PE = mgh. Potential energy. What is g here? Let s pick up where we left off last time..the topic was gravitational potential energy

Size: px
Start display at page:

Download "PE = mgh. Potential energy. What is g here? Let s pick up where we left off last time..the topic was gravitational potential energy"

Transcription

1 Let s pick up where we left off last time..the topic was gravitational potential energy Now, let s talk about a second form of energy Potential energy Imagine you are standing on top of half dome in Yosemite valley, holding a rock in your hand. The rock has no kinetic energy, but if you threw it off the cliff it would have quite a bit of kinetic energy by the time it hit the valley floor. We say that the rock has potential energy. If m is the mass of the rock and h the height above ground, the potential energy of the rock is PE = mgh What is g here? Physics of Energy II - 1

2 Recall also the reading assignment. Reading assignment in textbook - chapter 3 - work, energy & power Physics of Energy II - 2

3 g is known as the gravitational constant. It measures the strength of the Earth s gravitational pull on falling objects. Galileo demonstrated that all objects fall the same way. If two objects are dropped from the same height at the same time, then they will hit the ground at the same time (as long as other forces like air resistance are negligible). Falling objects accelerate downwards at a rate of g = 9.8m / s 2 Acceleration is the rate of change of velocity with time. So, the units of acceleration are the units for velocity divided by another factor of time. Physics of Energy II - 3

4 More on acceleration & related physics 2007 Ferrari F430 Weight: 3196 lb (1450 kg) Acceleration: 0-62 mph in 4.0s Top Speed:>196 mph (>315 km/h) Fuel Economy city/highway 11/16 mpg 2007 Toyota Prius Let s calculate its acceleration in meters/(second) mph in 10s 60mpg(city), 50mpg(hway) Physics of Energy II - 4

5 Basic physics result - if an object starts at rest at time t=0 and accelerates with a constant acceleration, its velocity increases linearly with time. v = a! t acceleration If we want to figure out the acceleration, we can rewrite this as a = v /t The car accelerates, reaching a velocity of v=62 mph = 28 m/s in t=4 s, which gives a = (28ms!1 ) /(4s) = 7ms!2 A little bit smaller than the gravitational acceleration of g=9.8m/s 2 Physics of Energy II - 5

6 While we re talking about acceleration, let s introduce another piece of basic physics Newton s 2nd law. F = m! a Force equals mass times acceleration. If there is a net force on an object, it will accelerate. Conversely, if something is accelerating, there must be a force on it. Back to gravity the gravitational force (at the earth s surface) is F = m! g Setting these two expressions equal, we see that the mass cancels giving a = g independent of the mass of the object. This is your weight. The force that a scale pushes up on your feet with to counterbalance gravity. Physics of Energy II - 6

7 The fact that the masses are the same in these two equations has very deep significance in physics. This equivalence principle led Einstein to his theory of gravity - general relativity - in which the gravitational force is a manifestation of the curvature of spacetime. The mass in Newton s 2nd law (F=ma) is known as the inertial mass, while the mass in the gravitational force law (F=mg) is known as the gravitational mass. The equivalence principle has been demonstrated experimentally to one part in a trillion Physics of Energy II - 7

8 Finally, back to gravitational potential energy We can check that potential energy indeed has the units of energy PE = mgh If the mass is measured in kilograms and the height in meters then the units of potential energy work out to be kg! (ms "2 )! m = kg! m 2! s "2 = Joules Recall these units came out naturally from the formula for Kinetic energy 1/2 mv 2 Physics of Energy II - 8

9 We can also check that falling objects satisfy conservation of energy. If we drop something from a height D at time t=0, then it s position and velocities as functions of time are given by h(t) = D! 1 2 gt 2 v(t) =!gt Now, let s calculate the total energy as a function of time. E = KE + PE = 1 2 mv(t)2 + mgh(t) The result is actually independent of time and equal to the initial potential energy, demonstrating conservation of energy. E = 1 2 (!gt)2 + mg(d! 1 2 gt 2 ) = mgd Physics of Energy II - 9

10 A practical application of gravitational potential energy How to store energy without a battery? We ll see that one problem with electricity is that it s difficult to store. Batteries are only practical for relatively small amounts of energy. How do you store more massive quantities? One way is to use it to lift up water and convert the electrical energy to gravitational potential energy. This is called pumped storage hydroelectricity. The Northfield Mountain pumped storage hydroelectric plant - operated by First Light Power Resources - is located in Northfield, MA about 20 minutes north of campus (up route 63). Physics of Energy II - 10

11 The 1080 MegaWatt plant at Northfield Mountain facility opened in 1972 and was the largest in the world at that time. During periods of low demand, water is pumped 5.5 miles from the Connecticut river to a 300 acre reservoir, 800 feet above the river, which holds 5.6 billion gallons of water. In generating mode, water flows downhill through 4 turbine generators at a rate of 20,000 gallons per second. Possible paper topic Info from Physics of Energy II - 11

