department, Louisiana State University Documentation Module Use Expected

More information

AT350 EXAM #1 September 23, 2003

AT350 EXAM #1 September 23, 2003 AT350 EXAM #1 September 23, 2003 Name and ID: Enter your name and student ID number on the answer sheet and on this exam. Record your answers to the questions by using a No. 2 pencil to completely fill

More information

Matter: Properties & Change

Matter: Properties & Change Matter: Properties & Change Essential Vocabulary 6.P.2.1 Recognize that all matter is made up of atoms and atoms of the same element are all alike, but are different from the atoms of other elements. 6.P.2.2

More information

Conceptual Chemistry

Conceptual Chemistry Conceptual Chemistry Objective 1 Describe, at the molecular level, the difference between a gas, liquid, and solid phase. Solids Definite shape Definite volume Particles are vibrating and packed close

More information

ENH4X. Product Specifications HORIZONTAL EVAPORATOR COILS ALL CASED N COIL MODELS WARRANTY*

ENH4X. Product Specifications HORIZONTAL EVAPORATOR COILS ALL CASED N COIL MODELS WARRANTY* ENVIRONMENTALLY SOUND REFRIGERANT ENH4X Product Specifications HORIZONTAL EVAPORATOR COILS ALL CASED N COIL MODELS 2 thru 5 Tons Available for environmentally sound R 410A systems Copper tube / aluminum

More information

Chapter 11. Important to distinguish between them. They are not interchangeable. They mean very different things when used in physics Internal Energy

Chapter 11. Important to distinguish between them. They are not interchangeable. They mean very different things when used in physics Internal Energy Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

More information