INSTRUCTOR: PM DR MAZLAN ABDUL WAHID

Size: px
Start display at page:

Download "INSTRUCTOR: PM DR MAZLAN ABDUL WAHID"

Transcription

1 SMJ 4463: HEAT TRANSFER INSTRUCTOR: PM DR MAZLAN ABDUL WAHID TEXT: Introduction to Heat Transfer by Incropera, DeWitt, Bergman, Lavine 5 th Edition, John Wiley and Sons DR MAZLAN Chapter 11 Heat Exchangers Assoc Prof. Dr Mazlan Abdul Wahid Faculty of Mechanical Engineering Universiti Teknologi Malaysia DR MAZLAN 1

2 Objectives Recognize numerous types of heat exchangers, and classify them. Develop an awareness of fouling on surfaces, and determine the overall heat transfer coefficient for a heat exchanger. Perform a general energy analysis on heat exchangers. Obtain a relation for the logarithmic mean temperature difference for use in the LMTD method, and modify it for different types of heat exchangers using the correction factor. Develop relations for effectiveness, and analyze heat exchangers when outlet temperatures are not known using the effectiveness-ntu method. Know the primary considerations in the selection of heat exchangers. 3 Types Heat Exchanger Types Heat exchangers are ubiquitous in energy conversion and utilization. They involve heat exchange between two fluids separated by a solid and encompass a wide range of flow configurations. Concentric-Tube Heat Exchangers Parallel Flow Counterflow Simplest configuration. Superior performance associated with counter flow. 2

3 5 Types (cont.) Cross-flow Heat Exchangers Finned-Both Fluids Unmixed Unfinned-One Fluid Mixed the Other Unmixed For cross-flow over the tubes, fluid motion, and hence mixing, in the transverse direction (y) is prevented for the finned tubes, but occurs for the unfinned condition. Heat exchanger performance is influenced by mixing. 3

4 Compact heat exchanger: It has a large heat transfer surface area per unit volume (e.g., car radiator, human lung). A heat exchanger with the area density β > 700 m 2 /m 3 is classified as being compact. Cross-flow: In compact heat exchangers, the two fluids usually move perpendicular to each other. The crossflow is further classified as unmixed and mixed flow. 7 Types (cont.) Compact Heat Exchangers Widely used to achieve large heat rates per unit volume, particularly when one or both fluids is a gas. Characterized by large heat transfer surface areas per unit volume, small flow passages, and laminar flow. (a) Fin-tube (flat tubes, continuous plate fins) (b) Fin-tube (circular tubes, continuous plate fins) (c) Fin-tube (circular tubes, circular fins) (d) Plate-fin (single pass) (e) Plate-fin (multipass) 4

5 Shell-and-tube heat exchanger: The most common type of heat exchanger in industrial applications. They contain a large number of tubes (sometimes several hundred) packed in a shell with their axes parallel to that of the shell. Heat transfer takes place as one fluid flows inside the tubes while the other fluid flows outside the tubes through the shell. Shell-and-tube heat exchangers are further classified according to the number of shell and tube passes involved. 9 Types (cont.) Shell-and-Tube Heat Exchangers One Shell Pass and One Tube Pass Baffles are used to establish a cross-flow and to induce turbulent mixing of the shell-side fluid, both of which enhance convection. The number of tube and shell passes may be varied, e.g.: One Shell Pass, Two Tube Passes Two Shell Passes, Four Tube Passes 5

6 Regenerative heat exchanger: Involves the alternate passage of the hot and cold fluid streams through the same flow area. Dynamic-type regenerator: Involves a rotating drum and continuous flow of the hot and cold fluid through different portions of the drum so that any portion of the drum passes periodically through the hot stream, storing heat, and then through the cold stream, rejecting this stored heat. Condenser: One of the fluids is cooled and condenses as it flows through the heat exchanger. Boiler: One of the fluids absorbs heat and vaporizes. 11 Plate and frame (or just plate) heat exchanger: Consists of a series of plates with corrugated flat flow passages. The hot and cold fluids flow in alternate passages, and thus each cold fluid stream is surrounded by two hot fluid streams, resulting in very effective heat transfer. Plate heat exchangers are well suited for liquid-to-liquid applications. A plate-and-frame liquid-to-liquid heat exchanger. 12 6

7 Overall Coefficient Overall Heat Transfer Coefficient An essential requirement for heat exchanger design or performance calculations. Contributing factors include convection and conduction associated with the two fluids and the intermediate solid, as well as the potential use of fins on both sides and the effects of time-dependent surface fouling. With subscripts c and h used to designate the cold and hot fluids, respectively, the most general expression for the overall coefficient is: 1 = 1 = 1 UA UA UA ( ) ( ) c h R R = + + R f, c f, h 1 w ( η ha) ( η A) ( η A) ( η ha) o c o c o h o h Overall Coefficient (cont.) R f Rw η o η o, c or h Overall surface efficiency of fin array (Section 3.6.5) Af = 1 ( 1 η f ) A c or h A = At total surface area (fins and exposed base) A surface area of fins only f Assuming an adiabatic tip, the fin efficiency is η f, cor h ( ml) tanh = ml ( 2 / ) m = U k t U Fouling fa for a unit surface area ( Table 11.1 c or h c or h p w c or h p, c or h 2 ctor m K/W) Wall conduction resistance (K/W) h = partial overall coefficient 1+ hr f c or h 7

8 THE OVERALL HEAT TRANSFER COEFFICIENT A heat exchanger typically involves two flowing fluids separated by a solid wall. Heat is first transferred from the hot fluid to the wall by convection, through the wall by conduction, and from the wall to the cold fluid again by convection. Any radiation effects are usually included in the convection heat transfer coefficients. Thermal resistance network associated with heat transfer in a double-pipe heat exchanger. 15 U is the overall heat transfer coefficient, W/m 2 C. When The overall heat transfer coefficient U is dominated by the smaller convection coefficient. When one of the convection coefficients is much smaller than the other (say, h i << h o ), we have 1/h i >> 1/h o, and thus U h i. This situation arises frequently when one of the fluids is a gas and the other is a liquid. In such cases, fins are commonly used on the gas side to enhance the product UA and thus the heat transfer on that side. 16 8

9 The overall heat transfer coefficient ranges from about 10 W/m 2 C for gas-to-gas heat exchangers to about 10,000 W/m 2 C for heat exchangers that involve phase changes. When the tube is finned on one side to enhance heat transfer, the total heat transfer surface area on the finned side is For short fins of high thermal conductivity, we can use this total area in the convection resistance relation R conv = 1/hA s, or to account for fin efficiency. 17 Fouling Factor The performance of heat exchangers usually deteriorates with time as a result of accumulation of deposits on heat transfer surfaces. The layer of deposits represents additional resistance to heat transfer. This is represented by a fouling factor R f. The fouling factor increases with the operating temperature and the length of service and decreases with the velocity of the fluids. 18 9

