Object Tracking and Asynchrony in Audio- Visual Speech Recognition

Size: px
Start display at page:

Download "Object Tracking and Asynchrony in Audio- Visual Speech Recognition"

Transcription

1 Object Tracking and Asynchrony in Audio- Visual Speech Recognition Mark Hasegawa-Johnson AIVR Seminar August 31, 2006 AVICAR is thanks to: Bowon Lee, Ming Liu, Camille Goudeseune, Suketu Kamdar, Carl Press, Sarah Borys and to the Motorola Communications Center Some experiments and most good ideas in this talk thanks to Ming Liu, Karen Livescu, Kate Saenko and Partha Lal

2 Why AVSR is not like ASR Use of classifiers as features E.g., output of an AdaBoost lip tracker is feature in a face constellation Obstruction Tongue is rarely visible, glottis never Asynchrony Visual evidence for a word can start long before the audio evidence Which digit is she about to say?

3 Why ASR is like AVSR Use of classifiers as features E.g., neural networks or SVMs transform audio spectra into a phonetic feature space Obstruction Lip closure hides tongue closure Glottal stop hides lip or tongue position Asynchrony Tongue, lips, velum, and glottis can be out of sync, e.g., every ervy

4 Discriminative Features in Face/Lip Tracking: AdaBoost 1. Each wavelet defines a weak classifier: h i (x) = 1 iff f i > threshold, else h i (x) = 0 2. Start with equal weight for all training tokens: 3. For each learning iteration t: w m (1) = 1/M, 1 m M 1. Find i that minimizes the weighted training error. 2. w m if token m was correctly classified, else w m. 3. α t = log((1-ε t )/ ε t ) 4. Final strong classifier is H(x) = 1 iff Σ t α t ht(x) > Σ t α t

5 Example Haar Wavelet Features Selected by AdaBoost

6 AdaBoost in a Bayesian Context The AdaBoost margin: Guaranteed range: 0 M D (x) 1 Inverse sigmoid transform yields nearly normal distributions

7 Prior: Relative Position of Lips in the Face p(r=r lips M D (x)) α p(r=r lips ) p(m D (x) r=r lips )

8 Lip Tracking: a few results

9 Pixel-Based Features

10 Pixel-Based Features: Dimension

11 Model-Based Correction for Head-Pose Variability If the head is an ellipse, its measured width w F (t) and height h F (t) are functions of roll ρ, yaw ψ, pitch φ, true height ħ F and true width w F according to which can usefully be approximated as

12 Robust Correction: Linear Regression The additive random part of the lip width (w L (t)=w 1 +ħ L cosψ(t)sinρ(t)) is proportional to similar additive variation in the head width (w F (t)=w F1 +ħ F cosψ(t)sinρ(t)), so we can eliminate it by orthogonalizing w L (t) to w F (t).

13 WER Results from AVICAR (Testing on the training data; 34 talkers, continuous digits) LR = linear regression Model = model-based head-pose compensation LLR = log-linear regression 13+d+dd = 13 static features 39 = 39 static features All systems have mean and variance normalization and MLLR

14 Audio-Visual Asynchrony For example, tongue touches the teeth before acoustic speech onset in the word three; lips are already round in anticipation of the /r/.

15 Audio-Visual Asynchrony: Coupled HMM is a typical Phoneme-Viseme Model (Chu and Huang, 2002) acoustic channel visual channel t = 1 t = 2 t = 3 t =T

16 A Physical Model of Asynchrony Slide created by Karen Livescu Articulatory Phonology [Browman & Goldstein 90]: The following 8 tract variables are independently & asynchronously controlled LIP-LOC Protruded, Labial, Dental LIP-OP CLosed, CRitical, Narrow, Wide TB-LOC TT-LOC Dental, Alveolar, Palato-Alveolar, TT-LOC Retroflex LIP-OP TT-OP TB-OP VELUM TB-LOC Palatal, Velar, Uvular, Pharyngeal LIP-LOC LOC TT-OP, TB-OP CLosed, CRitical, Narrow, Mid- Narrow, Mid, Wide GLOTTIS GLO CLosed (stop), CRitical (voiced), Open (voiceless) VEL CLosed (non-nasal), Open (nasal) For speech recognition, we collapse these into 3 streams: lips, tongue, and glottis (LTG).

17 Motivation: Pronunciation variation Slide created by Karen Livescu word probably sense everybody don t baseform p r aa b ax b l iy s eh n s eh v r iy b ah d iy d ow n t (2) p r aa b iy (1) s eh n t s (1) eh v r ax b ax d iy (37) d ow n (1) p r ay (1) s ih t s (1) eh v er b ah d iy (16) d ow (1) p r aw l uh (1) eh ux b ax iy (6) ow n surface (actual) (1) p r ah b iy (1) p r aa l iy (1) p r aa b uw (1) eh r uw ay (1) eh b ah iy (4) d ow n t (3) d ow t (3) d ah n (1) p ow ih (3) ow (1) p aa iy (1) p aa b uh b l iy (1) p aa ah iy # pronunciations / w (3) n ax (2) d ax n (2) ax (1) n uw minimum # occurrences