12 Thermal Energy So far, we ve talked about two forms of energy - kinetic energy and gravitational potential energy. Now, we ll introduce a 3rd - thermal energy. We will try to understand what it means for something to be hot and how much energy it takes to heat something up? We ll see that for a gas, like the air in this room, thermal energy is just the sum of the kinetic energies of the individual gas molecules. Read Chapter 7 Understanding the mechanical equivalence of heat - that mechanical energy could be transformed into heat and vice-versa - was a major achievement of 19th century physics. This effort was closely tied to the industrial revolution and the need to understand how things like steam engines (which convert heat into mechanical energy) work Physics of Energy II - 12

13 A good way to start into this subject is to talk about the amount of energy it takes to heat something up? One way to talk about this is just to give it a name.. The British Thermal Unit (or BTU) is defined as 1 BTU = amount of energy required to raise the temperature of 1 pound of water by 1 degree farenheit. We already have another unit of energy - the Joule. We need to know how many Joules does a BTU correspond to? This is a question for experimentalists? Frigidaire 6000 BTU Air Conditioner Really this means BTU/hour - a measure of the cooling capacity of the air conditioner Physics of Energy II - 13

14 This was a question that interested James Joule, himself. Of course, at the time the mechanical unit of energy in use was not the Joule. It was the foot-pound. Before coming back to Joule s work, let s take yet another detour into units and talk about the footpound as a measure of energy. This will allow us to bring up another important point about energy. James Joule, Physics of Energy II - 14

15 The usual definition of energy given in introductory physics textbooks is. energy = capacity to do work Of course, to complete the definition we need to ask what physicists mean by work? If you sit in the library reading a book for a course, are you doing work in the physics sense? No In physics work means very specifically exerting a force through a distance, with the direction of motion in the same direction as the force. Physics of Energy II - 15

16 This part about directions is important. An elevator does work when it takes us between floors, because the force it exerts is in the same direction as its motion - up. However, if someone is walking along carrying something, they are not doing any work (at least on the object they are carrying) in the physics sense - there is no force in the direction of motion. The force is upwards, while the direction of motion is forwards. This makes sense because in the first case, the elevator goes up and the work it does increases the potential energy of itself and whoever is inside. However, in carrying water, the water is always staying at the same height. Physics of Energy II - 16

17 So long as the force and motion are in the same direction, the formula for work is W = (Force)(Distance) = F D The foot-pound combines a unit of force - a pound -with a unit of distance - a foot - and is thereby a unit of work or energy. 1 foot-pound is the amount of work that must be done to raise a 1 pound weight by 1 foot. This also gives the change in potential energy of the 1 pound weight. Note: Pounds are used both as a measure of force and of mass, which can be confusing. A pound-mass is the amount of mass that weighs 1 pound on the surface of the Earth. However, on the surface of the moon it would weigh something less than a pound. When we make a conversion 1 pound = 2.2 kilograms, we are really talking about the pound-mass. Physics of Energy II - 17

18 Yet another unit..the SI unit for force is called the Newton. 1Newton = 1N = 1(ki logram)(meter) / (second) 2 This makes sense, based on the equation F = m! a The unit of force is the unit of mass times the unit of acceleration. Let s check that work has the same dimensions as energy. Work equals force times distance. So a unit of work is a Newton-meter. 1 Newton-meter = 1 (kg m s -2 ) m = 1 kg m 2 /s 2 =1 Joule Physics of Energy II - 18

19 Back to Joule and the mechanical equivalent of heat Joule built an apparatus in which water was heated by mechanical agitation. He could measure both the temperature change in the water and the amount of work done by the agitator. Recall that 1 BTU is the amount of energy needed to raise the temperature of a pound of water by 1 degree farenheit. Joule found that 1 BTU = 773 foot-pounds. The modern measurement is 1 BTU = foot pounds. So Joule s measurement was quite good. Physics of Energy II - 19

20 Let s focus on this relation between heat and mechanical work 1 BTU = foot-pounds and note that 1 BTU is approximately the amount of energy released by burning a match. Burning releases the stored chemical energy in the wood. We see that this same amount of energy with lift a 1 pound weight nearly 800 feet in the air, or equivalently a 100 pound weight up to a height of 8 feet. It is quite remarkable that the chemical energy stored in such a small piece of material could accomplish such a feat! Indeed, the fact that burning fossil fuels yields quite useful amounts of mechanical energy is what made the industrial revolution possible.. We ll return to this in much more detail later. Physics of Energy II - 20

21 Not only are the capacities of refrigerators usually stated in BTU s. Total annual world energy usage is often stated in terms of Quads. 1 Quad = 1 quadrillion BTU = 1 x BTU In 2004, total world energy consumption was 447 Quads Physics of Energy II - 21

22 Back to thermal energy Thanks to Joule we can measure the amount of energy that it takes to heat something up. Can we also understand the nature of the energy contained in a hot object via the basic laws of physics? What is thermal energy? Matter comes in 3 basic phases - solid, liquid & gas. The easiest to understand are gases and that s where we ll start. In the case of simple gases, there is a simple formula relating the thermal energy of the gas to its temperature. Solids and liquids are more complicated Physics of Energy II - 22

23 We ll consider a gas that s made up of single atoms in a container. The atoms travel around in straight lines colliding occasionally with each other and with the walls of the container. The number of atoms in a gas is immense (approximately 3x10 22 in a liter container at room temperature and pressure). The pressure of a gas comes from collisions of the atoms with the walls of the container. The faster the atoms in the gas are moving, the higher the pressure. The speed of the atoms is in turn related to temperature. Physics of Energy II - 23

