Density of Air & Water Part 2

Size: px
Start display at page:

Download "Density of Air & Water Part 2"

Transcription

1 Density of Air & Water Part 2 Here is part 2 from Michael Housh from Housh Home Energy in Ohio. Thanks Michael! This is part two in a series on a deeper look into the Sensible Heat Rate Equations. The first article can be found here if you missed it. In this article, I will dive deeper into the density of standard air and water based on a change in temperature. Standard air is air with 0% RH and at sealevel (14.7 psia). As mentioned in the previous article density can be defined as its mass per unit of volume (or weight per unit of volume). Also mentioned before is that the Sensible Heat Rate equations stem from a lower level equation that is about moving a mass of a fluid. Let s look at the equation to find the density of air first. The following equation can be used to determine the density of air for a given pressure and temperature. For all of our equations and graphs, we will use the absolute pressure of 14.7 (the pressure at sea-level).

2 Formu la: We must first convert our temperature to an absolute temperature (Rankine). T = Temperature ( F) Next, we can solve for the density for the given temperature and atmospheric pressure. D = density of air (lb/ft3) Pa = absolute pressure of air (psia) = 14.7 Tr = temperature ( R) converted in the previous step As you can see, we are dealing with pretty minute changes in the density of air based on temperature change when the

3 humidity is 0%. The above formula can also be used to solve for the density of air at different altitudes, by substituting Pa with the absolute pressure at a given altitude, but that will be left for you to figure out. Next, let s look at the density of water equation. This is a little more complex of an equation. It is also only valid for water temperatures between 50 F and 250 F. D = density of water (lb/ft3) T = temperature ( F) As you can see the density of water has a little more of a

4 drastic change based on temperature than that of air. First off, when we relate these to the Sensible Heat Rate equations (that are about moving pounds of a fluid), we can see that the mass can be affected by a significant amount (at least in the case of water). Secondly, 1 cubic foot of water weighs significantly more than 1 cubic foot of air. Let s envision 2 1 x 1 x 1 cubes, one is full of air the other is full of water. Both of these are at 50 F. Let s envision we have a fan or pump moving 1 of these cubes each minute. Next, let s look at how we would compare the Btu s carried/rejected from both of these cubes with 20 Delta T. We are going to use the lower level equation found in the first article to make this a little easier to understand. Q = M * C * T

5 Q = BTU s absorbed or rejected from the fluid (BTU/hr) M = mass / density of the fluid (lb/ft3) C = specific heat (BTU/lb) : Air =.24 & water = 1.0 T = temperature change dry bulb ( F) When we calculate the density of a fluid that has a temperature change to it, we want to use the density for the average temperature. So for our experiment since we are starting at 50 and we end at 70, we will use the Density for water and for air at 60. Air 60 =.076, Specific Heat =.24) Q =.076 *.24 * 20 * 60 (min) Q = BTU/h Water 60 = 62.37, Specific Heat = 1.0) Q = * 1.0 * 20 * 60 (min) Q = 74,844 BTU/h At these parameters, we d have to move 3,419 more cubic feet of air to achieve the same as 1 cubic foot of water. So let s see how we can use this information to build a little bit of a better equation than the default standard air and standard water Sensible Heat Rate Equations. Since the density of air is pretty tricky and is affected by both altitude and humidity I would recommend using the online calculator at HVACR School. With water, I would use the above equation to solve for density or graph above. Remember for both of these we want to use the average temperature to solve for the density.

6 Now, let s rewrite the Sensible Heat Rate equations into a slightly more accurate way to calculate the BTU/h of both air and water. Let s run through a little comparison of these equations from the standard air and standard water equations. I ll start with the air-side first. Let s imagine we have a 70 return air temperature and a 130 supply air temperature (a 60 Delta T). The relative humidity is 40% and I used the elevation of my home which is approximately 800 ft. above sea level. By using the online calculator I figured the density of the average temperature of the air at these parameters is Now let s assume we have 800 CFM moving across our appliance, so now we can solve for the BTU transfer of our appliance into the air. Standard Air Q=1.08 x 800 x 60 = 51,840 btu/hr Improved Air Q = x 14.4 x 800 x 60 = 47,395 btu/hr

7 That is about a 10% difference by correcting for the density of the air. Next, for the water-side, let s assume that we have an incoming water temperature of 170 and outlet water temperature of 190 across a boiler (a 20 Delta T). Our pump is moving 5 gallons per minute. The density of water at the average temperature of 180 is , so now we can solve for the BTU transfer from the boiler into the water. Standard Water Improved Water Q = 500 x 5 x 20 = 50,000 Q = ( / 7.48) x 60 btu/hr x 5 x 20 = 48,605 btu/hr This is about a 5% difference by correcting for the density of water. For some, the difference in accuracy may not be worth it in the field, but it depends on what you are trying to solve. Stay tuned for more details on better Sensible Heat Rate Equations. Michael

NEBB Fundamental Formulas

NEBB Fundamental Formulas Approved NEBB - May 1, 17 Page 1 of 8 Version 1.3 A = Area (ft²) IP, (m²) SI M = Mass (lb) IP, (kg) SI ACH = Air Changes per Hour ma = Mixed Air Ak = Effective Area m = meter (metre) AV = Average m³/s