10 ANALYSIS OF HEAT EXCHANGERS An engineer often finds himself or herself in a position 1. to select a heat exchanger that will achieve a specified temperature change in a fluid stream of known mass flow rate the log mean temperature difference (or LMTD) method. 2. to predict the outlet temperatures of the hot and cold fluid streams in a specified heat exchanger the effectiveness-ntu method. The rate of heat transfer in heat exchanger (HE is insulated): Two fluid streams that have the same capacity rates experience the same temperature change in a wellinsulated heat exchanger. Heat capacity rate 19 is the rate of evaporation or condensation of the fluid,. h fg is the enthalpy of vaporization of the fluid at the specified temperature or pressure. The heat capacity rate of a fluid during a phase-change process must approach infinity since the temperature change is practically zero. Variation of fluid temperatures in a heat exchanger when one of the fluids condenses or boils. T m is an appropriate mean (average) temperature difference between the two fluids

11 THE LOG MEAN TEMPERATURE DIFFERENCE (LMTD) METHOD log mean temperature difference Variation of the fluid temperatures in a parallel-flow doublepipe heat 21 exchanger. Arithmetic mean temperature difference: The logarithmic mean temperature difference T lm is an exact representation of the average temperature difference between the hot and cold fluids. Note that T lm is always less than T am. Therefore, using T am in calculations instead of T lm will overestimate the rate of heat transfer in a heat exchanger between the two fluids. When T 1 differs from T 2 by no more than 40 percent, the error in using the arithmetic mean temperature difference is less than 1 percent. But the error increases to undesirable levels when T 1 differs from T 2 by greater amounts

12 Counter-Flow Heat Exchangers In the limiting case, the cold fluid will be heated to the inlet temperature of the hot fluid. However, the outlet temperature of the cold fluid can never exceed the inlet temperature of the hot fluid. For specified inlet and outlet temperatures, the T lm for a counter-flow heat exchanger is always greater than that for a parallelflow heat exchanger. That is, T lm, CF > T lm, PF, and thus a smaller surface area (and thus a smaller heat exchanger) is needed to achieve a specified heat transfer rate in a counterflow heat exchanger. When the heat capacity rates of the two fluids are equal 23 LMTD Method A form of Newton s law of cooling may be applied to heat exchangers by using a log-mean value of the temperature difference between the two fluids: q = U A T lm Evaluation of T and T 1 2 depends on the heat exchanger type. T T Tlm = 1n / 1 2 ( T T ) 1 2 Counter-Flow Heat Exchanger: T T T = T T 1 h,1 c,1 h, i c, o T T T = T T 2 h,2 c,2 h, o c, i 12

13 LMTD Method (cont.) Parallel-Flow Heat Exchanger: T T T = T T 1 h,1 c,1 h, i c, i T T T = T T 2 h,2 c,2 h, o c, o Note that T c,o cannot exceed T h,o for a PF HX, but can do so for a CF HX. For equivalent values of UA and inlet temperatures, T lm,cf > T lm,pf Shell-and-Tube and Cross-Flow Heat Exchangers: T = F T lm lm,cf F Figures 11S.1-11S.4 Energy Balance Overall Energy Balance Application to the hot (h) and cold (c) fluids: Assume negligible heat transfer between the exchanger and its surroundings and negligible potential and kinetic energy changes for each fluid. q = m i i ( h, i h, o ) (,, ) h c c o c i q = m i i i fluid enthalpy Assuming no l/v phase change and constant specific heats, = h p, h ( h, i h, o ) = Ch ( Th, i Th, o ) = c p, c ( c, o c, i ) = Cc ( Tc, o Tc, i ) q m c T T q m c T T C, C Heat capacity rates h c 13

14 Special Conditions Special Operating Conditions Case (a): C h >>C c or h is a condensing vapor ( C ). Negligible or no change in Th ( Th o = Th i ),,. Case (b): C c >>C h or c is an evaporating liquid ( C ). Negligible or no change in Tc ( Tc o = Tc i ) Case (c): C h =C c. T1 = T2 = T l m,,. h c Multipass and Cross-Flow Heat Exchangers: Use of a Correction Factor The correction factor F depends on the geometry of the heat exchanger and the inlet and outlet temperatures of the hot and cold fluid streams. F for common cross-flow and shell-andtube heat exchanger configurations is given in Fig versus two temperature ratios P and R defined as 1 and 2: inlet and outlet T and t: shell- and tube-side temperatures F = 1 for a condenser or boiler 28 14

15 FIGURE Correction factor F charts for common shelland-tube heat exchangers. 29 FIGURE Correction factor F charts for common shelland-tube heat exchangers

16 General Considerations The LMTD method is very suitable for determining the size of a heat exchanger to realize prescribed outlet temperatures when the mass flow rates and the inlet and outlet temperatures of the hot and cold fluids are specified. With the LMTD method, the task is to select a heat exchanger that will meet the prescribed heat transfer requirements. The procedure to be followed by the selection process is: 1.Select the type of heat exchanger suitable for the application. 2.Determine any unknown inlet or outlet temperature and the heat transfer rate using an energy balance. 3.Calculate the log mean temperature difference T lm and the correction factor F, if necessary. 4.Obtain (select or calculate) the value of the overall heat transfer coefficient U. 5.Calculate the heat transfer surface area A s. The task is completed by selecting a heat exchanger that has a heat transfer surface area equal to or larger than A s. 31 General Considerations Computational Features/Limitations of the LMTD Method: The LMTD method may be applied to design problems for which the fluid flow rates and inlet temperatures, as well as a desired outlet temperature, are prescribed. For a specified HX type, the required size (surface area), as well as the other outlet temperature, are readily determined. If the LMTD method is used in performance calculations for which both outlet temperatures must be determined from knowledge of the inlet temperatures, the solution procedure is iterative. For both design and performance calculations, the effectiveness-ntu method may be used without iteration. 16

17 THE EFFECTIVENESS NTU METHOD A second kind of problem encountered in heat exchanger analysis is the determination of the heat transfer rate and the outlet temperatures of the hot and cold fluids for prescribed fluid mass flow rates and inlet temperatures when the type and size of the heat exchanger are specified. Heat transfer effectiveness The maximum possible heat transfer rate C min is the smaller of C h and C c. 33 Definitions Heat exchanger effectiveness, ε : q ε = q max Definitions 0 ε 1 Maximum possible heat rate: ( h i c i ) q = C T T C max min,, min C if C < C = C if C < C or h h c c c h Will the fluid characterized by C min or C max experience the largest possible temperature change in transit through the HX? Why is C min and not C max used in the definition of q max? 17