18 Explanation: Asynchrony of tract variables Based on a slide created by Karen Livescu dictionary feature G T phone open crit / alveolar s values critical nasal mid / palatal closed / alveolar eh n open crit / alveolar s surface variant #1 (example of feature asynchrony) feature G T phone open crit / alveolar s values critical nas open mid / palatal closed / alveolar crit / alveolar eh n t s surface variant #2 (example of feature asynchrony + substitution) feature G T phone open crit / alveolar s values critical nas nar / palatal ih n cl / alv t open crit / alveolar s

19 Implementation: Multi-stream DBN Slide created by Karen Livescu Phone-based q (phonetic state) o (observation vector) Articulatory Feature-based L (state of lips) T (state of tongue) G (state of glottis) o (obs vector)

20 Baseline: Audio-only phone-based HMM Slide created by Partha Lal positioninworda {0,1,2,...} statetransitiona {0,1} phonestatea { /t/1, /t/2, /t/3, /u/1, /u/2, /u/3, } obsa

21 Baseline: Video-only phone-based HMM Slide created by Partha Lal positioninwordv {0,1,2,...} statetransitionv {0,1} phonestatev { /t/1, /t/2, /t/3, /u/1, /u/2, /u/3, } obsv

22 Audio-visual HMM without asynchrony Slide created by Partha Lal positioninword {0,1,2,...} statetransition {0,1} phonestate { /t/1, /t/2, /t/3, /u/1, /u/2, /u/3, } obs obsv obsa

23 Phoneme-Viseme CHMM Slide created by Partha Lal positioninworda {0,1,2,...} statetransitiona {0,1} phonestatea { /t/1, /t/2, /t/3, /u/1, /u/2, /u/3, } obsa positioninwordv {0,1,2,...} statetransitionv {0,1} phonestatev { /t/1, /t/2, /t/3, /u/1, /u/2, /u/3, } obsv

24 Articulatory Feature CHMM positioninwordl {0,1,2,...} statetransitionl {0,1} L { /OP/1, /OP/2, /RND/1, } positioninwordt {0,1,2,...} statetransitiont {0,1} T { /CL-ALV/1, /CL-ALV/2, /MID-UV/1, } positioninwordg {0,1,2,...} statetransitiong {0,1} G { /OP/1, /OP/2, /CRIT/1, } obsv obsa

25 Asynchrony Experiments: CUAVE 169 utterances used, 10 digits each NOISEX speech babble added at various SNRs Experimental setup Training on clean data, number of Gaussians tuned on clean dev set Audio/video weights tuned on noise-specific dev sets Uniform ( zero-gram ) language model Decoding constrained to 10-word utterances (avoids language model scale/penalty tuning) Thanks to Amar Subramanya at UW for the video observations Thanks to Kate Saenko at MIT for initial baselines and audio observations

26 Results, part 1: Should we use video? Answer: Fusion WER < Single-stream WER ( Novelty: None. Many authors have reported this. ) Audio Video Audiovisual CLEAN SNR 12dB SNR 10dB SNR 6dB SNR 4dB SNR -4dB

27 Results, part 2: Should the streams be asynchronous? Asynchronous WER < Synchronous WER (4% midsnrs) ( Novelty: First phone-based AVSR w/ inter-phone asynchrony. ) No A synchro ny 1 S tate A sync 2 S tate s A sync Unlim ite d A syn C L E A N S NR 1 2 d B S NR 1 0 d B S NR 6 d B S NR 4 d B S NR -4

28 Results, part 3: Should asynchrony be modeled using articulatory features? Answer: Articulatory feature WER = Phoneme-viseme WER ( Novelty: First articulatory feature model for AVSR. ) Phone-viseme Articulatory features Clean SNR 12dB SNR 10dB SNR 6dB SNR 4dB SNR -4dB

29 Results, part 4: Can AF system help the CHMM to correct mistakes? Answer: Combination AF + PV gives best results on this database Details: Systems vote to determine label of each word (NIST rover) WER on devtest, averaged across SNRs Rover, Best Three w/ AF Rover, Best Three w/o AF PV, 2 States Async AF PV, 1 State Async PV = Phone-viseme AF = Articulatory features

30 Conclusions Classifiers as features: AdaBoost margin outputs can be used as features in Gaussian model of facial geometry Head-pose correction in noise: Best correction algorithm uses linear regression followed by model-based correction Asynchrony matters: Best phone-based recognizer is a CHMM with two states of asynchrony allowed between audio and video Articulatory Feature Models complement Phone Models These two systems have identical WER Best result obtained when systems of both types are combined using rover

Discriminative Pronunciation Modeling: A Large-Margin Feature-Rich Approach

Discriminative Pronunciation Modeling: A Large-Margin Feature-Rich Approach Discriminative Pronunciation Modeling: A Large-Margin Feature-Rich Approach Hao Tang Toyota Technological Institute at Chicago May 7, 2012 Joint work with Joseph Keshet and Karen Livescu To appear in ACL

More information

T Automatic Speech Recognition: From Theory to Practice

T Automatic Speech Recognition: From Theory to Practice Automatic Speech Recognition: From Theory to Practice http://www.cis.hut.fi/opinnot// September 20, 2004 Prof. Bryan Pellom Department of Computer Science Center for Spoken Language Research University

More information

On the Influence of the Delta Coefficients in a HMM-based Speech Recognition System

On the Influence of the Delta Coefficients in a HMM-based Speech Recognition System On the Influence of the Delta Coefficients in a HMM-based Speech Recognition System Fabrice Lefèvre, Claude Montacié and Marie-José Caraty Laboratoire d'informatique de Paris VI 4, place Jussieu 755 PARIS

More information

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 9: Acoustic Models

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 9: Acoustic Models Statistical NLP Spring 2010 The Noisy Channel Model Lecture 9: Acoustic Models Dan Klein UC Berkeley Acoustic model: HMMs over word positions with mixtures of Gaussians as emissions Language model: Distributions

More information

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 10: Acoustic Models

The Noisy Channel Model. Statistical NLP Spring Mel Freq. Cepstral Coefficients. Frame Extraction ... Lecture 10: Acoustic Models Statistical NLP Spring 2009 The Noisy Channel Model Lecture 10: Acoustic Models Dan Klein UC Berkeley Search through space of all possible sentences. Pick the one that is most probable given the waveform.