More information

level of heat heat intensity

level of heat heat intensity TEMPERATURE The level of heat or heat intensity Measured with thermometers English system Fahrenheit ( F) Metric system Celsius ( C) Fahrenheit Absolute scale Rankine ( R) Celsius Absolute scale - Kelvin

More information

Chimney Sizing. Project Name: Location: Type Appliance: Hot Water Heater Incinerator. LP Gas #2 Oil #6 Oil Wood/Coal Waste (Type ) Appliance Input:

Chimney Sizing. Project Name: Location: Type Appliance: Hot Water Heater Incinerator. LP Gas #2 Oil #6 Oil Wood/Coal Waste (Type ) Appliance Input: Chimney Sizing Project Name: Location: Type Appliance: Type Fuel: Appliance Input: Boiler Hot Water Heater Incinerator Natural Gas LP Gas #2 Oil #6 Oil Wood/Coal Waste (Type ) BTU Hp Lbs/hr Height Above

More information

Section 1: Theory of Heat Unit 2: Matter and Energy

Section 1: Theory of Heat Unit 2: Matter and Energy Section 1: Theory of Heat Unit 2: Matter and Energy Unit Objectives After studying this chapter, you should be able to: define matter. list the three states in which matter is commonly found. define density.

More information

HEAT CONTENT DECREASES U D R HEAT CONTENT INCREASESO. Btu/lb

HEAT CONTENT DECREASES U D R HEAT CONTENT INCREASESO. Btu/lb Pressure (psia) LINES OF CONSTANT ENTHALPY PRESSURE P R E S S U R E R I S E S P R E S S HEAT CONTENT DECREASES U R E D R HEAT CONTENT INCREASESO P S Btu/lb Heat Content Pressure (psia) SATURATION CURVE

More information

Compute the lateral force per linear foot with sloping backfill and inclined wall. Use Equation No. 51, page 93. Press ENTER.

Compute the lateral force per linear foot with sloping backfill and inclined wall. Use Equation No. 51, page 93. Press ENTER. Sample Problems Problem 5.1 A gravity retaining wall is supporting a cohesionless soil. The active lateral force per linear foot of the retaining wall is most nearly (A) 5,000 lb/ft (B) 6,000 lb/ft (C)

More information

Thermal Fluid System Design. Team Design #1

Thermal Fluid System Design. Team Design #1 Thermal Fluid System Design Team Design #1 Table of Contents Nomenclature Listing.3 Executive Summary.6 Introduction.7 Analysis.8 Results/Discussion..18 Conclusion..29 References..29 Appendix A: Detailed

More information

UNIT CONVERSIONS User Guide & Disclaimer

UNIT CONVERSIONS User Guide & Disclaimer v.5.4 www.hvacnotebook.com UNIT CONVERSIONS User Guide & Disclaimer (FREE SAMPLE VERSION) Conversion Spreadsheets Distance Weight 34 Simple User Interface Click On Any Yellow Cells And Enter (Replace With)

More information

Corrective Assignment

Corrective Assignment Temperature ( ) Unit 1: Analyze Graphs and Expressions Corrective Assignment NAME: DATE: Identify the independent and dependent variable. Create and label a scatter plot. Answer the question. 1. The volume

More information

MA 1135 Practice Test III (answers on last page) Tuesday, April 16, 2013

MA 1135 Practice Test III (answers on last page) Tuesday, April 16, 2013 MA 35 Practice Test III (answers on last page) Tuesday, April 6, 203 Name Note: Test III is Thursday (4/8/3). Big Note: Bring your calculators, no computers for this test. I m going to restrict you to

More information

1.4 Perform the following unit conversions: (b) (c) s. g s. lb min. (d) (e) in. ft s. m 55 h. (f) ft s. km h. (g)

1.4 Perform the following unit conversions: (b) (c) s. g s. lb min. (d) (e) in. ft s. m 55 h. (f) ft s. km h. (g) 1.4 Perform the following unit conversions: 0.05 ft 1 in. (a) 1L 61in. 1L 1ft (b) 1kJ 650 J 10 J 1Btu 1.0551kJ 0.616 Btu (c) 41 Btu/h 0.15 kw 1kW 1h 600 s 778.17 ft lbf 1Btu ft lbf 99.596 s (d) g 78 s

More information

Heat Flow Calculations Made Using the Models 8386 and 8386A VELOCICALC Plus Air Velocity Meters Application Note ITI-124

Heat Flow Calculations Made Using the Models 8386 and 8386A VELOCICALC Plus Air Velocity Meters Application Note ITI-124 Ventilation Test Instruments Heat Flow Calculations Made Using the Models 8386 and 8386A VELOCICALC Plus Air Velocity Meters Application Note ITI-124 The Models 8386 and 8386A calculate the heat flow between

More information

TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng., June 2003

TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng.,   June 2003 TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng., www.lightmypump.com June 2003 Figure 1 Calculation example flow schematic. Situation Water at 150 F is to be pumped from a

More information

2.0 KEY EQUATIONS. Evaporator Net Refrigeration Effect. Compressor Work. Net Condenser Effect

2.0 KEY EQUATIONS. Evaporator Net Refrigeration Effect. Compressor Work. Net Condenser Effect 2.0 KEY EQUATIONS Evaporator Net Refrigeration Effect Q net refrigeration effect [] = (H 1 H 4 ) lb (Refrig Flow Rate) (60) min lb min hr H 1 = leaving evaporator enthalpy lb ; H 4 = entering evaporator

More information

Mathematics 5 Worksheet 2 Units and Proportion

Mathematics 5 Worksheet 2 Units and Proportion Mathematics 5 Worksheet 2 Units and Proportion Problem 1. Note that one yard is three feet. Assume that a day is exactly 24 hours. Water leaks from a faucet at a rate of.2 cubic yards per week. How many

More information

TRADE MATH. accurate means to be without error. The word precise means to be exact.