18 Definitions (cont.) Number of Transfer Units, NTU NTU UA C min A dimensionless parameter whose magnitude influences HX performance: q with NTU HX Relations ( h, i h, o ) q = mh i i or q = C T T (,, ) h h i h o q = mc ( ic, o ic, i ) or q = Cc Tc, o Tc, i ( ) q = ε Cmin ( Th, i Tc, i ) Heat Exchanger Relations Performance Calculations: ε = f ( NTU, C / C ) min max C r Relations Table 11.3 or Figs

19 HX Relations (cont.) Design Calculations: NTU = f ( ε, C / C ) min max Relations Table 11.4 or Figs For all heat exchangers, ε with Cr For C r = 0, a single ε NTU relation applies to all HX types. ( ) ε = 1 exp NTU or ( ) NTU = 1n 1 ε Actual heat transfer rate 38 19

20 The effectiveness of a heat exchanger depends on the geometry of the heat exchanger as well as the flow arrangement. Therefore, different types of heat exchangers have different effectiveness relations. Here, we illustrate the development of the effectiveness ε relation for the double-pipe parallel-flow heat exchanger. 39 Effectiveness relations of the heat exchangers typically involve the dimensionless group UA s /C min. This quantity is called the number of transfer units NTU. Capacity ratio For specified values of U and C min, the value of NTU is a measure of the surface area A s. Thus, the larger the NTU, the larger the heat exchanger. The effectiveness of a heat exchanger is a function of the number of transfer units NTU and the capacity ratio c

21 Table Effectiveness for heat exchangers

22 43 Table 11.4 When all the inlet and outlet temperatures are specified, the size of the heat exchanger can easily be determined using the LMTD method. Alternatively, it can be determined from the effectiveness NTU method by first evaluating the effectiveness ε from its definition and then the NTU from the appropriate NTU relation

23 (e.g., boiler, condenser) 45 Observations from the effectiveness relations and charts The value of the effectiveness ranges from 0 to 1. It increases rapidly with NTU for small values (up to about NTU = 1.5) but rather slowly for larger values. Therefore, the use of a heat exchanger with a large NTU (usually larger than 3) and thus a large size cannot be justified economically, since a large increase in NTU in this case corresponds to a small increase in effectiveness. For a given NTU and capacity ratio c = C min /C max, the counterflow heat exchanger has the highest effectiveness, followed closely by the cross-flow heat exchangers with both fluids unmixed. The lowest effectiveness values are encountered in parallel-flow heat exchangers. The effectiveness of a heat exchanger is independent of the capacity ratio c for NTU values of less than about 0.3. The value of the capacity ratio c ranges between 0 and 1. For a given NTU, the effectiveness becomes a maximum for c = 0 (e.g., boiler, condenser) and a minimum for c = 1 (when the heat capacity rates of the two fluids are equal)

24 SELECTION OF HEAT EXCHANGERS The uncertainty in the predicted value of U can exceed 30 percent. Thus, it is natural to tend to overdesign the heat exchangers. Heat transfer enhancement in heat exchangers is usually accompanied by increased pressure drop, and thus higher pumping power. Therefore, any gain from the enhancement in heat transfer should be weighed against the cost of the accompanying pressure drop. Usually, the more viscous fluid is more suitable for the shell side (larger passage area and thus lower pressure drop) and the fluid with the higher pressure for the tube side. The proper selection of a heat exchanger depends on several factors: Heat transfer rate Cost Pumping power Size and weight Type Materials The rate of heat transfer in the prospective heat exchanger is Annual cost of electricity associated with the operation of the pumps and fans: 47 Summary Types of Heat Exchangers The Overall Heat Transfer Coefficient Fouling Factor Analysis of Heat Exchangers The Log Mean Temperature Difference Method Counter-Flow Heat Exchangers Multipass and Cross-Flow Heat Exchangers: Use of a Correction Factor The Effectiveness-NTU Method Selection of Heat Exchangers 48 24

INTRODUCTION: Shell and tube heat exchangers are one of the most common equipment found in all plants. How it works?

INTRODUCTION: Shell and tube heat exchangers are one of the most common equipment found in all plants. How it works? HEAT EXCHANGERS 1 INTRODUCTION: Shell and tube heat exchangers are one of the most common equipment found in all plants How it works? 2 WHAT ARE THEY USED FOR? Classification according to service. Heat

More information

Chapter 11: Heat Exchangers. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 11: Heat Exchangers. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 11: Heat Exchangers Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Recognize numerous types of

More information

Overall Heat Transfer Coefficient

Overall Heat Transfer Coefficient Overall Heat Transfer Coefficient A heat exchanger typically involves two flowing fluids separated by a solid wall. Heat is first transferred from the hot fluid to the wall by convection, through the wall

More information

Introduction to Heat and Mass Transfer

Introduction to Heat and Mass Transfer Introduction to Heat and Mass Transfer Week 16 Merry X mas! Happy New Year 2019! Final Exam When? Thursday, January 10th What time? 3:10-5 pm Where? 91203 What? Lecture materials from Week 1 to 16 (before

More information

23 1 TYPES OF HEAT EXCHANGERS

23 1 TYPES OF HEAT EXCHANGERS cen5426_ch23.qxd /26/04 9:42 AM Page 032 032 FUNDAMENTALS OF THERMAL-FLUID SCIENCES 23 TYPES OF HEAT EXCHANGERS Different heat transfer applications require different types of hardware different configurations

More information

c Dr. Md. Zahurul Haq (BUET) Heat Exchangers: Rating & Sizing - I ME 307 (2017) 2 / 32 T666

c Dr. Md. Zahurul Haq (BUET) Heat Exchangers: Rating & Sizing - I ME 307 (2017) 2 / 32 T666 Heat Exchanger: Rating & Sizing Heat Exchangers: Rating & Sizing - I Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-000,

More information

T718. c Dr. Md. Zahurul Haq (BUET) HX: Energy Balance and LMTD ME 307 (2018) 2/ 21 T793

T718. c Dr. Md. Zahurul Haq (BUET) HX: Energy Balance and LMTD ME 307 (2018) 2/ 21 T793 HX: Energy Balance and LMTD Dr. Md. Zahurul Haq Professor Department of Mechanical Engineering Bangladesh University of Engineering & Technology (BUET) Dhaka-000, Bangladesh http://zahurul.buet.ac.bd/

