Robotics. Islam S. M. Khalil. September 18, German University in Cairo

Size: px
Start display at page:

Download "Robotics. Islam S. M. Khalil. September 18, German University in Cairo"

Transcription

1 Robotics German University in Cairo September 18, 2016

2 Vector Functions A vector v in a reference frame A depends on a scalar verifiable q. We can say that v is a vector function of q in A. Otherwise, v is independent of q in A. Figure: P is dependent on q 1 and q 2 in S and independent on q 3 in S.

3 Vector Functions A vector v may be a function of a variable q in one reference frame, but be independent of q in another reference frame. Figure: A gyroscope.

4 Vector Functions P is the position vector from point O to point P of C. P is a function of q 1 both in A and B, but is independent of q 1 in C. Figure: A gyroscope.

5 Vector Functions P is a function of q 2 both A, but is independent of q 2 in B and in C. Figure: A gyroscope.

6 Vector Functions P is independent of q 3 both A, B, and C, but is a function of q 3 in D. Figure: A gyroscope.

7 Vector Functions In a reference frame A, a vector function v of n scalar variables q 1,..., q n, let a 1, a 2, and a 3 be a set of nonparallel, noncoplanar unit vectors fixed in A. Then there exist three unique scalar functions v 1, v 2, and v 3 of q 1,..., q n such that v = v 1 a 1 + v 2 a 2 + v 3 a 3 (1) When a 1, a 2, and a 3 are mutually perpendicular unit vectors, then it follows from (1) that the v i is given by Therefore, (1) can be rewritten as follow: v i = v a i (2) v = v a 1 a 1 + v a 2 a 2 + v a 3 a 3 (3)

8 Vector Functions a 1, a 2, a 3 and b 1, b 2, b 3 are mutualy perpendicular unit vectors fixed in A and B, respectively. Vector p can be expressed both as and as p = α 1 a 1 + α 2 a 2 + α 3 a 3 (4) p = β 1 b 1 + β 2 b 2 + β 3 b 3 (5) Figure: A gyroscope. α i and β i for i = 1, 2, 3 are functions of q 1, q 2, and q 3.

9 Vector Functions To determine the functions α i and β i, note that, if C has a radius R, one can proceed from O to P by moving through the distances R cos q 1 and R sin q 1 in the directions of b 2 and b 3, respectively, therefore p = R cos q 1 b 2 + R sin q 1 b 3 (6) Comparing (5) to (6), we find that β 1 = 0 β 2 = R cos q 1 β 3 = R sin q 1 (7)

10 Vector Functions Based on (4), one can write α 1 = p a 1 = R (cos q 1 b 2 a 1 + sin q 1 b 3 a 1 ) (8) α 2 = p a 2 = R (cos q 1 b 2 a 2 + sin q 1 b 3 a 2 ) (9) α 3 = p a 3 = R (cos q 1 b 2 a 3 + sin q 1 b 3 a 3 ) (10) We also know that b 2 a 1 = 0 b 2 a 2 = 1 b 2 a 3 = 0 (11) b 3 a 1 = cos q 2 b 3 a 2 = 0 b 3 a 3 = sin q 2 (12) Therefore, the functions α i of p are α 1 = R sin q 1 cos q 2 α 2 = R cos q 1 α 3 = R sin q 1 sin q 2 (13)

11 First Derivatives If v is a vector function of n scalar variables q 1,..., q n in a reference frame A, then n vectors called first partial derivatives of v in A and denoted by the symbols A v or A (v), (r = 1,..., n) q r q r are defined as follows: Let a 1, a 2, and a 3 be any any nonparallel, noncoplanar unit vectors fixed in A, and let v i be the a i measure number of v then A v q r 3 i=1 v i q r a i, (r = 1,..., n) (14) When v is regarded as a vector function of only a single scalar variable in Afor instance the time tthen this definition reduces to that of the ordinary derivative of v with respect to t in A, to 3 A dv dq r dv i dq r a i, (r = 1,..., n) (15) i=1

12 First Derivatives The vector p possesses partial derivatives with respect to q 1, q 2, and q 3 in each of the reference frames A, B, and C. To form A p q r, (r = 1,..., n) we use (14) as follows: A p [ ] [ ] = R sin q 1 cos q 2 a 1 + R cos q 1 a 2 + q r q r q r [ ] R sin q 1 sin q 2 a 3 (16) q r Consequently, A p q 1 = R (cos q 1 cos q 2 a 1 sin q 1 a 2 + cos q 1 sin q 2 a 3 ) (17) A p q 2 = R sin q 1 ( sin q 2 a 1 + cos q 2 a 3 ) (18) A p q 3 = 0 (19) p is independent of q 3 in A.