TRADE MATH. accurate means to be without error. The word precise means to be exact. Service Application Manual SAM Chapter 620-119 Section 13B TRADE MATH by Harlan Skip Krepcik, CMS Excerpted from Preparing for the NATE Exam: Core Essentials, published by RSES. INTRODUCTION Math is a

More information

ACTIVITY: Areas and Perimeters of Figures

ACTIVITY: Areas and Perimeters of Figures 4.4 Solving Two-Step Inequalities the dimensions of a figure? How can you use an inequality to describe 1 ACTIVITY: Areas and Perimeters of Figures Work with a partner. Use the given condition to choose

More information

*Finding the tangent line at a point P boils down to finding the slope of the tangent line at point P.

*Finding the tangent line at a point P boils down to finding the slope of the tangent line at point P. The Derivative & Tangent Line Problem *Finding the tangent line at a point P boils down to finding the slope of the tangent line at point P. 1 The Derivative & Tangent Line Problem We can approximate using

More information

Boiling Point at One Atmosphere F Critical Temperature F

Boiling Point at One Atmosphere F Critical Temperature F Opteon XP40 Refrigerant Transport Properties of Opteon XP40 Engineering (I/P) Units Physical Properties Molecular Weight 87.2 g/mol Boiling Point at One Atmosphere - 50.8 F Critical Temperature 178.7 F

More information

Common Terms, Definitions and Conversion Factors

Common Terms, Definitions and Conversion Factors 1 Common Terms, Definitions and Conversion Factors 1. Force: A force is a push or pull upon an object resulting from the object s interaction with another object. It is defined as Where F = m a F = Force

More information

10-6 Changing Dimensions. IWBAT find the volume and surface area of similar three-dimensional figures.

10-6 Changing Dimensions. IWBAT find the volume and surface area of similar three-dimensional figures. IWBAT find the volume and surface area of similar three-dimensional figures. Recall that similar figures have proportional side lengths. The surface areas of similar three-dimensional figures are also

More information

Pyschrometric Sample Problem Pharmaceutical Engineering Graduate Program New Jersey Institute of Technology

Pyschrometric Sample Problem Pharmaceutical Engineering Graduate Program New Jersey Institute of Technology Background A pharmaceutical company wishes to construct a manufacturing space which will require an HVAC system that functions within the following parameters: Space drybulb temperature = 70 F Space relative

More information

foot (ft) inch (in) foot (ft) centimeters (cm) meters (m) Joule (J)

foot (ft) inch (in) foot (ft) centimeters (cm) meters (m) Joule (J) Math 176 Calculus Sec. 6.4: Work I. Work Done by a Constant Force A. Def n : If an object is moved a distance D in the direction of an applied constant force F, then the work W done by the force is defined

More information

Chapter 2 Dimensions, Units, and Unit Conversion

Chapter 2 Dimensions, Units, and Unit Conversion AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri Chapter 2 Dimensions, Units, and Unit Conversion Dimensions Dimensions are concepts of measurement in engineering works. The basic

More information

PowerPoint Presentation by: Associated Technical Authors. Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois

PowerPoint Presentation by: Associated Technical Authors. Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois Althouse Turnquist Bracciano PowerPoint Presentation by: Associated Technical Authors Publisher The Goodheart-Willcox Company, Inc. Tinley Park, Illinois Chapter 1 History and Fundamentals of Refrigeration

More information

the distance from the top to the bottom of an object height a measurement of how heavy something is weight

the distance from the top to the bottom of an object height a measurement of how heavy something is weight height the distance from the top to the bottom of an object weight a measurement of how heavy something is length the distance from one side of an object to another measure to find the number that shows

More information

Lecture 1 INTRODUCTION AND BASIC CONCEPTS

Lecture 1 INTRODUCTION AND BASIC CONCEPTS Lecture 1 INTRODUCTION AND BASIC CONCEPTS Objectives Identify the unique vocabulary associated with thermodynamics through the precise definition of basic concepts to form a sound foundation for the development

More information

NATIONAL 5 PHYSICS THERMODYNAMICS

NATIONAL 5 PHYSICS THERMODYNAMICS NATIONAL 5 PHYSICS THERMODYNAMICS HEAT AND TEMPERATURE Heat and temperature are not the same thing! Heat Heat is a type of energy. Like all types of energy it is measured in joules (J). The heat energy

More information

U.S. pound (lb) foot (ft) foot-pounds (ft-lb) pound (lb) inch (in) inch-pounds (in-lb) tons foot (ft) foot-tons (ft-ton)

U.S. pound (lb) foot (ft) foot-pounds (ft-lb) pound (lb) inch (in) inch-pounds (in-lb) tons foot (ft) foot-tons (ft-ton) Math 1206 Calculus Sec. 6.4: Work I. Work Done by a Constant Force A. Def n : If an object is moved a distance D in the direction of an applied constant force F, then the work W done by the force is defined

More information

Metric prefixes and conversion constants

Metric prefixes and conversion constants PID loop tuning This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

The following article was authored by Jacques Chaurette, President Fluide Design, Inc. (www.fluidedesign.com) All rights reserved.