24 The average kinetic energy of gas atoms is 1 2 mv 2 = 3 2 k BT m = mass of atoms T = temperature where k B is known as Boltzmann s constant and is given by k B =1.4!10 "23 J /K and temperature is measured using degrees Kelvin. (This is the K in the units of Boltzmann s constant) The total energy of the gas is just the sum for all the gas atoms. E gas = 3 2 Nk B T N = number of gas atoms Physics of Energy II - 24

25 8 quantitative problems 1 short answer problem To be handed in in class Be sure to show your work on the quantitative problems. Don t just write down the answer. Physics of Energy II - 25

Physics of Energy. Premise of this course in order to come up with such a solution, we need to understand how energy works?

Physics of Energy. Premise of this course in order to come up with such a solution, we need to understand how energy works? Physics of Energy As we discussed. Our society needs to find a sustainable energy solution that Fulfills global energy needs in the long term. Doesn t degrade the environment. Premise of this course in

More information

Motion, Forces, and Energy

Motion, Forces, and Energy Motion, Forces, and Energy What is motion? Motion - when an object changes position Types of Motion There are 2 ways of describing motion: Distance Displacement Distance Distance is the total path traveled.

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 1 Newton s Second Law Force, Mass, and Acceleration Newton s first law

More information

Classical mechanics: conservation laws and gravity

Classical mechanics: conservation laws and gravity Classical mechanics: conservation laws and gravity The homework that would ordinarily have been due today is now due Thursday at midnight. There will be a normal assignment due next Tuesday You should

More information

New feature on the course website

New feature on the course website New feature on the course website The goal of this is not to try to provide a comprehensive energy news service - you can find these online. I ll try to post a new article on some interestng topic the

More information

Unit 5: Energy (Part 2)

Unit 5: Energy (Part 2) SUPERCHARGED SCIENCE Unit 5: Energy (Part 2) www.sciencelearningspace.com Appropriate for Grades: Lesson 1 (K-12), Lesson 2 (K-12) Duration: 6-15 hours, depending on how many activities you do! We covered

More information

Kinetic Energy. energy! l The kinetic energy of an object depends both on the mass of an object and its speed

Kinetic Energy. energy! l The kinetic energy of an object depends both on the mass of an object and its speed l 1 more day for LON-CAPA #4 l First exam: Feb 6 in Life Sciences A133 1:00 2:20 PM 40 questions, should not take full time review in 2 nd half of this lecture you may bring 1 8.5 X11 sheet of paper with

More information

Work Done by a Constant Force

Work Done by a Constant Force Work and Energy Work Done by a Constant Force In physics, work is described by what is accomplished when a force acts on an object, and the object moves through a distance. The work done by a constant

More information

Energy and the Environment

Energy and the Environment Energy and the Environment Energy physics definition the capacity to do work and conjunction used to connect grammatically coordinate words, phrases, or clauses the Environment the aggregate of surrounding

More information

HNRS 227 Chapter 3. Energy presented by Prof. Geller Fall 2008

HNRS 227 Chapter 3. Energy presented by Prof. Geller Fall 2008 HNRS 227 Chapter 3 Energy presented by Prof. Geller Fall 2008 Don t Forget the Following Units of length, mass and time Metric Prefixes The Scientific Method Speed, velocity, acceleration Force Falling

More information

Objectives. Power in Translational Systems 298 CHAPTER 6 POWER

Objectives. Power in Translational Systems 298 CHAPTER 6 POWER Objectives Explain the relationship between power and work. Explain the relationship between power, force, and speed for an object in translational motion. Calculate a device s efficiency in terms of the

More information

SUPERCHARGED SCIENCE. Unit 2: Motion.

SUPERCHARGED SCIENCE. Unit 2: Motion. SUPERCHARGED SCIENCE Unit 2: Motion www.sciencelearningspace.com Appropriate for Grades: Lesson 1 (K-12), Lesson 2 (K-12) Duration: 6-12 hours, depending on how many activities you do! We re going to study

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Chapter 4 Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 3 Motion and Forces Newton s Laws of Motion The British scientist

More information

Newton s Wagon. Materials. friends rocks wagon balloon fishing line tape stopwatch measuring tape. Lab Time Part 1

Newton s Wagon. Materials. friends rocks wagon balloon fishing line tape stopwatch measuring tape. Lab Time Part 1 Newton s Wagon Overview: The natural state of objects is to follow a straight line. In fact, Newton s First Law of Motion states that objects in motion will tend to stay in motion unless they are acted

More information

Forces and Newton s Laws Notes

Forces and Newton s Laws Notes Forces and Newton s Laws Notes Force An action exerted on an object which can change the motion of the object. The SI unit for force is the Newton (N) o N = (kg m)/s 2 o Pound is also a measure of force

More information

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion.

that when friction is present, a is needed to keep an object moving. 21. State Newton s first law of motion. Chapter 3 Newton s First Law of Motion Inertia Exercises 31 Aristotle on Motion (pages 29 30) Fill in the blanks with the correct terms 1 Aristotle divided motion into two types: and 2 Natural motion on

More information

Chapter 2. Forces & Newton s Laws

Chapter 2. Forces & Newton s Laws Chapter 2 Forces & Newton s Laws 1st thing you need to know Everything from chapter 1 Speed formula Acceleration formula All their units There is only 1 main formula, but some equations will utilize previous

More information

KINETIC AND POTENTIAL ENERGY. Chapter 6 (cont.)