More information

Multiple pass and cross flow heat exchangers

Multiple pass and cross flow heat exchangers Multiple pass and cross flow heat exchangers Parag Chaware Department of Mechanical Engineering of Engineering, Pune Multiple pass and cross flow heat exchangers Parag Chaware 1 / 13 Introduction In order

More information

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID SMJ 4463: HEAT TRANSFER INSTRUCTOR: PM ABDUL WAHID http://www.fkm.utm.my/~mazlan TEXT: Introduction to Heat Transfer by Incropera, DeWitt, Bergman, Lavine 6 th Edition, John Wiley and Sons Chapter 7 External

More information

PROBLEM The heat rate, q, can be evaluated from an energy balance on the cold fluid, 225 kg/h J. 3600s/h

PROBLEM The heat rate, q, can be evaluated from an energy balance on the cold fluid, 225 kg/h J. 3600s/h PROBLEM 11.41 KNOWN: Concentric tube heat exchanger. FIND: Length of the exchanger. SCHEMATIC: ASSUMPTIONS: (1) Negligible heat loss to surroundings, () Negligible kinetic and potential energy changes,

More information

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID SMJ 4463: HEAT TRANSFER INSTRUCTOR: PM ABDUL WAHID http://www.fkm.utm.my/~mazlan TEXT: Introduction to Heat Transfer by Incropera, DeWitt, Bergman, Lavine 5 th Edition, John Wiley and Sons Chapter 9 Natural

More information

HEAT EXCHANGER. Objectives

HEAT EXCHANGER. Objectives HEAT EXCHANGER Heat exchange is an important unit operation that contributes to efficiency and safety of many processes. In this project you will evaluate performance of three different types of heat exchangers

More information

Heat Exchanger Design

Heat Exchanger Design Heat Exchanger Design Heat Exchanger Design Methodology Design is an activity aimed at providing complete descriptions of an engineering system, part of a system, or just a single system component. These

More information

NUMERICAL ANALYSIS OF PARALLEL FLOW HEAT EXCHANGER

NUMERICAL ANALYSIS OF PARALLEL FLOW HEAT EXCHANGER NUMERICAL ANALYSIS OF PARALLEL FLOW HEAT EXCHANGER 1 Ajay Pagare, 2 Kamalnayan Tripathi, 3 Nitin Choudhary 1 Asst.Profesor at Indore institute of science and technology Indore, 2 Student at Indore institute

More information

Heat and Mass Transfer Unit-1 Conduction

Heat and Mass Transfer Unit-1 Conduction 1. State Fourier s Law of conduction. Heat and Mass Transfer Unit-1 Conduction Part-A The rate of heat conduction is proportional to the area measured normal to the direction of heat flow and to the temperature

More information

Examination Heat Transfer

Examination Heat Transfer Examination Heat Transfer code: 4B680 date: 17 january 2006 time: 14.00-17.00 hours NOTE: There are 4 questions in total. The first one consists of independent sub-questions. If necessary, guide numbers

More information

How can we use Fundamental Heat Transfer to understand real devices like heat exchangers?

How can we use Fundamental Heat Transfer to understand real devices like heat exchangers? Lectures 7+8 04 CM30 /30/05 CM30 Transport I Part II: Heat Transfer Applied Heat Transfer: Heat Exchanger Modeling, Sizing, and Design Professor Faith Morrison Department of Chemical Engineering Michigan

More information

CHAPTER FOUR HEAT TRANSFER

CHAPTER FOUR HEAT TRANSFER CHAPTER FOUR HEAT TRANSFER 4.1. Determination of Overall Heat Transfer Coefficient in a Tubular Heat Exchanger 4.2. Determination of Overall Heat Transfer Coefficient in a Plate Type Heat Exchanger 4.3.

More information

PLATE & FRAME HEAT EXCHANGER

PLATE & FRAME HEAT EXCHANGER PLATE & FRAME HEAT EXCHANGER By Farhan Ahmad Department of Chemical Engineering, University of Engineering & Technology Lahore Introduction The plate heat exchanger (PHE) was first introduced by Dr Richard

More information

Numerical Analysis of Plate Heat Exchanger Performance in Co-Current Fluid Flow Configuration

Numerical Analysis of Plate Heat Exchanger Performance in Co-Current Fluid Flow Configuration Numerical Analysis of Plate Heat Exchanger Performance in Co-Current Fluid Flow Configuration H. Dardour, S. Mazouz, and A. Bellagi Abstract For many industrial applications plate heat exchangers are demonstrating

More information

Applied Heat Transfer:

Applied Heat Transfer: Lectures 7+8 CM30 /6/06 CM30 Transport I Part II: Heat Transfer Applied Heat Transfer: Heat Exchanger Modeling, Sizing, and Design Professor Faith Morrison Department of Chemical Engineering Michigan Technological

More information

Heat Exchangers: Rating & Performance Parameters. Maximum Heat Transfer Rate, q max

Heat Exchangers: Rating & Performance Parameters. Maximum Heat Transfer Rate, q max Heat Exchangers: Rating & Performance Parameters Dr. Md. Zahurul Haq HTX Rating is concerned with the determination of the heat transfer rate, fluid outlet temperatures, and the pressure drop for an existing

More information

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #2. April 3, 2014

Circle one: School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer. Exam #2. April 3, 2014 Circle one: Div. 1 (12:30 pm, Prof. Choi) Div. 2 (9:30 am, Prof. Xu) School of Mechanical Engineering Purdue University ME315 Heat and Mass Transfer Exam #2 April 3, 2014 Instructions: Write your name

More information

Thermal Analysis of Cross Flow Heat Exchangers

Thermal Analysis of Cross Flow Heat Exchangers Website: www.ijetae.com (ISSN 225-2459, ISO 9:28 Certified Journal, Volume 4, Special Issue 9, September 24) hermal Analysis of Cross Flow Heat Exchangers Shreyas Muralidharan & B. Gokul Maharaj School

More information

HEAT TRANSFER AND EXCHANGERS

HEAT TRANSFER AND EXCHANGERS HEAT TRANSFER AND EXCHANGERS Although heat-transfer rates can be computed with reasonable accuracy for clean or new pipe, the effect of dirty or corroded pipe surfaces cannot he satisfactorily estimated.