The following article was authored by Jacques Chaurette, President Fluide Design, Inc. (www.fluidedesign.com) All rights reserved. The following article was authored by Jacques Chaurette, President Fluide Design, Inc. (www.fluidedesign.com) All rights reserved. - HOW TO AVOID CAVITATION? CAVITATION CAN BE AVOIDED IF THE N.P.S.H. AVAILABLE

More information

Sec. 4.2 Logarithmic Functions

Sec. 4.2 Logarithmic Functions Sec. 4.2 Logarithmic Functions The Logarithmic Function with Base a has domain all positive real numbers and is defined by Where and is the inverse function of So and Logarithms are inverses of Exponential

More information

Basic Math Concepts for Water and Wastewater Operators. Daniel B. Stephens & Associates, Inc.

Basic Math Concepts for Water and Wastewater Operators. Daniel B. Stephens & Associates, Inc. Basic Math Concepts for Water and Wastewater Operators Topics Hierarchy of operations Manipulating equations Unit/dimensional analysis and conversion factors Electricity Temperature Geometry Flow hydraulics

More information

1. DEFINITIONS. B. BTUH Hourly Rate of change in Mass Heat BTUH = * CFM * ΔT (Air Heat Transfer) BTUH = 500 * GPM * ΔT (Water Heat Transfer)

1. DEFINITIONS. B. BTUH Hourly Rate of change in Mass Heat BTUH = * CFM * ΔT (Air Heat Transfer) BTUH = 500 * GPM * ΔT (Water Heat Transfer) 1. DEFINITIONS A. BTU - The amount of Heat ( Q ) to change One Pound of Water 1F A Gallon of Water at 70F (room temperature) is 8.33 Pounds A Pint is a Pound the World Around A Pint of Water is 1.04 Pounds

More information

( afa, ( )) [ 12, ]. Math 226 Notes Section 7.4 ARC LENGTH AND SURFACES OF REVOLUTION

( afa, ( )) [ 12, ]. Math 226 Notes Section 7.4 ARC LENGTH AND SURFACES OF REVOLUTION Math 6 Notes Section 7.4 ARC LENGTH AND SURFACES OF REVOLUTION A curve is rectifiable if it has a finite arc length. It is sufficient that f be continuous on [ab, ] in order for f to be rectifiable between

More information

Applications of Integration to Physics and Engineering

Applications of Integration to Physics and Engineering Applications of Integration to Physics and Engineering MATH 211, Calculus II J Robert Buchanan Department of Mathematics Spring 2018 Mass and Weight mass: quantity of matter (units: kg or g (metric) or

More information

Precision and Accuracy. Learning Targets: Unit 2.1 To determine the degree of precision of a measurement.

Precision and Accuracy. Learning Targets: Unit 2.1 To determine the degree of precision of a measurement. Precision and Accuracy Learning Targets: Unit.1 To determine the degree of precision of a measurement. We often use numbers that are not exact. Measurements are approximate there is no such thing as a

More information

Evaluate the following limit without using l Hopital s Rule. x x. = lim = (1)(1) = lim. = lim. = lim = (3 1) =

Evaluate the following limit without using l Hopital s Rule. x x. = lim = (1)(1) = lim. = lim. = lim = (3 1) = 5.4 1 Looking ahead. Example 1. Indeterminate Limits Evaluate the following limit without using l Hopital s Rule. Now try this one. lim x 0 sin3x tan4x lim x 3x x 2 +1 sin3x 4x = lim x 0 3x tan4x ( ) 3

More information

Find a common monomial factor. = 2y 3 (y + 3)(y 3) Difference of two squares

Find a common monomial factor. = 2y 3 (y + 3)(y 3) Difference of two squares EXAMPLE 1 Find a common monomial factor Factor the polynomial completely. a. x 3 + 2x 2 15x = x(x 2 + 2x 15) Factor common monomial. = x(x + 5)(x 3) Factor trinomial. b. 2y 5 18y 3 = 2y 3 (y 2 9) Factor

More information

Virginia Tech Math 1226 : Past CTE problems

Virginia Tech Math 1226 : Past CTE problems Virginia Tech Math 16 : Past CTE problems 1. It requires 1 in-pounds of work to stretch a spring from its natural length of 1 in to a length of 1 in. How much additional work (in inch-pounds) is done in

More information

2.6-Constructing Functions with Variation

2.6-Constructing Functions with Variation .6-Constructing Functions with Variation Direct Variation: Two quantities vary directly if one quantity increases as the other increases. A direct variation equation will have the general form: where is

More information

Technical Reference Note

Technical Reference Note Technical Reference Note Air Conditioning Contractors of America, s2800 Shirlington Road, Suite Suite 300, 300Arlington, s VA, VA 22206, 22206 703-575-4477, s7035754477 Fax sfax 703-575-4449 7035754449

More information

Unit conversion problems, by Tony R. Kuphaldt (2006)