KINETIC AND POTENTIAL ENERGY. Chapter 6 (cont.) KINETIC AND POTENTIAL ENERGY Chapter 6 (cont.) The Two Types of Mechanical Energy Energy- the ability to do work- measured in joules Potential Energy- energy that arises because of an object s position

More information

Physics Unit 4:Work & Energy Name:

Physics Unit 4:Work & Energy Name: Name: Review and Preview We have come a long way in our study of mechanics. We started with the concepts of displacement and time, and built up to the more complex quantities of velocity and acceleration.

More information

Motion. Ifitis60milestoRichmondandyouaretravelingat30miles/hour, itwilltake2hourstogetthere. Tobecorrect,speedisrelative. Ifyou. time.

Motion. Ifitis60milestoRichmondandyouaretravelingat30miles/hour, itwilltake2hourstogetthere. Tobecorrect,speedisrelative. Ifyou. time. Motion Motion is all around us. How something moves is probably the first thing we notice about some process. Quantifying motion is the were we learn how objects fall and thus gravity. Even our understanding

More information

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION.

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. MOTION & FORCES SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. A. CALCULATE VELOCITY AND ACCELERATION. B. APPLY NEWTON S THREE LAWS TO EVERYDAY SITUATIONS BY EXPLAINING THE

More information

Newton s Laws of Motion. Chapter 4

Newton s Laws of Motion. Chapter 4 Newton s Laws of Motion Chapter 4 Newton s First Law of Motion Force A force is a push or pull. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. Force

More information

Chapter 4 Newton s Laws

Chapter 4 Newton s Laws Chapter 4 Newton s Laws Isaac Newton 1642-1727 Some inventions and discoveries: 3 laws of motion Universal law of gravity Calculus Ideas on: Sound Light Thermodynamics Reflecting telescope In this chapter,

More information

Dynamics; Newton s Laws of Motion

Dynamics; Newton s Laws of Motion Dynamics; Newton s Laws of Motion Force A force is any kind of push or pull on an object. An object at rest needs a force to get it moving; a moving object needs a force to change its velocity. The magnitude

More information

TEACHER BACKGROUND INFORMATION FORCE

TEACHER BACKGROUND INFORMATION FORCE TEACHER BACKGROUND INFORMATION FORCE WHAT IS FORCE? Force is anything that can change the state of motion of a body. In simpler terms, force is a push or a pull. For example, wind pushing on a flag is

More information

TEK 8.6C: Newton s Laws

TEK 8.6C: Newton s Laws Name: Teacher: Pd. Date: TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of action-reaction such as in vehicle

More information

Topic 2: Mechanics 2.3 Work, energy, and power

Topic 2: Mechanics 2.3 Work, energy, and power Essential idea: The fundamental concept of energy lays the basis upon which much of science is built. Nature of science: Theories: Many phenomena can be fundamentally understood through application of

More information

6.0 Energy Conservation. 6.1 Work

6.0 Energy Conservation. 6.1 Work Phys 300/301 Physics: Algebra/Trig Eugene Hecht, 3e. Prepared 1/09/05 6.0 Energy Conservation After Newtonian mechanics came a lull in the state of mechanical physics. In the beginning of the 1800 s, the

More information

Lecture Outline. Chapter 7: Energy Pearson Education, Inc.

Lecture Outline. Chapter 7: Energy Pearson Education, Inc. Lecture Outline Chapter 7: Energy This lecture will help you understand: Energy Work Power Mechanical Energy: Potential and Kinetic Work-Energy Theorem Conservation of Energy Machines Efficiency Recycled

More information

Dynamics: Newton s Laws of Motion

Dynamics: Newton s Laws of Motion Lecture 6 Chapter 4 Physics I 02.10.2013 Dynamics: Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1spring.html

More information

Today. Finish Ch. 6 on Momentum Start Ch. 7 on Energy

Today. Finish Ch. 6 on Momentum Start Ch. 7 on Energy Today Finish Ch. 6 on Momentum Start Ch. 7 on Energy Next three lectures (Sep 16, 20, 23) : Energy (Ch7) and Rotation (Ch.8) will be taught by Dr. Yonatan Abranyos, as I will be away at a research conference

More information

Isaac Newton was a British scientist whose accomplishments

Isaac Newton was a British scientist whose accomplishments E8 Newton s Laws of Motion R EA D I N G Isaac Newton was a British scientist whose accomplishments included important discoveries about light, motion, and gravity. You may have heard the legend about how

More information

Preparing for Six Flags Physics Concepts

Preparing for Six Flags Physics Concepts Preparing for Six Flags Physics Concepts uniform means constant, unchanging At a uniform speed, the distance traveled is given by Distance = speed x time At uniform velocity, the displacement is given

More information

SCIENCE STUDENT BOOK. 12th Grade Unit 3

SCIENCE STUDENT BOOK. 12th Grade Unit 3 SCIENCE STUDENT BOOK 12th Grade Unit 3 Unit 3 WORK AND ENERGY SCIENCE 1203 WORK AND ENERGY INTRODUCTION 3 1. TYPE AND SOURCES OF ENERGY 5 MECHANICAL ENERGY 6 FORMS OF ENERGY 9 SELF TEST 1 12 2. CONSERVATION

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 Work and Energy Midterm exams will be available next Thursday. Assignment 6 Textbook (Giancoli, 6 th edition), Chapter 6: Due on Thursday, November 5 1. On page 162 of Giancoli, problem 4. 2.