More information

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 [4062]-186 S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 N.B. : (i) Answers

More information

Experimental Analysis of Double Pipe Heat Exchanger

Experimental Analysis of Double Pipe Heat Exchanger 206 IJEDR Volume 4, Issue 2 ISSN: 232-9939 Experimental Analysis of Double Pipe Heat Exchanger Urvin R. Patel, 2 Manish S. Maisuria, 3 Dhaval R. Patel, 4 Krunal P. Parmar,2,3,4 Assistant Professor,2,3,4

More information

Welcome to the course in Heat Transfer (MMV031) L1. Martin Andersson & Zan Wu

Welcome to the course in Heat Transfer (MMV031) L1. Martin Andersson & Zan Wu Welcome to the course in Heat Transfer (MMV031) L1 Martin Andersson & Zan Wu Agenda Organisation Introduction to Heat Transfer Heat Exchangers (Ex 108) Course improvement compared to last years 2017: Amount

More information

Heat processes. Heat exchange

Heat processes. Heat exchange Heat processes Heat exchange Heat energy transported across a surface from higher temperature side to lower temperature side; it is a macroscopic measure of transported energies of molecular motions Temperature

More information

طراحی مبدل های حرارتی مهدي کریمی ترم بهار HEAT TRANSFER CALCULATIONS

طراحی مبدل های حرارتی مهدي کریمی ترم بهار HEAT TRANSFER CALCULATIONS طراحی مبدل های حرارتی مهدي کریمی ترم بهار 96-97 HEAT TRANSFER CALCULATIONS ١ TEMPERATURE DIFFERENCE For any transfer the driving force is needed General heat transfer equation : Q = U.A. T What T should

More information

ME 331 Homework Assignment #6

ME 331 Homework Assignment #6 ME 33 Homework Assignment #6 Problem Statement: ater at 30 o C flows through a long.85 cm diameter tube at a mass flow rate of 0.020 kg/s. Find: The mean velocity (u m ), maximum velocity (u MAX ), and

More information

Simplified and approximated relations of heat transfer effectiveness for a steam condenser

Simplified and approximated relations of heat transfer effectiveness for a steam condenser Open Access Journal Journal of Power Technologies 92 (4) (2012) 258 265 journal homepage:papers.itc.pw.edu.pl Simplified and approximated relations of heat transfer effectiveness for a steam condenser

More information

Chapter 3 NATURAL CONVECTION

Chapter 3 NATURAL CONVECTION Fundamentals of Thermal-Fluid Sciences, 3rd Edition Yunus A. Cengel, Robert H. Turner, John M. Cimbala McGraw-Hill, 2008 Chapter 3 NATURAL CONVECTION Mehmet Kanoglu Copyright The McGraw-Hill Companies,

More information

Lecture 3 Heat Exchangers

Lecture 3 Heat Exchangers L3 Leture 3 Heat Exangers Heat Exangers. Heat Exangers Transfer eat from one fluid to anoter. Want to imise neessary ardware. Examples: boilers, ondensors, ar radiator, air-onditioning oils, uman body.

More information

Coolant. Circuits Chip

Coolant. Circuits Chip 1) A square isothermal chip is of width w=5 mm on a side and is mounted in a subtrate such that its side and back surfaces are well insulated, while the front surface is exposed to the flow of a coolant

More information

Estimating number of shells and determining the log mean temperature difference correction factor of shell and tube heat exchangers

Estimating number of shells and determining the log mean temperature difference correction factor of shell and tube heat exchangers Advanced Computational Methods in Heat Transfer IX 33 Estimating number of shells and determining the log mean temperature difference correction factor of shell and tube heat exchangers 3 4 S. K. Bhatti,

More information

ANSI/AHRI Standard (Formerly ARI Standard ) 2006 Standard for Performance Rating of Desuperheater/Water Heaters

ANSI/AHRI Standard (Formerly ARI Standard ) 2006 Standard for Performance Rating of Desuperheater/Water Heaters ANSI/AHRI Standard 470-2006 (Formerly ARI Standard 470-2006) 2006 Standard for Performance Rating of Desuperheater/Water Heaters IMPORTANT SAFETY DISCLAIMER AHRI does not set safety standards and does

More information

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco 8 Fundamentals of Heat Transfer René Reyes Mazzoco Universidad de las Américas Puebla, Cholula, Mexico 1 HEAT TRANSFER MECHANISMS 1.1 Conduction Conduction heat transfer is explained through the molecular

More information

DESIGN AND COST ANALYSIS OF HEAT TRANSFER EQUIPMENTS

DESIGN AND COST ANALYSIS OF HEAT TRANSFER EQUIPMENTS DESIGN AND COST ANALYSIS OF HEAT TRANSFER EQUIPMENTS Md. Khairul Islam Lecturer Department of Applied Chemistry and Chemical Engineering. University of Rajshahi. What is design? Design includes all the

More information

If there is convective heat transfer from outer surface to fluid maintained at T W.

If there is convective heat transfer from outer surface to fluid maintained at T W. Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

More information

S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 7 Seat No. [4162]-187 S.E. (Chemical) (Second Semester) EXAMINATION, 2012 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100 N.B.

More information

first law of ThermodyNamics

first law of ThermodyNamics first law of ThermodyNamics First law of thermodynamics - Principle of conservation of energy - Energy can be neither created nor destroyed Basic statement When any closed system is taken through a cycle,

More information

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. 18 Forced Convection-1 Welcome. We now begin our study of forced convection

More information

Numerical Investigation on Effect of Operating Parameters on Plate Fin Heat Exchanger

Numerical Investigation on Effect of Operating Parameters on Plate Fin Heat Exchanger Proceedings of the World Congress on Engineering 202 Vol III WCE 202, July 4-6, 202, London, U.K. Numerical Investigation on Effect of Operating Parameters on Plate Fin Heat Exchanger Nilesh K. Patil and

More information

Analyzing Mass and Heat Transfer Equipment

Analyzing Mass and Heat Transfer Equipment Analyzing Mass and Heat Transfer Equipment (MHE) Analyzing Mass and Heat Transfer Equipment Scaling up to solving problems using process equipment requires both continuum and macroscopic knowledge of transport,

More information

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar Experiment 1 Measurement of Thermal Conductivity of a Metal (Brass) Bar Introduction: Thermal conductivity is a measure of the ability of a substance to conduct heat, determined by the rate of heat flow

More information

Chapter 7: External Forced Convection. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 7: External Forced Convection. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 7: External Forced Convection Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Distinguish between

More information

Chapter 9 NATURAL CONVECTION

Chapter 9 NATURAL CONVECTION Heat and Mass Transfer: Fundamentals & Applications Fourth Edition in SI Units Yunus A. Cengel, Afshin J. Ghajar McGraw-Hill, 2011 Chapter 9 NATURAL CONVECTION PM Dr Mazlan Abdul Wahid Universiti Teknologi