Unit conversion problems, by Tony R. Kuphaldt (2006) Unit conversion problems, by Tony R. Kuphaldt (2006) This worksheet and all related files are licensed under the Creative Commons Attribution License, version.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/.0/,

More information

Sample Questions, Exam 1 Math 244 Spring 2007

Sample Questions, Exam 1 Math 244 Spring 2007 Sample Questions, Exam Math 244 Spring 2007 Remember, on the exam you may use a calculator, but NOT one that can perform symbolic manipulation (remembering derivative and integral formulas are a part of

More information

8.4 Density and 8.5 Work Group Work Target Practice

8.4 Density and 8.5 Work Group Work Target Practice 8.4 Density and 8.5 Work Group Work Target Practice 1. The density of oil in a circular oil slick on the surface of the ocean at a distance meters from the center of the slick is given by δ(r) = 5 1+r

More information

Section Volume, Mass, and Temperature

Section Volume, Mass, and Temperature Section 11.5 - Volume, Mass, and Temperature Surface Area is the number of square units covering a three dimensional figure; Volume describes how much space a three-dimensional figure contains. The unit

More information

Conversion Factors COMMONLY USED CONVERSION FACTORS. Multiply By To Obtain

Conversion Factors COMMONLY USED CONVERSION FACTORS. Multiply By To Obtain Conversion Factors COMMONLY USED CONVERSION FACTORS Multiply By To Obtain Acres................. 43,560 Square feet Acres................. 1.56 x 10-3 Square miles Acre-Feet............. 43,560 Cubic feet

More information

4-5 Compute with Scientific Notation

4-5 Compute with Scientific Notation 1. About 1 10 6 fruit flies weigh 1.3 10 2 pounds. How much does one fruit fly weigh? Write in scientific notation. Divide the weight of the fruit flies by the number of fruit flies to find the weight

More information

The Numerical Psychrometric Analysis

The Numerical Psychrometric Analysis he Numerical sychrometric Analysis by Jorge R. López Busó, MSME, E Introduction he sychrometric Analysis is the base of any HVAC system design. Nowadays, the psychrometric analysis is mainly done by means

More information

Full Name. Remember, lots of space, thus lots of pages!

Full Name. Remember, lots of space, thus lots of pages! Rising Pre-Calculus student Summer Packet for 016 (school year 016-17) Dear Advanced Algebra: Pre-Calculus student: To be successful in Advanced Algebra: Pre-Calculus, you must be proficient at solving

More information

Boiling Point at One Atmosphere F Critical Temperature F

Boiling Point at One Atmosphere F Critical Temperature F Opteon XP44 Refrigerant Transport Properties of Opteon XP44 (R-452A) Engineering (I/P) Units Physical Properties Molecular Weight 103.5 lb/lb-mole Boiling Point at One Atmosphere -52.7 F Critical Temperature

More information

If you need more room, use the backs of the pages and indicate that you have done so.

If you need more room, use the backs of the pages and indicate that you have done so. Math 125 Final Exam Winter 2018 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name Turn off and stow away all cell phones, watches, pagers, music players, and other similar devices.

More information

PE = mgh. Potential energy. What is g here? Let s pick up where we left off last time..the topic was gravitational potential energy

PE = mgh. Potential energy. What is g here? Let s pick up where we left off last time..the topic was gravitational potential energy Let s pick up where we left off last time..the topic was gravitational potential energy Now, let s talk about a second form of energy Potential energy Imagine you are standing on top of half dome in Yosemite

More information

File:Psych1HeatCoil.EES 10/21/2003 3:41:38 PM Page 1 EES Ver : #317: CEAE University of Colorado, Boulder

File:Psych1HeatCoil.EES 10/21/2003 3:41:38 PM Page 1 EES Ver : #317: CEAE University of Colorado, Boulder File:Psych1HeatCoil.EES 10/21/2003 3:41:38 PM Page 1 "AREN 3010 In-Class Psychrometric Problem #1" " Moist air enters a heating coil at 40 F dry-bulb temperature and 36 F wet-bulb temperature at a rate

More information

Materials and Energy Balance in Metallurgical Processes. Prof. S. C. Koria. Department of Materials Science and Engineering

Materials and Energy Balance in Metallurgical Processes. Prof. S. C. Koria. Department of Materials Science and Engineering Materials and Energy Balance in Metallurgical Processes Prof. S. C. Koria Department of Materials Science and Engineering Indian Institute of Technology, Kanpur Module No. # 01 Lecture No. # 02 Measurement

More information

x y x y 15 y is directly proportional to x. a Draw the graph of y against x.

x y x y 15 y is directly proportional to x. a Draw the graph of y against x. 3 8.1 Direct proportion 1 x 2 3 5 10 12 y 6 9 15 30 36 B a Draw the graph of y against x. y 40 30 20 10 0 0 5 10 15 20 x b Write down a rule for y in terms of x.... c Explain why y is directly proportional

More information

Northern Lesson 2 Gear Pump Terminology. Gear Pump 101. Lesson 2: Gear Pump Terminology. When your reputation depends on it!