More information

Dynamics: Newton s Laws of Motion

Dynamics: Newton s Laws of Motion Lecture 6 Chapter 4 Physics I 02.10.2013 Dynamics: Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1spring.html

More information

Unit 3: Force and Laws of Motion

Unit 3: Force and Laws of Motion 1 Unit 3: Force and Laws of Motion We ve done a good job discussing the kinematics under constant acceleration including the practical applications to free-fall fall and projectile motion. Now we turn

More information

From Last Time. position: coordinates of a body velocity: rate of change of position. change in position change in time

From Last Time. position: coordinates of a body velocity: rate of change of position. change in position change in time From Last Time position: coordinates of a body velocity: rate of change of position average : instantaneous: average velocity over a very small time interval acceleration: rate of change of velocity average:

More information

8. The graph below shows a beetle s movement along a plant stem.

8. The graph below shows a beetle s movement along a plant stem. Name: Block: Date: Introductory Physics: Midyear Review 1. Motion and Forces Central Concept: Newton s laws of motion and gravitation describe and predict the motion of most objects. 1.1 Compare and contrast

More information

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List:

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List: No Push No Go No Push No Stop No Push No Speed Up No Push No Slow Down

More information

Chapter: Newton s Laws of Motion

Chapter: Newton s Laws of Motion Table of Contents Chapter: Newton s Laws of Motion Section 1: Motion Section 2: Newton s First Law Section 3: Newton s Second Law Section 4: Newton s Third Law 1 Motion What is motion? Distance and Displacement

More information

Chapter 4. Energy. Work Power Kinetic Energy Potential Energy Conservation of Energy. W = Fs Work = (force)(distance)

Chapter 4. Energy. Work Power Kinetic Energy Potential Energy Conservation of Energy. W = Fs Work = (force)(distance) Chapter 4 Energy In This Chapter: Work Kinetic Energy Potential Energy Conservation of Energy Work Work is a measure of the amount of change (in a general sense) that a force produces when it acts on a

More information

Energy, Work, and Power

Energy, Work, and Power Matthew W. Milligan, Work, and Power Conservation Laws an Alternative to Newton s Laws Matthew W. Milligan, Work, and Power I. - kinetic and potential - conservation II. Work - dot product - work-energy

More information

Lesson 8: Work and Energy

Lesson 8: Work and Energy Name Period Lesson 8: Work and Energy 8.1 Experiment: What is Kinetic Energy? (a) Set up the cart, meter stick, pulley, hanging mass, and tape as you did in Lesson 5.1. You will examine the distance and

More information

Unit 08 Work and Kinetic Energy. Stuff you asked about:

Unit 08 Work and Kinetic Energy. Stuff you asked about: Unit 08 Work and Kinetic Energy Today s Concepts: Work & Kinetic Energy Work in a non-constant direction Work by springs Mechanics Lecture 7, Slide 1 Stuff you asked about: Can we go over the falling,

More information

Lecture Outline. Chapter 7: Energy Pearson Education, Inc.

Lecture Outline. Chapter 7: Energy Pearson Education, Inc. Lecture Outline Chapter 7: Energy This lecture will help you understand: Energy Work Power Mechanical Energy: Potential and Kinetic Work-Energy Theorem Conservation of Energy Machines Efficiency Recycled

More information

Essentially, the amount of work accomplished can be determined two ways:

Essentially, the amount of work accomplished can be determined two ways: 1 Work and Energy Work is done on an object that can exert a resisting force and is only accomplished if that object will move. In particular, we can describe work done by a specific object (where a force

More information

Work and Energy Energy Conservation

Work and Energy Energy Conservation Work and Energy Energy Conservation MidterM 1 statistics Mean = 16.48 Average = 2.74 2 Clicker Question #5 Rocket Science!!! The major principle of rocket propulsion is: a) Conservation of energy b) Conservation

More information

Forces. Unit 2. Why are forces important? In this Unit, you will learn: Key words. Previously PHYSICS 219

Forces. Unit 2. Why are forces important? In this Unit, you will learn: Key words. Previously PHYSICS 219 Previously Remember From Page 218 Forces are pushes and pulls that can move or squash objects. An object s speed is the distance it travels every second; if its speed increases, it is accelerating. Unit

More information

Lecture PowerPoints. Chapter 4 Physics: for Scientists & Engineers, with Modern Physics, 4th edition Giancoli

Lecture PowerPoints. Chapter 4 Physics: for Scientists & Engineers, with Modern Physics, 4th edition Giancoli Lecture PowerPoints Chapter 4 Physics: for Scientists & Engineers, with Modern Physics, 4th edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided

More information

Chapter 4 Thrills and Chills >600 N If your weight is 600 N (blue vector), then the bathroom scale would have to be providing a force of greater than 600 N (red vector). Another way of looking at the situation

More information

Year 7 Recall Booklet. Name: Class:

Year 7 Recall Booklet. Name: Class: Year 7 Recall Booklet Name: Class: Energy Kinetic energy Moving things have kinetic energy. The heavier a thing is and the faster it moves the more kinetic energy it has. All moving things have kinetic

More information

Chapter 3 Laws of Motion

Chapter 3 Laws of Motion Conceptual Physics/ PEP Name: Date: Chapter 3 Laws of Motion Section Review 3.1 1. State Newton s first law in your own words. An object at rest will stay at rest until an outside force acts on it to move.