More information

Statistical NLP Spring The Noisy Channel Model

Statistical NLP Spring The Noisy Channel Model Statistical NLP Spring 2009 Lecture 10: Acoustic Models Dan Klein UC Berkeley The Noisy Channel Model Search through space of all possible sentences. Pick the one that is most probable given the waveform.

More information

Statistical NLP Spring Digitizing Speech

Statistical NLP Spring Digitizing Speech Statistical NLP Spring 2008 Lecture 10: Acoustic Models Dan Klein UC Berkeley Digitizing Speech 1 Frame Extraction A frame (25 ms wide) extracted every 10 ms 25 ms 10ms... a 1 a 2 a 3 Figure from Simon

More information

Digitizing Speech. Statistical NLP Spring Frame Extraction. Gaussian Emissions. Vector Quantization. HMMs for Continuous Observations? ...

Digitizing Speech. Statistical NLP Spring Frame Extraction. Gaussian Emissions. Vector Quantization. HMMs for Continuous Observations? ... Statistical NLP Spring 2008 Digitizing Speech Lecture 10: Acoustic Models Dan Klein UC Berkeley Frame Extraction A frame (25 ms wide extracted every 10 ms 25 ms 10ms... a 1 a 2 a 3 Figure from Simon Arnfield

More information

Algorithms for NLP. Speech Signals. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley

Algorithms for NLP. Speech Signals. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Algorithms for NLP Speech Signals Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Maximum Entropy Models Improving on N-Grams? N-grams don t combine multiple sources of evidence well P(construction

More information

Speech Recognition. CS 294-5: Statistical Natural Language Processing. State-of-the-Art: Recognition. ASR for Dialog Systems.

Speech Recognition. CS 294-5: Statistical Natural Language Processing. State-of-the-Art: Recognition. ASR for Dialog Systems. CS 294-5: Statistical Natural Language Processing Speech Recognition Lecture 20: 11/22/05 Slides directly from Dan Jurafsky, indirectly many others Speech Recognition Overview: Demo Phonetics Articulatory

More information

Augmented Statistical Models for Speech Recognition

Augmented Statistical Models for Speech Recognition Augmented Statistical Models for Speech Recognition Mark Gales & Martin Layton 31 August 2005 Trajectory Models For Speech Processing Workshop Overview Dependency Modelling in Speech Recognition: latent

More information

Detection-Based Speech Recognition with Sparse Point Process Models

Detection-Based Speech Recognition with Sparse Point Process Models Detection-Based Speech Recognition with Sparse Point Process Models Aren Jansen Partha Niyogi Human Language Technology Center of Excellence Departments of Computer Science and Statistics ICASSP 2010 Dallas,

More information

Shankar Shivappa University of California, San Diego April 26, CSE 254 Seminar in learning algorithms

Shankar Shivappa University of California, San Diego April 26, CSE 254 Seminar in learning algorithms Recognition of Visual Speech Elements Using Adaptively Boosted Hidden Markov Models. Say Wei Foo, Yong Lian, Liang Dong. IEEE Transactions on Circuits and Systems for Video Technology, May 2004. Shankar

More information

R E S E A R C H R E P O R T Entropy-based multi-stream combination Hemant Misra a Hervé Bourlard a b Vivek Tyagi a IDIAP RR 02-24 IDIAP Dalle Molle Institute for Perceptual Artificial Intelligence ffl

More information

The effect of speaking rate and vowel context on the perception of consonants. in babble noise

The effect of speaking rate and vowel context on the perception of consonants. in babble noise The effect of speaking rate and vowel context on the perception of consonants in babble noise Anirudh Raju Department of Electrical Engineering, University of California, Los Angeles, California, USA anirudh90@ucla.edu

More information

4 Adaptive Multimodal Fusion by Uncertainty Compensation with Application to Audio-Visual Speech Recognition

4 Adaptive Multimodal Fusion by Uncertainty Compensation with Application to Audio-Visual Speech Recognition 4 Adaptive Multimodal Fusion by Uncertainty Compensation with Application to Audio-Visual Speech Recognition George Papandreou, Athanassios Katsamanis, Vassilis Pitsikalis, and Petros Maragos National

More information

Tuesday, August 26, 14. Articulatory Phonology

Tuesday, August 26, 14. Articulatory Phonology Articulatory Phonology Problem: Two Incompatible Descriptions of Speech Phonological sequence of discrete symbols from a small inventory that recombine to form different words Physical continuous, context-dependent

More information

Constriction Degree and Sound Sources

Constriction Degree and Sound Sources Constriction Degree and Sound Sources 1 Contrasting Oral Constriction Gestures Conditions for gestures to be informationally contrastive from one another? shared across members of the community (parity)