More information

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer Principles of Food and Bioprocess Engineering (FS 1) Problems on Heat Transfer 1. What is the thermal conductivity of a material 8 cm thick if the temperature at one end of the product is 0 C and the temperature

More information

Transfer processes: direct contact or indirect contact. Geometry of construction: tubes, plates, and extended surfaces

Transfer processes: direct contact or indirect contact. Geometry of construction: tubes, plates, and extended surfaces Chapter 5 Heat Exchangers 5.1 Introduction Heat exchangers are devices used to transfer heat between two or more fluid streams at different temperatures. Heat exchangers find widespread use in power generation,

More information

Comparative Analysis of Different Fluids in One Shell Pass And Two Tube Heat Exchanger

Comparative Analysis of Different Fluids in One Shell Pass And Two Tube Heat Exchanger American Journal of Engineering Research (AJER) 2016 American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-5, Issue-8, pp-81-87 wwwajerorg Research Paper Open Access

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 03 Finned Surfaces Fausto Arpino f.arpino@unicas.it Outline Introduction Straight fin with constant circular cross section Long

More information

HEAT TRANSFER. Mechanisms of Heat Transfer: (1) Conduction

HEAT TRANSFER. Mechanisms of Heat Transfer: (1) Conduction HEAT TRANSFER Mechanisms of Heat Transfer: (1) Conduction where Q is the amount of heat, Btu, transferred in time t, h k is the thermal conductivity, Btu/[h ft 2 ( o F/ft)] A is the area of heat transfer

More information

The Effect of Mass Flow Rate on the Effectiveness of Plate Heat Exchanger

The Effect of Mass Flow Rate on the Effectiveness of Plate Heat Exchanger The Effect of Mass Flow Rate on the of Plate Heat Exchanger Wasi ur rahman Department of Chemical Engineering, Zakir Husain College of Engineering and Technology, Aligarh Muslim University, Aligarh 222,

More information

Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI.

Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Chapter 10: Boiling and Condensation 1 1 Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Objectives When you finish studying this chapter, you should be able to: Differentiate between evaporation

More information

C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127

C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127 C ONTENTS Preface xviii Nomenclature xxvi CHAPTER ONE BASICS OF HEAT TRANSFER 1 1-1 Thermodynamics and Heat Transfer 2 Application Areas of Heat Transfer 3 Historical Background 3 1-2 Engineering Heat

More information

Designing Steps for a Heat Exchanger ABSTRACT

Designing Steps for a Heat Exchanger ABSTRACT Designing Steps for a Heat Exchanger Reetika Saxena M.Tech. Student in I.F.T.M. University, Moradabad Sanjay Yadav 2 Asst. Prof. in I.F.T.M. University, Moradabad ABSTRACT Distillation is a common method

More information

In order to optimize the shell and coil heat exchanger design using the model presented in Chapter

In order to optimize the shell and coil heat exchanger design using the model presented in Chapter 1 CHAPTER FOUR The Detailed Model In order to optimize the shell and coil heat exchanger design using the model presented in Chapter 3, one would have to build several heat exchanger prototypes, and then

More information

Chapter 3: Steady Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 3: Steady Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Chapter 3: Steady Heat Conduction Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Understand the concept

More information

1. Nusselt number and Biot number are computed in a similar manner (=hd/k). What are the differences between them? When and why are each of them used?

1. Nusselt number and Biot number are computed in a similar manner (=hd/k). What are the differences between them? When and why are each of them used? 1. Nusselt number and Biot number are computed in a similar manner (=hd/k). What are the differences between them? When and why are each of them used?. During unsteady state heat transfer, can the temperature

More information

PROBLEM and from Eq. 3.28, The convection coefficients can be estimated from appropriate correlations. Continued...

PROBLEM and from Eq. 3.28, The convection coefficients can be estimated from appropriate correlations. Continued... PROBLEM 11. KNOWN: Type-30 stainless tube with prescribed inner and outer diameters used in a cross-flow heat exchanger. Prescribed fouling factors and internal water flow conditions. FIND: (a) Overall

More information

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer 9210-221 Level 7 Post Graduate Diploma in Engineering Heat and mass transfer 0 You should have the following for this examination one answer book non programmable calculator pen, pencil, drawing instruments

More information

Heat Transfer Coefficient Solver for a Triple Concentric-tube Heat Exchanger in Transition Regime

Heat Transfer Coefficient Solver for a Triple Concentric-tube Heat Exchanger in Transition Regime Heat Transfer Coefficient Solver for a Triple Concentric-tube Heat Exchanger in Transition Regime SINZIANA RADULESCU*, IRENA LOREDANA NEGOITA, ION ONUTU University Petroleum-Gas of Ploiesti, Department

More information

Effect of External Recycle on the Performance in Parallel-Flow Rectangular Heat-Exchangers

Effect of External Recycle on the Performance in Parallel-Flow Rectangular Heat-Exchangers Tamkang Journal of Science and Engineering, Vol. 13, No. 4, pp. 405 412 (2010) 405 Effect of External Recycle on the Performance in Parallel-Flow Rectangular Heat-Exchangers Ho-Ming Yeh Energy and Opto-Electronic

More information

: HEAT TRANSFER & EVAPORATION COURSE CODE : 4072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 70 CREDIT : 5 TIME SCHEDULE

: HEAT TRANSFER & EVAPORATION COURSE CODE : 4072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 70 CREDIT : 5 TIME SCHEDULE COURSE TITLE : HEAT TRANSFER & EVAPORATION COURSE CODE : 4072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 70 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Conduction,Fourier law,variation

More information

CHAPTER 3 SHELL AND TUBE HEAT EXCHANGER

CHAPTER 3 SHELL AND TUBE HEAT EXCHANGER 20 CHAPTER 3 SHELL AND TUBE HEAT EXCHANGER 3.1 INTRODUCTION A Shell and Tube Heat Exchanger is usually used for higher pressure applications, which consists of a series of tubes, through which one of the

More information

ME-662 CONVECTIVE HEAT AND MASS TRANSFER

ME-662 CONVECTIVE HEAT AND MASS TRANSFER ME-66 CONVECTIVE HEAT AND MASS TRANSFER A. W. Date Mechanical Engineering Department Indian Institute of Technology, Bombay Mumbai - 400076 India LECTURE- INTRODUCTION () March 7, 00 / 7 LECTURE- INTRODUCTION

More information

Ministry of Higher Education And Scientific Research. University Of Technology Chemical Engineering Department. Heat Transfer