13 First Derivatives A p q 1 = R (cos q 1 cos q 2 a 1 sin q 1 a 2 + cos q 1 sin q 2 a 3 ) (20) A p q 2 = R sin q 1 ( sin q 2 a 1 + cos q 2 a 3 ) (21) A p q 3 = 0 (22) p is independent of q 3 in A.

14 First Derivatives Proceeding similarly to determine B p q r, (r = 1,..., n), we obtain B p q 1 = R ( sin q 1 b 2 + cos q 1 b 3 ) p is independent of q 2 and q 3 in B. B p q 2 = 0 B p q 3 = 0 (23) Figure: A gyroscope.

15 First Derivatives Similarly to determine C p q r, (r = 1,..., n), we obtain p is independent of q 1, q 2 and q 3 in C. C p q r = 0 (24) Figure: A gyroscope.

16 First Derivatives Suppose now that q i are specified as explicit functions of time t The α i can be expressed as q 1 = t q 2 = 2t q 3 = 3t α 1 = R sin t cos 2t α 2 = R cos t α 3 = R sin t sin 2t and the ordinary derivative of p with respect to t in A is seen to be given by A dp dt = dα 1 dt a 1 + dα 2 dt a 2 + dα 3 dt a 3 (25) = R[(cos t cos 2t 2 sin t sin 2t)a 1 (sin t)a 2 + (cos t sin 2t + 2 sin t cos 2t)a 3 ]

17 First Derivatives while the ordinary derivative of p with respect to t in B is B dp dt = R ( sin tb 2 + cos tb 3 ) (26) Finally, C dp dt = 0 (27) Figure: A gyroscope.

18 Thank You Thank You! Questions please

1 DIFFERENTIATION OF VECTORS

1 DIFFERENTIATION OF VECTORS 1 DIFFERENTIATION OF VECTORS The discipline of dynamics deals with changes of various kinds, such as changes in the position of a particle in a reference frame and changes in the configuration of a mechanical

More information

Robotics. Islam S. M. Khalil. September 19, German University in Cairo

Robotics. Islam S. M. Khalil. September 19, German University in Cairo Robotics German University in Cairo September 19, 2016 Angular Velocity Let b l, b 2, and b 3 form a right-handed set of mutually perpendicular unit vectors fixed in a rigid body B moving in a reference

More information

Differential Equation (DE): An equation relating an unknown function and one or more of its derivatives.

Differential Equation (DE): An equation relating an unknown function and one or more of its derivatives. Lexicon Differential Equation (DE): An equation relating an unknown function and one or more of its derivatives. Ordinary Differential Equation (ODE): A differential equation that contains only ordinary

More information

Module 18: Collision Theory

Module 18: Collision Theory Module 8: Collision Theory 8 Introduction In the previous module we considered examples in which two objects collide and stick together, and either there were no external forces acting in some direction

More information

Karlstads University Faculty of Technology and Science Physics. Rolling constraints. Author: Henrik Jackman. Classical mechanics

Karlstads University Faculty of Technology and Science Physics. Rolling constraints. Author: Henrik Jackman. Classical mechanics Karlstads University Faculty of Technology and Science Physics Rolling constraints Author: Henrik Jackman Classical mechanics 008-01-08 Introduction Rolling constraints are so called non-holonomic constraints.

More information

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that 1 Stokes s Theorem Let D R 2 be a connected compact smooth domain, so that D is a smooth embedded circle. Given a smooth function f : D R, define fdx dy fdxdy, D where the left-hand side is the integral

More information

Summary of various integrals

Summary of various integrals ummary of various integrals Here s an arbitrary compilation of information about integrals Moisés made on a cold ecember night. 1 General things o not mix scalars and vectors! In particular ome integrals

More information

Review of Vector Analysis in Cartesian Coordinates

Review of Vector Analysis in Cartesian Coordinates Review of Vector Analysis in Cartesian Coordinates 1 Scalar: A quantity that has magnitude, but no direction. Examples are mass, temperature, pressure, time, distance, and real numbers. Scalars are usually