More information

Automatic Speech Recognition (CS753)

Automatic Speech Recognition (CS753) Automatic Speech Recognition (CS753) Lecture 6: Hidden Markov Models (Part II) Instructor: Preethi Jyothi Aug 10, 2017 Recall: Computing Likelihood Problem 1 (Likelihood): Given an HMM l =(A, B) and an

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition INTRODUCTION TO Lecture Slides for Machine Learning 2nd Edition ETHEM ALPAYDIN, modified by Leonardo Bobadilla and some parts from http://www.cs.tau.ac.il/~apartzin/machinelearning/ The MIT Press, 2010

More information

Witsuwit en phonetics and phonology. LING 200 Spring 2006

Witsuwit en phonetics and phonology. LING 200 Spring 2006 Witsuwit en phonetics and phonology LING 200 Spring 2006 Announcements Correction to homework #2 (due Thurs in section) 5. all 6. (a)-(g), (j) (rest of assignment remains the same) Announcements Clickers

More information

Lecture 9: Speech Recognition. Recognizing Speech

Lecture 9: Speech Recognition. Recognizing Speech EE E68: Speech & Audio Processing & Recognition Lecture 9: Speech Recognition 3 4 Recognizing Speech Feature Calculation Sequence Recognition Hidden Markov Models Dan Ellis http://www.ee.columbia.edu/~dpwe/e68/

More information

Lecture 9: Speech Recognition

Lecture 9: Speech Recognition EE E682: Speech & Audio Processing & Recognition Lecture 9: Speech Recognition 1 2 3 4 Recognizing Speech Feature Calculation Sequence Recognition Hidden Markov Models Dan Ellis

More information

Parametric Specification of Constriction Gestures

Parametric Specification of Constriction Gestures Parametric Specification of Constriction Gestures Specify the parameter values for a dynamical control model that can generate appropriate patterns of kinematic and acoustic change over time. Model should

More information

ON THE USE OF MLP-DISTANCE TO ESTIMATE POSTERIOR PROBABILITIES BY KNN FOR SPEECH RECOGNITION

ON THE USE OF MLP-DISTANCE TO ESTIMATE POSTERIOR PROBABILITIES BY KNN FOR SPEECH RECOGNITION Zaragoza Del 8 al 1 de Noviembre de 26 ON THE USE OF MLP-DISTANCE TO ESTIMATE POSTERIOR PROBABILITIES BY KNN FOR SPEECH RECOGNITION Ana I. García Moral, Carmen Peláez Moreno EPS-Universidad Carlos III

More information

Monaural speech separation using source-adapted models

Monaural speech separation using source-adapted models Monaural speech separation using source-adapted models Ron Weiss, Dan Ellis {ronw,dpwe}@ee.columbia.edu LabROSA Department of Electrical Enginering Columbia University 007 IEEE Workshop on Applications

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines Hsuan-Tien Lin Learning Systems Group, California Institute of Technology Talk in NTU EE/CS Speech Lab, November 16, 2005 H.-T. Lin (Learning Systems Group) Introduction

More information

SPEECH COMMUNICATION 6.541J J-HST710J Spring 2004

SPEECH COMMUNICATION 6.541J J-HST710J Spring 2004 6.541J PS3 02/19/04 1 SPEECH COMMUNICATION 6.541J-24.968J-HST710J Spring 2004 Problem Set 3 Assigned: 02/19/04 Due: 02/26/04 Read Chapter 6. Problem 1 In this problem we examine the acoustic and perceptual

More information

Temporal Modeling and Basic Speech Recognition

Temporal Modeling and Basic Speech Recognition UNIVERSITY ILLINOIS @ URBANA-CHAMPAIGN OF CS 498PS Audio Computing Lab Temporal Modeling and Basic Speech Recognition Paris Smaragdis paris@illinois.edu paris.cs.illinois.edu Today s lecture Recognizing

More information

Sparse Models for Speech Recognition

Sparse Models for Speech Recognition Sparse Models for Speech Recognition Weibin Zhang and Pascale Fung Human Language Technology Center Hong Kong University of Science and Technology Outline Introduction to speech recognition Motivations

More information

Heeyoul (Henry) Choi. Dept. of Computer Science Texas A&M University

Heeyoul (Henry) Choi. Dept. of Computer Science Texas A&M University Heeyoul (Henry) Choi Dept. of Computer Science Texas A&M University hchoi@cs.tamu.edu Introduction Speaker Adaptation Eigenvoice Comparison with others MAP, MLLR, EMAP, RMP, CAT, RSW Experiments Future

More information

HIDDEN MARKOV MODELS IN SPEECH RECOGNITION

HIDDEN MARKOV MODELS IN SPEECH RECOGNITION HIDDEN MARKOV MODELS IN SPEECH RECOGNITION Wayne Ward Carnegie Mellon University Pittsburgh, PA 1 Acknowledgements Much of this talk is derived from the paper "An Introduction to Hidden Markov Models",

More information

Supporting Information

Supporting Information Supporting Information Blasi et al. 10.1073/pnas.1605782113 SI Materials and Methods Positional Test. We simulate, for each language and signal, random positions of the relevant signal-associated symbol