Ministry of Higher Education And Scientific Research. University Of Technology Chemical Engineering Department. Heat Transfer Ministry of Higher Education And Scientific Research University Of Technology Heat Transfer Third Year By Dr.Jamal Al-Rubeai 2008-2009 Heat Transfer 1. Modes of Heat Transfer: Conduction, Convection and

More information

Analytical Study on Thermal and Mechanical Design of Printed Circuit Heat Exchanger

Analytical Study on Thermal and Mechanical Design of Printed Circuit Heat Exchanger INL/EXT-13-30047 Analytical Study on Thermal and Mechanical Design of Printed Circuit Heat Exchanger Su-Jong Yoon Piyush Sabharwall Eung-Soo Kim September 2013 The INL is a U.S. Department of Energy National

More information

HEAT TRANSFER FROM FINNED SURFACES

HEAT TRANSFER FROM FINNED SURFACES Fundamentals of Thermal-Fluid Sciences, 3rd Edition Yunus A. Cengel, Robert H. Turner, John M. Cimbala McGraw-Hill, 2008 HEAT TRANSFER FROM FINNED SURFACES Mehmet Kanoglu Copyright The McGraw-Hill Companies,

More information

Thermal Analysis of Shell and Tube Heat Ex-Changer Using C and Ansys

Thermal Analysis of Shell and Tube Heat Ex-Changer Using C and Ansys Thermal Analysis of Shell and Tube Heat Ex-Changer Using C and Ansys A v.hari Haran,*, B g.ravindra Reddy and C b.sreehari a) PG Student Mechanical Engineering Department Siddharth Institute Of Engineering

More information

PHYSICAL MECHANISM OF NATURAL CONVECTION

PHYSICAL MECHANISM OF NATURAL CONVECTION 1 NATURAL CONVECTION In this chapter, we consider natural convection, where any fluid motion occurs by natural means such as buoyancy. The fluid motion in forced convection is quite noticeable, since a

More information

Transport processes. 7. Semester Chemical Engineering Civil Engineering

Transport processes. 7. Semester Chemical Engineering Civil Engineering Transport processes 7. Semester Chemical Engineering Civil Engineering 1. Elementary Fluid Dynamics 2. Fluid Kinematics 3. Finite Control Volume Analysis 4. Differential Analysis of Fluid Flow 5. Viscous

More information

Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle

Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle Journal of Applied Science and Engineering, Vol. 17, No. 3, pp. 293 304 (2014) DOI: 10.6180/jase.2014.17.3.10 Heat Transfer Performance in Double-Pass Flat-Plate Heat Exchangers with External Recycle Ho-Ming

More information

THERMAL PERFORMANCE OF SHELL AND TUBE HEAT EXCHANGER USING NANOFLUIDS 1

THERMAL PERFORMANCE OF SHELL AND TUBE HEAT EXCHANGER USING NANOFLUIDS 1 THERMAL PERFORMANCE OF SHELL AND TUBE HEAT EXCHANGER USING NANOFLUIDS 1 Arun Kumar Tiwari 1 Department of Mechanical Engineering, Institute of Engineering & Technology, GLA University, Mathura, 281004,

More information

ENERGY PERFORMANCE IMPROVEMENT, FLOW BEHAVIOR AND HEAT TRANSFER INVESTIGATION IN A CIRCULAR TUBE WITH V-DOWNSTREAM DISCRETE BAFFLES

ENERGY PERFORMANCE IMPROVEMENT, FLOW BEHAVIOR AND HEAT TRANSFER INVESTIGATION IN A CIRCULAR TUBE WITH V-DOWNSTREAM DISCRETE BAFFLES Journal of Mathematics and Statistics 9 (4): 339-348, 2013 ISSN: 1549-3644 2013 doi:10.3844/jmssp.2013.339.348 Published Online 9 (4) 2013 (http://www.thescipub.com/jmss.toc) ENERGY PERFORMANCE IMPROVEMENT,

More information

PROBLEM 8.3 ( ) p = kg m 1m s m 1000 m = kg s m = bar < P = N m 0.25 m 4 1m s = 1418 N m s = 1.

PROBLEM 8.3 ( ) p = kg m 1m s m 1000 m = kg s m = bar < P = N m 0.25 m 4 1m s = 1418 N m s = 1. PROBLEM 8.3 KNOWN: Temperature and velocity of water flow in a pipe of prescribed dimensions. FIND: Pressure drop and pump power requirement for (a) a smooth pipe, (b) a cast iron pipe with a clean surface,

More information

Biological Process Engineering An Analogical Approach to Fluid Flow, Heat Transfer, and Mass Transfer Applied to Biological Systems

Biological Process Engineering An Analogical Approach to Fluid Flow, Heat Transfer, and Mass Transfer Applied to Biological Systems Biological Process Engineering An Analogical Approach to Fluid Flow, Heat Transfer, and Mass Transfer Applied to Biological Systems Arthur T. Johnson, PhD, PE Biological Resources Engineering Department

More information

Thermal Unit Operation (ChEg3113)

Thermal Unit Operation (ChEg3113) Thermal Unit Operation (ChEg3113) Lecture 6- Double Pipe Heat Exchanger Design Instructor: Mr. Tedla Yeshitila (M.Sc.) Today Review Double pipe heat exchanger design procedure Example Review Deign of heat

More information

PERFORMANCE ANALYSIS OF CORRUGATED PLATE HEAT EXCHANGER WITH WATER AS WORKING FLUID

PERFORMANCE ANALYSIS OF CORRUGATED PLATE HEAT EXCHANGER WITH WATER AS WORKING FLUID PERFORMANCE ANALYSIS OF CORRUGATED PLATE HEAT EXCHANGER WITH WATER AS WORKING FLUID Tisekar Salman W 1, Mukadam Shakeeb A 2, Vedpathak Harshad S 3, Rasal Priyanka K 4, Khandekar S. B 5 1 Student of B.E.,

More information

Key words: heat exchanger, longitudinal conduction, heat in-leak, helium liquefier, helium refrigerator

Key words: heat exchanger, longitudinal conduction, heat in-leak, helium liquefier, helium refrigerator INFLUENCE OF HEAT IN-LEAK, LONGITUDINAL CONDUCTION AND PROPERTY VARIATIONS ON THE PERFORMANCE OF CRYOGENIC PLATE-FIN HEAT EXCHANGERS BASED ON DISTRIBUTED PARAMETER MODEL Qingfeng Jiang a,b,*, Ming Zhuang

More information

1/54 Circulation pump, safety valve, expansion vessel

1/54 Circulation pump, safety valve, expansion vessel 1/54 Circulation pump, safety valve, expansion vessel pressure loss efficiency of pump secured heat output safety valve sizing expansion vessel sizing Circulation pump 2/54 similar principle as for heating