More information

Chapter 3 Motion in two or three dimensions

Chapter 3 Motion in two or three dimensions Chapter 3 Motion in two or three dimensions Lecture by Dr. Hebin Li Announcements As requested by the Disability Resource Center: In this class there is a student who is a client of Disability Resource

More information

CBE 6333, R. Levicky 1. Orthogonal Curvilinear Coordinates

CBE 6333, R. Levicky 1. Orthogonal Curvilinear Coordinates CBE 6333, R. Levicky 1 Orthogonal Curvilinear Coordinates Introduction. Rectangular Cartesian coordinates are convenient when solving problems in which the geometry of a problem is well described by the

More information

Problem 1 (Equations with the dependent variable missing) By means of the substitutions. v = dy dt, dv

Problem 1 (Equations with the dependent variable missing) By means of the substitutions. v = dy dt, dv V Problem 1 (Equations with the dependent variable missing) By means of the substitutions v = dy dt, dv dt = d2 y dt 2 solve the following second-order differential equations 1. t 2 d2 y dt + 2tdy 1 =

More information

Today in Physics 217: boundary conditions and electrostatic boundary-value problems

Today in Physics 217: boundary conditions and electrostatic boundary-value problems Today in Physics 17: boundary conditions and electrostatic boundary-value problems Boundary conditions in electrostatics Simple solution of Poisson s equation as a boundary-value problem: the space-charge

More information

Created by T. Madas VECTOR MOMENTS. Created by T. Madas

Created by T. Madas VECTOR MOMENTS. Created by T. Madas VECTOR MOMENTS Question 1 (**) The vectors i, j and k are unit vectors mutually perpendicular to one another. Relative to a fixed origin O, a light rigid rod has its ends located at the points 0, 7,4 B

More information

VECTORS AND THE GEOMETRY OF SPACE

VECTORS AND THE GEOMETRY OF SPACE VECTORS AND THE GEOMETRY OF SPACE VECTORS AND THE GEOMETRY OF SPACE A line in the xy-plane is determined when a point on the line and the direction of the line (its slope or angle of inclination) are given.

More information

Chapter 2: First Order ODE 2.4 Examples of such ODE Mo

Chapter 2: First Order ODE 2.4 Examples of such ODE Mo Chapter 2: First Order ODE 2.4 Examples of such ODE Models 28 January 2018 First Order ODE Read Only Section! We recall the general form of the First Order DEs (FODE): dy = f (t, y) (1) dt where f (t,

More information

Systems of Ordinary Differential Equations

Systems of Ordinary Differential Equations Systems of Ordinary Differential Equations MATH 365 Ordinary Differential Equations J Robert Buchanan Department of Mathematics Fall 2018 Objectives Many physical problems involve a number of separate

More information

Chapter 15 Collision Theory

Chapter 15 Collision Theory Chapter 15 Collision Theory Chapter 15 Collision Theory 151 Introduction 15 Reference Frames Relative and Velocities 151 Center of Mass Reference Frame 3 15 Relative Velocities 4 153 Characterizing Collisions

More information

Symmetries 2 - Rotations in Space

Symmetries 2 - Rotations in Space Symmetries 2 - Rotations in Space This symmetry is about the isotropy of space, i.e. space is the same in all orientations. Thus, if we continuously rotated an entire system in space, we expect the system

More information

Covariant Formulation of Electrodynamics

Covariant Formulation of Electrodynamics Chapter 7. Covariant Formulation of Electrodynamics Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 11, and Rybicki and Lightman, Chap. 4. Starting with this chapter,

More information

charge of opposite signs attract / charges of the same sign repel

charge of opposite signs attract / charges of the same sign repel VISUAL PHYSICS ONLINE MODULE 4.1 ELECTRICITY ELECTRIC FIELD ELECTRIC POTENTIAL QUESTIONS and PROBLEMS (with ANSWRES) ex41b ex41c electric force F E [N] charge of opposite signs attract / charges of the

More information

Mathematics 2203, Test 1 - Solutions

Mathematics 2203, Test 1 - Solutions Mathematics 220, Test 1 - Solutions F, 2010 Philippe B. Laval Name 1. Determine if each statement below is True or False. If it is true, explain why (cite theorem, rule, property). If it is false, explain

More information

Physics 142 Energy in Mechanics Page 1. Energy in Mechanics

Physics 142 Energy in Mechanics Page 1. Energy in Mechanics Physics 4 Energy in Mechanics Page Energy in Mechanics This set of notes contains a brief review of the laws and theorems of Newtonian mechanics, and a longer section on energy, because of its central