More information

Lecture 5: GMM Acoustic Modeling and Feature Extraction

Lecture 5: GMM Acoustic Modeling and Feature Extraction CS 224S / LINGUIST 285 Spoken Language Processing Andrew Maas Stanford University Spring 2017 Lecture 5: GMM Acoustic Modeling and Feature Extraction Original slides by Dan Jurafsky Outline for Today Acoustic

More information

p(d θ ) l(θ ) 1.2 x x x

p(d θ ) l(θ ) 1.2 x x x p(d θ ).2 x 0-7 0.8 x 0-7 0.4 x 0-7 l(θ ) -20-40 -60-80 -00 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ θ x FIGURE 3.. The top graph shows several training points in one dimension, known or assumed to

More information

Noise Classification based on PCA. Nattanun Thatphithakkul, Boontee Kruatrachue, Chai Wutiwiwatchai, Vataya Boonpiam

Noise Classification based on PCA. Nattanun Thatphithakkul, Boontee Kruatrachue, Chai Wutiwiwatchai, Vataya Boonpiam Noise Classification based on PCA Nattanun Thatphithakkul, Boontee Kruatrachue, Chai Wutiwiwatchai, Vataya Boonpiam 1 Outline Introduction Principle component analysis (PCA) Classification using PCA Experiment

More information

AUDIO-VISUAL RELIABILITY ESTIMATES USING STREAM

AUDIO-VISUAL RELIABILITY ESTIMATES USING STREAM SCHOOL OF ENGINEERING - STI ELECTRICAL ENGINEERING INSTITUTE SIGNAL PROCESSING LABORATORY Mihai Gurban ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE EPFL - FSTI - IEL - LTS Station Switzerland-5 LAUSANNE Phone:

More information

Hidden Markov Models

Hidden Markov Models 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Hidden Markov Models Matt Gormley Lecture 22 April 2, 2018 1 Reminders Homework

More information

The Noisy Channel Model. CS 294-5: Statistical Natural Language Processing. Speech Recognition Architecture. Digitizing Speech

The Noisy Channel Model. CS 294-5: Statistical Natural Language Processing. Speech Recognition Architecture. Digitizing Speech CS 294-5: Statistical Natural Language Processing The Noisy Channel Model Speech Recognition II Lecture 21: 11/29/05 Search through space of all possible sentences. Pick the one that is most probable given

More information

Ensembles. Léon Bottou COS 424 4/8/2010

Ensembles. Léon Bottou COS 424 4/8/2010 Ensembles Léon Bottou COS 424 4/8/2010 Readings T. G. Dietterich (2000) Ensemble Methods in Machine Learning. R. E. Schapire (2003): The Boosting Approach to Machine Learning. Sections 1,2,3,4,6. Léon

More information

Noise Compensation for Subspace Gaussian Mixture Models

Noise Compensation for Subspace Gaussian Mixture Models Noise ompensation for ubspace Gaussian Mixture Models Liang Lu University of Edinburgh Joint work with KK hin, A. Ghoshal and. enals Liang Lu, Interspeech, eptember, 2012 Outline Motivation ubspace GMM

More information

Brief Introduction of Machine Learning Techniques for Content Analysis

Brief Introduction of Machine Learning Techniques for Content Analysis 1 Brief Introduction of Machine Learning Techniques for Content Analysis Wei-Ta Chu 2008/11/20 Outline 2 Overview Gaussian Mixture Model (GMM) Hidden Markov Model (HMM) Support Vector Machine (SVM) Overview

More information

Acoustic Modeling for Speech Recognition

Acoustic Modeling for Speech Recognition Acoustic Modeling for Speech Recognition Berlin Chen 2004 References:. X. Huang et. al. Spoken Language Processing. Chapter 8 2. S. Young. The HTK Book (HTK Version 3.2) Introduction For the given acoustic

More information

An Asynchronous Hidden Markov Model for Audio-Visual Speech Recognition

An Asynchronous Hidden Markov Model for Audio-Visual Speech Recognition An Asynchronous Hidden Markov Model for Audio-Visual Speech Recognition Samy Bengio Dalle Molle Institute for Perceptual Artificial Intelligence (IDIAP) CP 592, rue du Simplon 4, 1920 Martigny, Switzerland

More information

Session Variability Compensation in Automatic Speaker Recognition

Session Variability Compensation in Automatic Speaker Recognition Session Variability Compensation in Automatic Speaker Recognition Javier González Domínguez VII Jornadas MAVIR Universidad Autónoma de Madrid November 2012 Outline 1. The Inter-session Variability Problem

More information

Global SNR Estimation of Speech Signals using Entropy and Uncertainty Estimates from Dropout Networks

Global SNR Estimation of Speech Signals using Entropy and Uncertainty Estimates from Dropout Networks Interspeech 2018 2-6 September 2018, Hyderabad Global SNR Estimation of Speech Signals using Entropy and Uncertainty Estimates from Dropout Networks Rohith Aralikatti, Dilip Kumar Margam, Tanay Sharma,

More information

Estimation of Cepstral Coefficients for Robust Speech Recognition

Estimation of Cepstral Coefficients for Robust Speech Recognition Estimation of Cepstral Coefficients for Robust Speech Recognition by Kevin M. Indrebo, B.S., M.S. A Dissertation submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment

More information

Hidden Markov Models

Hidden Markov Models 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Hidden Markov Models Matt Gormley Lecture 19 Nov. 5, 2018 1 Reminders Homework

More information

This is the author s version of a work that was submitted/accepted for publication in the following source:

This is the author s version of a work that was submitted/accepted for publication in the following source: This is the author s version of a work that was submitted/accepted for publication in the following source: Wallace, R., Baker, B., Vogt, R., & Sridharan, S. (2010) Discriminative optimisation of the figure

More information

Voting (Ensemble Methods)

Voting (Ensemble Methods) 1 2 Voting (Ensemble Methods) Instead of learning a single classifier, learn many weak classifiers that are good at different parts of the data Output class: (Weighted) vote of each classifier Classifiers

More information

Single Channel Signal Separation Using MAP-based Subspace Decomposition

Single Channel Signal Separation Using MAP-based Subspace Decomposition Single Channel Signal Separation Using MAP-based Subspace Decomposition Gil-Jin Jang, Te-Won Lee, and Yung-Hwan Oh 1 Spoken Language Laboratory, Department of Computer Science, KAIST 373-1 Gusong-dong,

More information

Hidden Markov Model and Speech Recognition

Hidden Markov Model and Speech Recognition 1 Dec,2006 Outline Introduction 1 Introduction 2 3 4 5 Introduction What is Speech Recognition? Understanding what is being said Mapping speech data to textual information Speech Recognition is indeed

More information

Speech Spectra and Spectrograms

Speech Spectra and Spectrograms ACOUSTICS TOPICS ACOUSTICS SOFTWARE SPH301 SLP801 RESOURCE INDEX HELP PAGES Back to Main "Speech Spectra and Spectrograms" Page Speech Spectra and Spectrograms Robert Mannell 6. Some consonant spectra

More information

Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring /

Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring / Machine Learning Ensemble Learning I Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi Spring 2015 http://ce.sharif.edu/courses/93-94/2/ce717-1 / Agenda Combining Classifiers Empirical view Theoretical

More information

Articulatoryinversion ofamericanenglish /ô/ byconditionaldensitymodes

Articulatoryinversion ofamericanenglish /ô/ byconditionaldensitymodes Articulatoryinversion ofamericanenglish /ô/ byconditionaldensitymodes Chao Qin and Miguel Á. Carreira-Perpiñán Electrical Engineering and Computer Science University of California, Merced http://eecs.ucmerced.edu

More information

Machine Recognition of Sounds in Mixtures

Machine Recognition of Sounds in Mixtures Machine Recognition of Sounds in Mixtures Outline 1 2 3 4 Computational Auditory Scene Analysis Speech Recognition as Source Formation Sound Fragment Decoding Results & Conclusions Dan Ellis

More information

Discriminative Learning and Big Data

Discriminative Learning and Big Data AIMS-CDT Michaelmas 2016 Discriminative Learning and Big Data Lecture 2: Other loss functions and ANN Andrew Zisserman Visual Geometry Group University of Oxford http://www.robots.ox.ac.uk/~vgg Lecture

More information

Hidden Markov Modelling

Hidden Markov Modelling Hidden Markov Modelling Introduction Problem formulation Forward-Backward algorithm Viterbi search Baum-Welch parameter estimation Other considerations Multiple observation sequences Phone-based models

More information

Forward algorithm vs. particle filtering

Forward algorithm vs. particle filtering Particle Filtering ØSometimes X is too big to use exact inference X may be too big to even store B(X) E.g. X is continuous X 2 may be too big to do updates ØSolution: approximate inference Track samples

More information

Speech Recognition. Department of Computer Science & Information Engineering National Taiwan Normal University. References:

Speech Recognition. Department of Computer Science & Information Engineering National Taiwan Normal University. References: Acoustic Modeling for Speech Recognition Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University References:. X. Huang et. al. Spoken Language age Processing.

More information

Boosting. CAP5610: Machine Learning Instructor: Guo-Jun Qi

Boosting. CAP5610: Machine Learning Instructor: Guo-Jun Qi Boosting CAP5610: Machine Learning Instructor: Guo-Jun Qi Weak classifiers Weak classifiers Decision stump one layer decision tree Naive Bayes A classifier without feature correlations Linear classifier

More information

PCA FACE RECOGNITION

PCA FACE RECOGNITION PCA FACE RECOGNITION The slides are from several sources through James Hays (Brown); Srinivasa Narasimhan (CMU); Silvio Savarese (U. of Michigan); Shree Nayar (Columbia) including their own slides. Goal

More information

On The Role Of Head Motion In Affective Expression

On The Role Of Head Motion In Affective Expression On The Role Of Head Motion In Affective Expression Atanu Samanta, Tanaya Guha March 9, 2017 Department of Electrical Engineering Indian Institute of Technology, Kanpur, India Introduction Applications

More information

Boosting & Deep Learning

Boosting & Deep Learning Boosting & Deep Learning Ensemble Learning n So far learning methods that learn a single hypothesis, chosen form a hypothesis space that is used to make predictions n Ensemble learning à select a collection

More information

Zeros of z-transform(zzt) representation and chirp group delay processing for analysis of source and filter characteristics of speech signals

Zeros of z-transform(zzt) representation and chirp group delay processing for analysis of source and filter characteristics of speech signals Zeros of z-transformzzt representation and chirp group delay processing for analysis of source and filter characteristics of speech signals Baris Bozkurt 1 Collaboration with LIMSI-CNRS, France 07/03/2017

More information

Review: Learning Bimodal Structures in Audio-Visual Data

Review: Learning Bimodal Structures in Audio-Visual Data Review: Learning Bimodal Structures in Audio-Visual Data CSE 704 : Readings in Joint Visual, Lingual and Physical Models and Inference Algorithms Suren Kumar Vision and Perceptual Machines Lab 106 Davis

More information

Lecture 8. Instructor: Haipeng Luo

Lecture 8. Instructor: Haipeng Luo Lecture 8 Instructor: Haipeng Luo Boosting and AdaBoost In this lecture we discuss the connection between boosting and online learning. Boosting is not only one of the most fundamental theories in machine

More information

Data Informatics. Seon Ho Kim, Ph.D.