More information

Heat exchangers: Heat exchanger types:

Heat exchangers: Heat exchanger types: Heat exhangers: he proess of heat exhange between two fluids that are at different temperatures and separated by a solid wall ours in many engineering appliations. he devie used to implement this exhange

More information

a. Fourier s law pertains to conductive heat transfer. A one-dimensional form of this law is below. Units are given in brackets.

a. Fourier s law pertains to conductive heat transfer. A one-dimensional form of this law is below. Units are given in brackets. QUESTION An understanding of the basic laws governing heat transfer is imperative to everything you will learn this semester. Write the equation for and explain the following laws governing the three basic

More information

arxiv: v1 [physics.app-ph] 25 Mar 2018

arxiv: v1 [physics.app-ph] 25 Mar 2018 Improvement of heat exchanger efficiency by using hydraulic and thermal entrance regions arxiv:1803.09255v1 [physics.app-ph] 25 Mar 2018 Abstract Alexey Andrianov a, Alexander Ustinov a, Dmitry Loginov

More information

Analysis of Shell & Tube Type Heat Exchangers

Analysis of Shell & Tube Type Heat Exchangers Analysis of Shell & Tube Type Heat Exchangers Ajay Kumar Giri, Navesh Kumar Roul, Tarini Prakash Mishra, Mr. Debabrata panda, Mr. Ajit Prasad Dash Department of mechanical engineering, GIET GUNUPUR Email:

More information

Heat Transfer Convection

Heat Transfer Convection Heat ransfer Convection Previous lectures conduction: heat transfer without fluid motion oday (textbook nearly 00 pages) Convection: heat transfer with fluid motion Research methods different Natural Convection

More information

4.1 Derivation and Boundary Conditions for Non-Nipped Interfaces

4.1 Derivation and Boundary Conditions for Non-Nipped Interfaces Chapter 4 Roller-Web Interface Finite Difference Model The end goal of this project is to allow the correct specification of a roller-heater system given a general set of customer requirements. Often the

More information

HEAT AND MASS TRANSFER. List of Experiments:

HEAT AND MASS TRANSFER. List of Experiments: HEAT AND MASS TRANSFER List of Experiments: Conduction Heat Transfer Unit 1. Investigation of Fourier Law for linear conduction of heat along a simple bar. 2. Study the conduction of heat along a composite

More information

Thermal Unit Operation (ChEg3113)

Thermal Unit Operation (ChEg3113) Thermal Unit Operation (ChEg3113) Lecture 3- Examples on problems having different heat transfer modes Instructor: Mr. Tedla Yeshitila (M.Sc.) Today Review Examples Multimode heat transfer Heat exchanger

More information

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds. Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,

More information

HEAT TRANSFER. PHI Learning PfcO too1. Principles and Applications BINAY K. DUTTA. Delhi Kolkata. West Bengal Pollution Control Board

HEAT TRANSFER. PHI Learning PfcO too1. Principles and Applications BINAY K. DUTTA. Delhi Kolkata. West Bengal Pollution Control Board HEAT TRANSFER Principles and Applications BINAY K. DUTTA West Bengal Pollution Control Board Kolkata PHI Learning PfcO too1 Delhi-110092 2014 Contents Preface Notations ix xiii 1. Introduction 1-8 1.1

More information

Heat Transfer with Phase Change

Heat Transfer with Phase Change CM3110 Transport I Part II: Heat Transfer Heat Transfer with Phase Change Evaporators and Condensers Professor Faith Morrison Department of Chemical Engineering Michigan Technological University 1 Heat

More information

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Objective: Text: To introduce the basic concepts of fluid mechanics and heat transfer necessary for solution of engineering

More information

ME2251 HEAT AND MASS TRANSFER L T P C

ME2251 HEAT AND MASS TRANSFER L T P C ME2251 HEAT AND MASS TRANSFER L T P C 3 1 0 4 UNIT I CONDUCTION 11+3 Basic Concepts Mechanism of Heat Transfer Conduction, Convection and Radiation Fourier Law of Conduction - General Differential equation

More information

EFFECT OF AMBIENT HEAT-IN-LEAK AND LONGITUDINAL WALL CONDUCTION ON A THREE-FLUID PARALLEL FLOW CRYOGENIC HEAT EXCHANGER

EFFECT OF AMBIENT HEAT-IN-LEAK AND LONGITUDINAL WALL CONDUCTION ON A THREE-FLUID PARALLEL FLOW CRYOGENIC HEAT EXCHANGER EFFECT OF AMBIENT HEAT-IN-LEAK AND LONGITUDINAL WALL CONDUCTION ON A THREE-FLUID PARALLEL FLOW CRYOGENIC HEAT EXCHANGER V.Krishna a, *, Spoorthi S. a, Pradeep G. Hegde b and K. N. Seetharamu a *Author

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November ISSN International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 1226 NUMERICAL ANALYSIS OF TRIPLE TUBE HEAT EXCHANGER USING ANSYS Vishwa Mohan Behera1, D.H. Das2, Ayusman

More information

4.1. Physics Module Form 4 Chapter 4 - Heat GCKL UNDERSTANDING THERMAL EQUILIBRIUM. What is thermal equilibrium?

4.1. Physics Module Form 4 Chapter 4 - Heat GCKL UNDERSTANDING THERMAL EQUILIBRIUM. What is thermal equilibrium? 4.1 4 UNDERSTANDING THERMAL EQUILIBRIUM What is thermal equilibrium? 1. ( Heat, Temperature ) is a form of energy that flows from a hot body to a cold body. 2. The SI unit for ( heat, temperature) is Joule,

More information

4.1. Physics Module Form 4 Chapter 4 - Heat GCKL UNDERSTANDING THERMAL EQUILIBRIUM. What is thermal equilibrium?

4.1. Physics Module Form 4 Chapter 4 - Heat GCKL UNDERSTANDING THERMAL EQUILIBRIUM. What is thermal equilibrium? Physics Module Form 4 Chapter 4 - Heat GCKL 2010 4.1 4 UNDERSTANDING THERMAL EQUILIBRIUM What is thermal equilibrium? 1. (, Temperature ) is a form of energy that flows from a hot body to a cold body.

More information

University School of Chemical Technology

University School of Chemical Technology University School of Chemical Technology Guru Gobind Singh Indraprastha University Syllabus of Examination B.Tech/M.Tech Dual Degree (Chemical Engineering) (4 th Semester) (w.e.f. August 2004 Batch) Page

More information