Northern Lesson 2 Gear Pump Terminology. Gear Pump 101. Lesson 2: Gear Pump Terminology. When your reputation depends on it! Gear Pump 101 Lesson 2: Gear Pump Terminology When your reputation depends on it! Symbol Term Metric Unit Abbreviation US Customary Unit Abbreviation Conversion factor a A Area square millimeter mm2 square

More information

Chapter 2 Notes, Kohler & Johnson 2e

Chapter 2 Notes, Kohler & Johnson 2e Contents 2 First Order Differential Equations 2 2.1 First Order Equations - Existence and Uniqueness Theorems......... 2 2.2 Linear First Order Differential Equations.................... 5 2.2.1 First

More information

Thermal & Fluids PE Exam Technical Study Guide Errata

Thermal & Fluids PE Exam Technical Study Guide Errata Thermal & Fluids PE Exam Technical Study Guide Errata This product has been updated to incorporate all changes shown in the comments on the webpage and email comments as of October, 30 2017. If you have

More information

q x = k T 1 T 2 Q = k T 1 T / 12

q x = k T 1 T 2 Q = k T 1 T / 12 Conductive oss through a Window Pane q T T 1 Examine the simple one-dimensional conduction problem as heat flow through a windowpane. The window glass thickness,, is 1/8 in. If this is the only window

More information

Lecture 13 An introduction to hydraulics

Lecture 13 An introduction to hydraulics Lecture 3 An introduction to hydraulics Hydraulics is the branch of physics that handles the movement of water. In order to understand how sediment moves in a river, we re going to need to understand how

More information

R- 410A R-22 Size (tons) Shipping Weight (lbs) WLAU184AA 1-1/ WLAU182AA 1-1/ WLAU244AA. Model /2

R- 410A R-22 Size (tons) Shipping Weight (lbs) WLAU184AA 1-1/ WLAU182AA 1-1/ WLAU244AA. Model /2 EVAPORATOR COILS A COIL - UNCASED R- 410A or R- 22 SYSTEMS 1 1/2 5 Tons WLAU Use of the AHRI Certified TM Mark indicates a manufacturer s participation in the program. For verification of certification

More information

Gay E. Canough Solar Math. PV Installer s Class: Units and Math

Gay E. Canough Solar Math. PV Installer s Class: Units and Math Gay E. Canough 1.1--Solar Math October 2012 PV Installer s Class: Units and Math 1 Units Electricity Fluid KW, a unit of power Horsepower, a unit of power KWh, a unit of energy BTU, a unit of energy Voltage

More information

Making Decisions with Insulation

Making Decisions with Insulation More on Heat Transfer from Cheresources.com: FREE Resources Making Decisions with Insulation Article: Basics of Vaporization Questions and Answers: Heat Transfer Experienced-Based Rules for Heat Exchangers

More information

x y = 2 x + 2y = 14 x = 2, y = 0 x = 3, y = 1 x = 4, y = 2 x = 5, y = 3 x = 6, y = 4 x = 7, y = 5 x = 0, y = 7 x = 2, y = 6 x = 4, y = 5

x y = 2 x + 2y = 14 x = 2, y = 0 x = 3, y = 1 x = 4, y = 2 x = 5, y = 3 x = 6, y = 4 x = 7, y = 5 x = 0, y = 7 x = 2, y = 6 x = 4, y = 5 List six positive integer solutions for each of these equations and comment on your results. Two have been done for you. x y = x + y = 4 x =, y = 0 x = 3, y = x = 4, y = x = 5, y = 3 x = 6, y = 4 x = 7,

More information

6.5 Work and Fluid Forces

6.5 Work and Fluid Forces 6.5 Work and Fluid Forces Work Work=Force Distance Work Work=Force Distance Units Force Distance Work Newton meter Joule (J) pound foot foot-pound (ft lb) Work Work=Force Distance Units Force Distance

More information

Project: Dimensional Analysis

Project: Dimensional Analysis Project: Dimensional Analysis How big do you think one of the blocks that make up the Cheops Pyramid at Giza is? This question actually came up in conversation with some friends at our house a few years

More information

Part A: Raul rode at a slower rate than Jayson. On the graph below, use the units of kilometers and hours to create a graph of possible data for Raul.

Part A: Raul rode at a slower rate than Jayson. On the graph below, use the units of kilometers and hours to create a graph of possible data for Raul. Name Period Date Algebra I Unit 1 Model Curriculum Assessment Part A 1. In a 40-kilometer bicycle race, Jayson and Raul each rode at a constant rate throughout the race. The graph below uses the units

More information

RETA Book 1 Chapter 1 Fundamental Items

RETA Book 1 Chapter 1 Fundamental Items RETA Book 1 Chapter 1 Fundamental Items Peter Thomas, P.E. Resource Compliance RETA Certification Levels CARO Certified Assistant Refrigeration Operator CARO is an entry-level credential that is designed

More information

Chapter 3 Basic Physical Principles Applications to Fluid Power Sy S stems

Chapter 3 Basic Physical Principles Applications to Fluid Power Sy S stems Chapter 3 Basic Physical Principles Applications to Fluid Power Systems 1 Objectives Identify and explain the design and operation of the six basic machines. Describe the factors that affect energy in

More information

THE REALM OF PHYSICS AND MEASUREMENT HW/Study Packet

THE REALM OF PHYSICS AND MEASUREMENT HW/Study Packet 1.1-1. THE REALM OF PHYSICS AND MEASUREMENT HW/Study Packet Required: READ Tsokos, pp -6, pp 14-15 DO Questions pp 6-7: # 5, 8, 9, 18, 19, 0, 1, 5, 31 pp 19-0: # 5, 8, 10 SL/HL Supplemental: Cutnell and