Data Informatics. Seon Ho Kim, Ph.D. Data Informatics Seon Ho Kim, Ph.D. seonkim@usc.edu What is Machine Learning? Overview slides by ETHEM ALPAYDIN Why Learn? Learn: programming computers to optimize a performance criterion using example

More information

TinySR. Peter Schmidt-Nielsen. August 27, 2014

TinySR. Peter Schmidt-Nielsen. August 27, 2014 TinySR Peter Schmidt-Nielsen August 27, 2014 Abstract TinySR is a light weight real-time small vocabulary speech recognizer written entirely in portable C. The library fits in a single file (plus header),

More information

Wavelet Transform in Speech Segmentation

Wavelet Transform in Speech Segmentation Wavelet Transform in Speech Segmentation M. Ziółko, 1 J. Gałka 1 and T. Drwięga 2 1 Department of Electronics, AGH University of Science and Technology, Kraków, Poland, ziolko@agh.edu.pl, jgalka@agh.edu.pl

More information

Boosting: Algorithms and Applications

Boosting: Algorithms and Applications Boosting: Algorithms and Applications Lecture 11, ENGN 4522/6520, Statistical Pattern Recognition and Its Applications in Computer Vision ANU 2 nd Semester, 2008 Chunhua Shen, NICTA/RSISE Boosting Definition

More information

MAP adaptation with SphinxTrain

MAP adaptation with SphinxTrain MAP adaptation with SphinxTrain David Huggins-Daines dhuggins@cs.cmu.edu Language Technologies Institute Carnegie Mellon University MAP adaptation with SphinxTrain p.1/12 Theory of MAP adaptation Standard

More information

A Survey on Voice Activity Detection Methods

A Survey on Voice Activity Detection Methods e-issn 2455 1392 Volume 2 Issue 4, April 2016 pp. 668-675 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com A Survey on Voice Activity Detection Methods Shabeeba T. K. 1, Anand Pavithran 2

More information

Lecture 3: ASR: HMMs, Forward, Viterbi

Lecture 3: ASR: HMMs, Forward, Viterbi Original slides by Dan Jurafsky CS 224S / LINGUIST 285 Spoken Language Processing Andrew Maas Stanford University Spring 2017 Lecture 3: ASR: HMMs, Forward, Viterbi Fun informative read on phonetics The

More information

Analysis of audio intercepts: Can we identify and locate the speaker?

Analysis of audio intercepts: Can we identify and locate the speaker? Motivation Analysis of audio intercepts: Can we identify and locate the speaker? K V Vijay Girish, PhD Student Research Advisor: Prof A G Ramakrishnan Research Collaborator: Dr T V Ananthapadmanabha Medical

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Particle Filters and Applications of HMMs Instructor: Wei Xu Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley.] Recap: Reasoning

More information

Speech and Language Processing. Chapter 9 of SLP Automatic Speech Recognition (II)

Speech and Language Processing. Chapter 9 of SLP Automatic Speech Recognition (II) Speech and Language Processing Chapter 9 of SLP Automatic Speech Recognition (II) Outline for ASR ASR Architecture The Noisy Channel Model Five easy pieces of an ASR system 1) Language Model 2) Lexicon/Pronunciation

More information

Voltage Maps. Nearest Neighbor. Alternative. di: distance to electrode i N: number of neighbor electrodes Vi: voltage at electrode i

Voltage Maps. Nearest Neighbor. Alternative. di: distance to electrode i N: number of neighbor electrodes Vi: voltage at electrode i Speech 2 EEG Research Voltage Maps Nearest Neighbor di: distance to electrode i N: number of neighbor electrodes Vi: voltage at electrode i Alternative Spline interpolation Current Source Density 2 nd

More information

Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers

Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers Erin Allwein, Robert Schapire and Yoram Singer Journal of Machine Learning Research, 1:113-141, 000 CSE 54: Seminar on Learning

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Particle Filters and Applications of HMMs Instructor: Alan Ritter Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

Another look at Bayesian. inference

Another look at Bayesian. inference Another look at Bayesian A general scenario: - Query variables: X inference - Evidence (observed) variables and their values: E = e - Unobserved variables: Y Inference problem: answer questions about the

More information

To Separate Speech! A System for Recognizing Simultaneous Speech

To Separate Speech! A System for Recognizing Simultaneous Speech A System for Recognizing Simultaneous Speech John McDonough 1,2,Kenichi Kumatani 2,3,Tobias Gehrig 4, Emilian Stoimenov 4, Uwe Mayer 4, Stefan Schacht 1, Matthias Wölfel 4 and Dietrich Klakow 1 1 Spoken

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data Samy Bengio Statistical Machine Learning from Data Statistical Machine Learning from Data Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique Fédérale de Lausanne (EPFL),