More information

- 1 - θ 1. n 1. θ 2. mirror. object. image

- 1 - θ 1. n 1. θ 2. mirror. object. image TEST 5 (PHY 50) 1. a) How will the ray indicated in the figure on the following page be reflected by the mirror? (Be accurate!) b) Explain the symbols in the thin lens equation. c) Recall the laws governing

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

MA 102 Mathematics II Lecture Feb, 2015

MA 102 Mathematics II Lecture Feb, 2015 MA 102 Mathematics II Lecture 1 20 Feb, 2015 Differential Equations An equation containing derivatives is called a differential equation. The origin of differential equations Many of the laws of nature

More information

2.3. VECTOR SPACES 25

2.3. VECTOR SPACES 25 2.3. VECTOR SPACES 25 2.3 Vector Spaces MATH 294 FALL 982 PRELIM # 3a 2.3. Let C[, ] denote the space of continuous functions defined on the interval [,] (i.e. f(x) is a member of C[, ] if f(x) is continuous

More information

x+ y = 50 Dividing both sides by 2 : ( ) dx By (7.2), x = 25m gives maximum area. Substituting this value into (*):

x+ y = 50 Dividing both sides by 2 : ( ) dx By (7.2), x = 25m gives maximum area. Substituting this value into (*): Solutions 7(b 1 Complete solutions to Exercise 7(b 1. Since the perimeter 100 we have x+ y 100 [ ] ( x+ y 50 ividing both sides by : y 50 x * The area A xy, substituting y 50 x gives: A x( 50 x A 50x x

More information

MOTION IN TWO OR THREE DIMENSIONS

MOTION IN TWO OR THREE DIMENSIONS MOTION IN TWO OR THREE DIMENSIONS 3 Sections Covered 3.1 : Position & velocity vectors 3.2 : The acceleration vector 3.3 : Projectile motion 3.4 : Motion in a circle 3.5 : Relative velocity 3.1 Position

More information

Robotics. Islam S. M. Khalil. September 6, German University in Cairo

Robotics. Islam S. M. Khalil. September 6, German University in Cairo Robotics German University in Cairo September 6, 2016 Outline Motivation Agenda Generalized pseudoinverse Over- and under-determined systems Motivation Autonomous Robotic Systems Controller, power source,

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

Introduction to Vector Functions

Introduction to Vector Functions Introduction to Vector Functions Differentiation and Integration Philippe B. Laval KSU Today Philippe B. Laval (KSU) Vector Functions Today 1 / 14 Introduction In this section, we study the differentiation

More information

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4 MATH2202 Notebook 1 Fall 2015/2016 prepared by Professor Jenny Baglivo Contents 1 MATH2202 Notebook 1 3 1.1 Single Variable Calculus versus Multivariable Calculus................... 3 1.2 Rectangular Coordinate

More information

02 Coupled Oscillators

02 Coupled Oscillators Utah State University DigitalCommons@USU Foundations of Wave Phenomena Physics, Department of --4 Coupled Oscillators Charles G. Torre Department of Physics, Utah State University, Charles.Torre@usu.edu

More information

Multiple Choice. 1.(6 pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9.

Multiple Choice. 1.(6 pts) Find symmetric equations of the line L passing through the point (2, 5, 1) and perpendicular to the plane x + 3y z = 9. Multiple Choice.(6 pts) Find smmetric equations of the line L passing through the point (, 5, ) and perpendicular to the plane x + 3 z = 9. (a) x = + 5 3 = z (c) (x ) + 3( 3) (z ) = 9 (d) (e) x = 3 5 =

More information

Later in this chapter, we are going to use vector functions to describe the motion of planets and other objects through space.