More information

Foundations of Physical Science. Unit 2: Work and Energy

Foundations of Physical Science. Unit 2: Work and Energy Foundations of Physical Science Unit 2: Work and Energy Chapter 5: Work, Energy, and Power 5.1 Work 5.2 Energy Conservation 5.3 Energy Transformations Learning Goals Calculate the amount of work done by

More information

Newton s 2 nd Law of Motion. Physics 3 rd /4th 6wks Updated as of 12/17/15

Newton s 2 nd Law of Motion. Physics 3 rd /4th 6wks Updated as of 12/17/15 Newton s 2 nd Law of Motion Physics 3 rd /4th 6wks Updated as of 12/17/15 Newton s 2 nd Law: Football Correlation Newton s 2 nd Law of Motion What is the difference between tossing a ball and throwing

More information

Work. Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d

Work. Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d ENERGY CHAPTER 11 Work Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d Units = Joules Work and energy transferred are equivalent in ideal systems. Two Types of Energy

More information

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction Newton s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).

More information

The Story of Energy. Forms and Functions

The Story of Energy. Forms and Functions The Story of Energy Forms and Functions What are 5 things E helps us do? Batteries store energy! This car uses a lot of energy Even this sleeping puppy is using stored energy. We get our energy from FOOD!

More information

3. Which one is a match? A. left picture B. middle picture C. right picture D. none of the above E. all look okay to me B

3. Which one is a match? A. left picture B. middle picture C. right picture D. none of the above E. all look okay to me B 3. If I observe a galaxy with an apparent velocity of recession of 1500 km/s, and Hubble s constant is 75 km/s/mpc, how far away is the galaxy?. 2 Mpc; about 6.5 million light years. 5 Mpc; about 16 million

More information

EDUCATION DAY WORKBOOK

EDUCATION DAY WORKBOOK Grades 9 12 EDUCATION DAY WORKBOOK It is with great thanks for their knowledge and expertise that the individuals who devised this book are recognized. MAKING MEASUREMENTS Time: Solve problems using a

More information

Pre Comp Review Questions 7 th Grade

Pre Comp Review Questions 7 th Grade Pre Comp Review Questions 7 th Grade Section 1 Units 1. Fill in the missing SI and English Units Measurement SI Unit SI Symbol English Unit English Symbol Time second s second s. Temperature Kelvin K Fahrenheit

More information

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS Central Concept: Newton s laws of motion and gravitation describe and predict the motion of 1.1

More information

Work and Energy. Work

Work and Energy. Work Work and Energy Objectives: Students will define work. Students will define and give examples of different forms of energy. Students will describe and give examples of kinetic energy and potential energy.

More information

Efficiency = power out x 100% power in

Efficiency = power out x 100% power in Work, Energy and Power Review Package 1) Work: change in energy. Measured in Joules, J. W = Fd W = ΔE Work is scalar, but can be negative. To remember this, ask yourself either: Is the object is losing

More information

Chapter 5. Preview. Section 1 Measuring Motion. Section 2 What Is a Force? Section 3 Friction: A Force That Opposes Motion

Chapter 5. Preview. Section 1 Measuring Motion. Section 2 What Is a Force? Section 3 Friction: A Force That Opposes Motion Matter in Motion Preview Section 1 Measuring Motion Section 2 What Is a Force? Section 3 Friction: A Force That Opposes Motion Section 4 Gravity: A Force of Attraction Concept Mapping Section 1 Measuring

More information

Physics 100 Reminder: for on-line lectures

Physics 100 Reminder:  for on-line lectures Physics 100 Reminder: http://www.hunter.cuny.edu/physics/courses/physics100/fall-2016 for on-line lectures Today: Finish Chapter 3 Chap 4 - Newton s Second Law In Chapter 4, we establish a relationship

More information

Chapter 5 Matter in Motion Focus Notes

Chapter 5 Matter in Motion Focus Notes Chapter 5 Matter in Motion Focus Notes Section 1 Define the following terms: Motion, Speed, Velocity, and Acceleration Motion: an object s change in position relative to a reference point. Speed: the distance

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a)

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a) Chapter Work, Energy and Power Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Q2. A bullet of mass 10g leaves a rifle at an initial velocity of

More information

Simple machines. ( Fxd) input. = (Fxd) output

Simple machines. ( Fxd) input. = (Fxd) output Announcements l LON-CAPA #5 and Mastering Physics Chapters 15 and 18 due Tuesday Feb. 18 l Average for exam 1 is 28/40 l The course will be graded on a curve with the average about 3.0, so if you received