More information

Robust Sound Event Detection in Continuous Audio Environments

Robust Sound Event Detection in Continuous Audio Environments Robust Sound Event Detection in Continuous Audio Environments Haomin Zhang 1, Ian McLoughlin 2,1, Yan Song 1 1 National Engineering Laboratory of Speech and Language Information Processing The University

More information

Independent Component Analysis and Unsupervised Learning. Jen-Tzung Chien

Independent Component Analysis and Unsupervised Learning. Jen-Tzung Chien Independent Component Analysis and Unsupervised Learning Jen-Tzung Chien TABLE OF CONTENTS 1. Independent Component Analysis 2. Case Study I: Speech Recognition Independent voices Nonparametric likelihood

More information

Learning Dynamic Audio/Visual Mapping with Input-Output Hidden Markov Models

Learning Dynamic Audio/Visual Mapping with Input-Output Hidden Markov Models Learning Dynamic Audio/Visual Mapping with Input-Output Hidden Markov Models Yan Li and Heung-Yeung Shum Microsoft Research China Beijing 100080, P.R. China Abstract In this paper we formulate the problem

More information

Automatic Speech Recognition (CS753)

Automatic Speech Recognition (CS753) Automatic Speech Recognition (CS753) Lecture 12: Acoustic Feature Extraction for ASR Instructor: Preethi Jyothi Feb 13, 2017 Speech Signal Analysis Generate discrete samples A frame Need to focus on short

More information

Independent Component Analysis and Unsupervised Learning

Independent Component Analysis and Unsupervised Learning Independent Component Analysis and Unsupervised Learning Jen-Tzung Chien National Cheng Kung University TABLE OF CONTENTS 1. Independent Component Analysis 2. Case Study I: Speech Recognition Independent

More information

The AdaBoost algorithm =1/n for i =1,...,n 1) At the m th iteration we find (any) classifier h(x; ˆθ m ) for which the weighted classification error m

The AdaBoost algorithm =1/n for i =1,...,n 1) At the m th iteration we find (any) classifier h(x; ˆθ m ) for which the weighted classification error m ) Set W () i The AdaBoost algorithm =1/n for i =1,...,n 1) At the m th iteration we find (any) classifier h(x; ˆθ m ) for which the weighted classification error m m =.5 1 n W (m 1) i y i h(x i ; 2 ˆθ

More information

ECE 5984: Introduction to Machine Learning

ECE 5984: Introduction to Machine Learning ECE 5984: Introduction to Machine Learning Topics: Ensemble Methods: Bagging, Boosting Readings: Murphy 16.4; Hastie 16 Dhruv Batra Virginia Tech Administrativia HW3 Due: April 14, 11:55pm You will implement

More information

Cochlear modeling and its role in human speech recognition

Cochlear modeling and its role in human speech recognition Allen/IPAM February 1, 2005 p. 1/3 Cochlear modeling and its role in human speech recognition Miller Nicely confusions and the articulation index Jont Allen Univ. of IL, Beckman Inst., Urbana IL Allen/IPAM

More information

Why DNN Works for Acoustic Modeling in Speech Recognition?

Why DNN Works for Acoustic Modeling in Speech Recognition? Why DNN Works for Acoustic Modeling in Speech Recognition? Prof. Hui Jiang Department of Computer Science and Engineering York University, Toronto, Ont. M3J 1P3, CANADA Joint work with Y. Bao, J. Pan,

More information

Seq2Seq Losses (CTC)

Seq2Seq Losses (CTC) Seq2Seq Losses (CTC) Jerry Ding & Ryan Brigden 11-785 Recitation 6 February 23, 2018 Outline Tasks suited for recurrent networks Losses when the output is a sequence Kinds of errors Losses to use CTC Loss

More information

Final Examination CS 540-2: Introduction to Artificial Intelligence

Final Examination CS 540-2: Introduction to Artificial Intelligence Final Examination CS 540-2: Introduction to Artificial Intelligence May 7, 2017 LAST NAME: SOLUTIONS FIRST NAME: Problem Score Max Score 1 14 2 10 3 6 4 10 5 11 6 9 7 8 9 10 8 12 12 8 Total 100 1 of 11

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1396 1 / 44 Table

More information

Reformulating the HMM as a trajectory model by imposing explicit relationship between static and dynamic features

Reformulating the HMM as a trajectory model by imposing explicit relationship between static and dynamic features Reformulating the HMM as a trajectory model by imposing explicit relationship between static and dynamic features Heiga ZEN (Byung Ha CHUN) Nagoya Inst. of Tech., Japan Overview. Research backgrounds 2.

More information

Multi-scale Geometric Summaries for Similarity-based Upstream S

Multi-scale Geometric Summaries for Similarity-based Upstream S Multi-scale Geometric Summaries for Similarity-based Upstream Sensor Fusion Duke University, ECE / Math 3/6/2019 Overall Goals / Design Choices Leverage multiple, heterogeneous modalities in identification

More information

Current Word Previous Word Next Word Current Word Character n-gram all Current POS Tag Surrounding POS Tag Sequence Current Word Shape Surrounding

Current Word Previous Word Next Word Current Word Character n-gram all Current POS Tag Surrounding POS Tag Sequence Current Word Shape Surrounding Feature NER Current Word Previous Word Next Word Current Word Character n-gram all Current POS Tag Surrounding POS Tag Sequence Current Word Shape Surrounding Word Shape Sequence Presence of Word in Left

More information