More information

E-BOOK / NEWTON METERS TO FOOT POUNDS EBOOK

E-BOOK / NEWTON METERS TO FOOT POUNDS EBOOK 13 March, 2018 E-BOOK / 10000 NEWTON METERS TO FOOT POUNDS EBOOK Document Filetype: PDF 166.9 KB 0 E-BOOK / 10000 NEWTON METERS TO FOOT POUNDS EBOOK Sand, Fine density is equal to 1999 kg/m or 124.793

More information

Solving Problems with Labeled Numbers

Solving Problems with Labeled Numbers Solving Problems with Labeled Numbers When solving problems with labeled numbers (those with units such as grams or liters), the labels are treated in the same way as P or y in algebra. The problem is

More information

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI 621 213. Department: Mechanical Subject Code: ME2202 Semester: III Subject Name: ENGG. THERMODYNAMICS UNIT-I Basic Concept and First Law 1. What do you understand

More information

MOTOR WIRING DATA From National Electrical Code 3 PHASE SQUIRREL CAGE INDUCTION MOTORS 230 Volt 460 Volt Min. # Max. Rating

MOTOR WIRING DATA From National Electrical Code 3 PHASE SQUIRREL CAGE INDUCTION MOTORS 230 Volt 460 Volt Min. # Max. Rating MOTOR WIRING DATA From National Electrical Code PHASE SQUIRREL CAGE INDUCTION MOTORS 20 Volt 0 Volt Min. # Max. Rating Min. Size Size of Full Size Wire Conduit Branch Circuit Load Wire AWG (inches) Fuses

More information

4-5 Compute with Scientific Notation

4-5 Compute with Scientific Notation 1. About 1 10 6 fruit flies weigh 1.3 10 2 pounds. How much does one fruit fly weigh? Write in about 1.3 10 4 lbs Evaluate each expression. Express the result in 2. (1.217 10 5 ) (5.25 10 4 ) 6.92 10 4

More information

Warm Up Lesson Presentation Lesson Quiz. Holt Algebra 2 2

Warm Up Lesson Presentation Lesson Quiz. Holt Algebra 2 2 8-8 Warm Up Lesson Presentation Lesson Quiz 2 Warm Up Simplify each expression. Assume all variables are positive. 1. 2. 3. 4. Write each expression in radical form. 5. 6. Objective Solve radical equations

More information

Apply & Practice 3.5 Set 1: P #3-18 (mult. of 3); 19 #21 write explicit #27-33 (mult. of 3) point #39-40 eqn tang line from graph

Apply & Practice 3.5 Set 1: P #3-18 (mult. of 3); 19 #21 write explicit #27-33 (mult. of 3) point #39-40 eqn tang line from graph Ch 0 Homework Complete Solutions V Part : S. Stirling Calculus: Earl Transcendental Functions, 4e Larson WATCH for the product rule and the chain rule. If the order that our terms are in differ from the

More information

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No - 03 First Law of Thermodynamics (Open System) Good afternoon,

More information

Mohammed Rashnur Rahman, N.M. Aftabul Alam Bhuiya, and Md. Rasel Miah

Mohammed Rashnur Rahman, N.M. Aftabul Alam Bhuiya, and Md. Rasel Miah International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 8 No. 3 Sep. 2014, pp. 1148-1157 2014 Innovative Space of Scientific Research Journals http://www.ijias.issr-journals.org/ Theoretical

More information

MAT1193 1f. Linear functions (most closely related to section 1.4) But for now, we introduce the most important equation in this class:

MAT1193 1f. Linear functions (most closely related to section 1.4) But for now, we introduce the most important equation in this class: MAT1193 1f. Linear functions (most closely related to section 1.4) Linear functions are some of the simplest functions we ll consider. They have special properties and play an important role in many areas

More information

ESRL Module 8. Heat Transfer - Heat Recovery Steam Generator Numerical Analysis

ESRL Module 8. Heat Transfer - Heat Recovery Steam Generator Numerical Analysis ESRL Module 8. Heat Transfer - Heat Recovery Steam Generator Numerical Analysis Prepared by F. Carl Knopf, Chemical Engineering Department, Louisiana State University Documentation Module Use Expected

More information

1 centimeter (cm) 5 10 millimeters (mm) 1 meter (m) centimeters. 1 kilometer (km) 5 1,000 meters. Set up equivalent ratios and cross multiply.

1 centimeter (cm) 5 10 millimeters (mm) 1 meter (m) centimeters. 1 kilometer (km) 5 1,000 meters. Set up equivalent ratios and cross multiply. Domain 2 Lesson 16 Convert Measurements Common Core State Standard: 6.RP.3.d Getting the Idea The tables below show some conversions for units of length in both the customary system and the metric system.