More information

7.6(B) distinguish between physical and chemical changes in matter in the digestive system; and

7.6(B) distinguish between physical and chemical changes in matter in the digestive system; and 7.6(B) distinguish between physical and chemical changes in matter in the digestive system; and 7.7(B) illustrate the transformation of energy within an organism such as the transfer from chemical energy

More information

Science Teaching Junkie Science Teaching Junkie

Science Teaching Junkie Science Teaching Junkie Science Teaching Junkie Thank you for your purchase. I hope you enjoy the Force and Motion for Interactive Science Notebooks! It includes 30 pages of foldables and flippables for student notebooks. Many

More information

NATIONAL 5 PHYSICS THERMODYNAMICS

NATIONAL 5 PHYSICS THERMODYNAMICS NATIONAL 5 PHYSICS THERMODYNAMICS HEAT AND TEMPERATURE Heat and temperature are not the same thing! Heat Heat is a type of energy. Like all types of energy it is measured in joules (J). The heat energy

More information

Gravitational Potential

Gravitational Potential Gravitational Potential Energy Bởi: OpenStaxCollege Work Done Against Gravity Climbing stairs and lifting objects is work in both the scientific and everyday sense it is work done against the gravitational

More information

Ch06. Energy. Thermochemistry, understanding energy, heat & work. version 1.5

Ch06. Energy. Thermochemistry, understanding energy, heat & work. version 1.5 Ch06 Energy Thermochemistry, understanding energy, heat & work. version 1.5 Nick DeMello, PhD. 2007-2016 Ch06 Accounting for Energy Energy Definitions Classifications Units Kinetic, Potential, Thermal

More information

Derived copy of The Kinetic-Molecular Theory *

Derived copy of The Kinetic-Molecular Theory * OpenStax-CNX module: m62491 1 Derived copy of The Kinetic-Molecular Theory * Sylvia K. Quick Based on The Kinetic-Molecular Theory by OpenStax This work is produced by OpenStax-CNX and licensed under the

More information

Energy can change from one form to another without a net loss or gain.

Energy can change from one form to another without a net loss or gain. Energy can change from one form to another without a net loss or gain. Energy may be the most familiar concept in science, yet it is one of the most difficult to define. We observe the effects of energy

More information

Lecture 5. Work Energy

Lecture 5. Work Energy Lecture 5 Work Energy Work, Energy Work and energy are fundamental physical quantities in science. Work is done when a force moves an object through a distance. Energy is the ability to do work The unit

More information

Chapter 06 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Chapter 06 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Chapter 06 Test A Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The property of matter that resists changes in motion is: a. acceleration.

More information

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction Newton s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).

More information

Solving two-body problems with Newton s Second Law. Example Static and Kinetic Friction. Section 5.1 Friction 10/15/13

Solving two-body problems with Newton s Second Law. Example Static and Kinetic Friction. Section 5.1 Friction 10/15/13 Solving two-body problems with Newton s Second Law You ll get multiple equations from the x and y directions, these equations can be solved simultaneously to find unknowns 1. Draw a separate free body

More information

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30.

Page 1. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is A) 34 m B) 30. Name: 1) If a man walks 17 meters east then 17 meters south, the magnitude of the man's displacement is 34 m 30. m 17 m 24 m 2) The graph below represents the motion of a body that is moving with 6) Which

More information

Hour Exam #1. Power. Question. Question. Chapter 1: Post-Aristotle. Question. P = Work time, Joules(J) " Watts (W) second(s)

Hour Exam #1. Power. Question. Question. Chapter 1: Post-Aristotle. Question. P = Work time, Joules(J)  Watts (W) second(s) Hour Exam #1 Hour Exam I, Wed. Feb. 14, in-class (50 minutes) Material Covered: Chap 1, 3-6 One page of notes (8.5 x 11 ) allowed 20 multiple choice questions Scantron sheets will be used - bring #2 HB

More information

Chapter 11. Using Energy. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc.

Chapter 11. Using Energy. PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition Pearson Education, Inc. Chapter 11 Using Energy PowerPoint Lectures for College Physics: A Strategic Approach, Second Edition 11 Using Energy Slide 11-2 Slide 11-3 Slide 11-4 Slide 11-5 Reading Quiz 1. A machine uses 1000 J of

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C O N T E N T S T A N D A R D S Central Concept: Newton s laws of motion and gravitation describe and predict the motion

More information

over a distance. W = F*d The units are [N]*[m] [ ] = [Joules] = [J] F * d = W

over a distance. W = F*d The units are [N]*[m] [ ] = [Joules] = [J] F * d = W Work and Energy WORK Work measures the effects of a force acting over a distance. W = F*d The units are [N]*[m] [ ] = [Joules] = [J] F * d = W WORK W = F*d WORK Q: You can lift a maximum of 1000 Newtons.

More information

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron.

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron. Lecture 3 The Laws of Motion OUTLINE 5.1 The Concept of Force 5.2 Newton s First Law and Inertial Frames 5.3 Mass 5.4 Newton s Second Law 5.5 The Gravitational Force and Weight 5.6 Newton s Third Law 5.8

More information

UNIT 1 MECHANICS PHYS:1200 LECTURE 2 MECHANICS (1)

UNIT 1 MECHANICS PHYS:1200 LECTURE 2 MECHANICS (1) 1 UNIT 1 MECHANICS PHYS:1200 LECTURE 2 MECHANICS (1) The topic of lecture 2 is the subject of mechanics the science of how and why objects move. The subject of mechanics encompasses two topics: kinematics:

More information

Name: ANSWER KEY Quarter 3 Benchmark Review. 3. m/s km/hr. 7. (Vf Vi) / t. 8. m/s m/s F = ma

Name: ANSWER KEY Quarter 3 Benchmark Review. 3. m/s km/hr. 7. (Vf Vi) / t. 8. m/s m/s F = ma Name: ANSWER KEY Quarter 3 Benchmark Review Velocity 1. Define Velocity: Date: Period: 1. Distance divided by time in a specific direction 2. What is the difference between speed and velocity? 2. Velocity

More information

Chapter Four Holt Physics. Forces and the Laws of Motion

Chapter Four Holt Physics. Forces and the Laws of Motion Chapter Four Holt Physics Forces and the Laws of Motion Physics Force and the study of dynamics 1.Forces - a. Force - a push or a pull. It can change the motion of an object; start or stop movement; and,

More information

How Do Objects Move? Describing Motion. Different Kinds of Motion

How Do Objects Move? Describing Motion. Different Kinds of Motion How Do Objects Move? Describing Motion Different Kinds of Motion Motion is everywhere. The planets are in motion around the Sun. Cars are in motion as they are driven down the street. There s even motion

More information

Energy and the Environment. HNRS 228 Spring 2010 Prof. Geller

Energy and the Environment. HNRS 228 Spring 2010 Prof. Geller Energy and the Environment HNRS 228 Spring 2010 Prof. Geller Good to Know Units of length, mass and time Metric Prefixes Relationship of Mass, Volume and Density The Scientific Method Speed, velocity,

More information

Unit 2: Energy THERMAL ENERGY HEAT TRANSFER POTENTIAL VS. KINETIC ENERGY WORK POWER SIMPLE MACHINES

Unit 2: Energy THERMAL ENERGY HEAT TRANSFER POTENTIAL VS. KINETIC ENERGY WORK POWER SIMPLE MACHINES Unit 2: Energy THERMAL ENERGY HEAT TRANSFER POTENTIAL VS. KINETIC ENERGY WORK POWER SIMPLE MACHINES Bellringer Day 01 1. What is energy? 2. There are different forms of energy. Name two. What is Energy?

More information

Review Chapters 1-9. Did you read the article on helmets before coming to class? A. Yes B. No

Review Chapters 1-9. Did you read the article on helmets before coming to class? A. Yes B. No Review Chapters 1-9 Did you read the article on helmets before coming to class? A. Yes B. No Review Sessions Th 4-6 in W112 BNSN Th 6-8 in 377 CB F 3-5 in 445 MARB Forces on an object Block inside monument

More information

Today: Chapter 7 -- Energy

Today: Chapter 7 -- Energy Today: Chapter 7 -- Energy Energy is a central concept in all of science. We will discuss how energy appears in different forms, but cannot be created or destroyed. Some forms are more useful than others

More information

3. According to the Law of Conservation of Energy, the total amount of energy in the universe

3. According to the Law of Conservation of Energy, the total amount of energy in the universe Directions: Please choose the best answer choice for each of the following questions. 1. Heating an object excites the surface molecules, causing them to give off infrared rays. is the transmission of

More information

HW and Exam #1. HW#3 Chap. 5 Concept: 22, Problems: 2, 4 Chap. 6 Concept: 18, Problems: 2, 6

HW and Exam #1. HW#3 Chap. 5 Concept: 22, Problems: 2, 4 Chap. 6 Concept: 18, Problems: 2, 6 HW and Exam #1 HW#3 Chap. 5 Concept: 22, Problems: 2, 4 Chap. 6 Concept: 18, Problems: 2, 6 Hour Exam I, Wednesday Sep 29, in-class Material from Chapters 1,3,4,5,6 One page of notes (8.5 x 11 ) allowed

More information

Making Sense of the Universe (Chapter 4) Why does the Earth go around the Sun? Part, but not all, of Chapter 4

Making Sense of the Universe (Chapter 4) Why does the Earth go around the Sun? Part, but not all, of Chapter 4 Making Sense of the Universe (Chapter 4) Why does the Earth go around the Sun? Part, but not all, of Chapter 4 Based on part of Chapter 4 This material will be useful for understanding Chapters 8 and 11

More information

5.6 Work. Common Units Force Distance Work newton (N) meter (m) joule (J) pound (lb) foot (ft) Conversion Factors

5.6 Work. Common Units Force Distance Work newton (N) meter (m) joule (J) pound (lb) foot (ft) Conversion Factors 5.6 Work Page 1 of 7 Definition of Work (Constant Force) If a constant force of magnitude is applied in the direction of motion of an object, and if that object moves a distance, then we define the work

More information

This Week. 3/23/2017 Physics 214 Summer

This Week. 3/23/2017 Physics 214 Summer This Week Forces on an object Newtons laws Relating force to acceleration Riding in an elevator What we feel going up and down Cars and Trains Reaction /action What makes us walk or a car move Sailing

More information