More information

Product Data. CAPVU Evaporator Coil A Coil --- Uncased Upflow, Downflow CAPVU

Product Data. CAPVU Evaporator Coil A Coil --- Uncased Upflow, Downflow CAPVU CAPVU Evaporator Coil A Coil --- Uncased Upflow, Downflow Product Data CAPVU A06002 The CAPVU evaporator coils incorporate proven standards for reliable system operation and performance throughout the

More information

Section Mass Spring Systems

Section Mass Spring Systems Asst. Prof. Hottovy SM212-Section 3.1. Section 5.1-2 Mass Spring Systems Name: Purpose: To investigate the mass spring systems in Chapter 5. Procedure: Work on the following activity with 2-3 other students

More information

Advanced Thermography Investigations

Advanced Thermography Investigations Advanced Thermography Investigations Examples of Thermography to Extend our Knowledge 1 Infrared Training Center Global Leader in IR Thermography Training. ISO-9001 Registered NETA accredited in IR Thermography

More information

HVAC Clinic. Duct Design

HVAC Clinic. Duct Design HVAC Clinic Duct Design Table Of Contents Introduction... 3 Fundamentals Of Duct Design... 3 Pressure Changes In A System... 8 Example 1... 13 Duct Design Methods... 15 Example 2... 15 Introduction The

More information

Thermal Process Control Lap 4 Thermal Energy. Notes:

Thermal Process Control Lap 4 Thermal Energy. Notes: Thermal Process Control Lap 4 Thermal Energy Notes: 1) Temperature Measurement a) Define temperature i) A measure of the amount of heat contained in a solid, liquid, or gas ii) Result of molecular motion

More information

Math 113 (Calculus II) Final Exam

Math 113 (Calculus II) Final Exam Name: Student ID: Section: Instructor: Math 113 (Calculus II) Final Exam Dec 18, 7:00 p.m. Instructions: Work on scratch paper will not be graded. For questions 10 to 17, show all your work in the space

More information

Unit 7: Introduction to Functions

Unit 7: Introduction to Functions Section 7.1: Relations and Functions Section 7.2: Function Notation Section 7.3: Domain and Range Section 7.4: Practical Domain and Range Section 7.5: Applications KEY TERMS AND CONCEPTS Look for the following

More information

Work with a partner. How can you show that ( 1)( 1) = 1?

Work with a partner. How can you show that ( 1)( 1) = 1? . Multiplying and Dividing Rational Numbers numbers positive? Why is the product of two negative rational In Section., you used a table to see that the product of two negative integers is a positive integer.

More information

h h h b b Where B is the area of the base and h is the height. . Multiply this by the height to get 20(81 ) 1620 The base is a circle of area (9)

h h h b b Where B is the area of the base and h is the height. . Multiply this by the height to get 20(81 ) 1620 The base is a circle of area (9) Area and Volume Area Formulas: A bh 1 A bh A r C r h b b b h h h b b b r Volume: Prisms and Cylinders. V Bh Where B is the area of the base and h is the height. 10ft 9in 4ft 5ft 0in The base can be any

More information

Handout Unit Conversions (Dimensional Analysis)

Handout Unit Conversions (Dimensional Analysis) Handout Unit Conversions (Dimensional Analysis) This section will cover conversions () selected units in the metric and American systems, () compound or derived measures, and () between metric and American

More information

Name: Period: V = lwh

Name: Period: V = lwh Density Unit Packet Name: Period: To begin we are going to start with volume. Volume is the amount of space something takes up. It is measured in units like cubic centimeters or milliliters. Those units

More information

3. A tennis field has length 78 feet and width of 12 yards. What is the area of the field (in square feet)?

3. A tennis field has length 78 feet and width of 12 yards. What is the area of the field (in square feet)? Station 1: MSG9-12.A1.NQ.1: Use units of measure (linear, area, capacity, rates, and time) as a way to understand problems; identify, use and record appr opriate units of measure within context, within

More information

Represent Relations and Functions

Represent Relations and Functions TEKS. a., a., a.5, A..A Represent Relations and Functions Before You solved linear equations. Now You will represent relations and graph linear functions. Wh? So ou can model changes in elevation, as in

More information

Test 3 Practice 2. ( x) + 9 (give proper fraction or mixed number answer)

Test 3 Practice 2. ( x) + 9 (give proper fraction or mixed number answer) Test 3 Practice 2 Name 1) Solve the following equations. A) 12 # $% 3) = + ( 15 + 50x) &,- Date Class B) 7 (22 + 4x) 6x = 7% + ( 5 + 19x) + 9 (give proper fraction or mixed number answer) C) 3(9 4x) +

More information

CAE 331/513 Building Science Fall 2015

CAE 331/513 Building Science Fall 2015 CAE 331/513 Building Science Fall 2015 Week 5: September 24, 2015 Psychrometrics (equations) Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com

More information

Problem 1.6 Make a guess at the order of magnitude of the mass (e.g., 0.01, 0.1, 1.0, 10, 100, or 1000 lbm or kg) of standard air that is in a room 10

Problem 1.6 Make a guess at the order of magnitude of the mass (e.g., 0.01, 0.1, 1.0, 10, 100, or 1000 lbm or kg) of standard air that is in a room 10 Problem 1.6 Make a guess at the order of magnitude of the mass (e.g., 0.01, 0.1, 1.0, 10, 100, or 1000 lbm or kg) of standard air that is in a room 10 ft by 10 ft by 8 ft, and then compute this mass in

More information

Making Decisions with Insulation

Making Decisions with Insulation PDHonline Course K115 (3 PDH) Making Decisions with Insulation Instructor: Christopher Haslego, B.S. ChE 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088

More information