Later in this chapter, we are going to use vector functions to describe the motion of planets and other objects through space. 10 VECTOR FUNCTIONS VECTOR FUNCTIONS Later in this chapter, we are going to use vector functions to describe the motion of planets and other objects through space. Here, we prepare the way by developing

More information

02 Coupled Oscillators

02 Coupled Oscillators Utah State University DigitalCommons@USU Foundations of Wave Phenomena Library Digital Monographs 8-04 0 Coupled Oscillators Charles G. Torre Department of Physics, Utah State University, Charles.Torre@usu.edu

More information

The rotation of a particle about an axis is specified by 2 pieces of information

The rotation of a particle about an axis is specified by 2 pieces of information 1 How to specify rotational motion The rotation of a particle about an axis is specified by 2 pieces of information 1) The direction of the axis of rotation 2) A magnitude of how fast the particle is "going

More information

THE DARBOUX TRIHEDRONS OF REGULAR CURVES ON A REGULAR SURFACE

THE DARBOUX TRIHEDRONS OF REGULAR CURVES ON A REGULAR SURFACE International lectronic Journal of eometry Volume 7 No 2 pp 61-71 (2014) c IJ TH DARBOUX TRIHDRONS OF RULAR CURVS ON A RULAR SURFAC MRAH TUNÇ AND MİN OZYILMAZ (Communicated by Levent KULA) Abstract In

More information

WEEK 8. CURVE SKETCHING. 1. Concavity

WEEK 8. CURVE SKETCHING. 1. Concavity WEEK 8. CURVE SKETCHING. Concavity Definition. (Concavity). The graph of a function y = f(x) is () concave up on an interval I if for any two points a, b I, the straight line connecting two points (a,

More information

Tangent and Normal Vector - (11.5)

Tangent and Normal Vector - (11.5) Tangent and Normal Vector - (.5). Principal Unit Normal Vector Let C be the curve traced out by the vector-valued function rt vector T t r r t t is the unit tangent vector to the curve C. Now define N

More information

Chapter 24. Electric Potential

Chapter 24. Electric Potential Chapter 24 Chapter 24 Electric Potential Electric Potential Energy When an electrostatic force acts between two or more charged particles within a system of particles, we can assign an electric potential

More information

Announcements September 19

Announcements September 19 Announcements September 19 Please complete the mid-semester CIOS survey this week The first midterm will take place during recitation a week from Friday, September 3 It covers Chapter 1, sections 1 5 and

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

Solutionbank Edexcel AS and A Level Modular Mathematics

Solutionbank Edexcel AS and A Level Modular Mathematics Page of Exercise A, Question Use the binomial theorem to expand, x

More information

Repeated Eigenvalues and Symmetric Matrices

Repeated Eigenvalues and Symmetric Matrices Repeated Eigenvalues and Symmetric Matrices. Introduction In this Section we further develop the theory of eigenvalues and eigenvectors in two distinct directions. Firstly we look at matrices where one

More information

Chapter 11. Angular Momentum

Chapter 11. Angular Momentum Chapter 11 Angular Momentum Angular Momentum Angular momentum plays a key role in rotational dynamics. There is a principle of conservation of angular momentum. In analogy to the principle of conservation

More information

r,t r R Z j ³ 0 1 4π² 0 r,t) = 4π

r,t r R Z j ³ 0 1 4π² 0 r,t) = 4π 5.4 Lienard-Wiechert Potential and Consequent Fields 5.4.1 Potential and Fields (chapter 10) Lienard-Wiechert potential In the previous section, we studied the radiation from an electric dipole, a λ/2

More information

The Calculus of Vec- tors

The Calculus of Vec- tors Physics 2460 Electricity and Magnetism I, Fall 2007, Lecture 3 1 The Calculus of Vec- Summary: tors 1. Calculus of Vectors: Limits and Derivatives 2. Parametric representation of Curves r(t) = [x(t), y(t),

More information

AN INTRODUCTION TO CURVILINEAR ORTHOGONAL COORDINATES

AN INTRODUCTION TO CURVILINEAR ORTHOGONAL COORDINATES AN INTRODUCTION TO CURVILINEAR ORTHOGONAL COORDINATES Overview Throughout the first few weeks of the semester, we have studied vector calculus using almost exclusively the familiar Cartesian x,y,z coordinate

More information

Electromagnetic Wave Propagation Lecture 1: Maxwell s equations

Electromagnetic Wave Propagation Lecture 1: Maxwell s equations Electromagnetic Wave Propagation Lecture 1: Maxwell s equations Daniel Sjöberg Department of Electrical and Information Technology September 2, 2014 Outline 1 Maxwell s equations 2 Vector analysis 3 Boundary

More information

Radiative Processes in Astrophysics

Radiative Processes in Astrophysics Radiative Processes in Astrophysics 6. Relativistic Covariance & Kinematics Eline Tolstoy http://www.astro.rug.nl/~etolstoy/astroa07/ Practise, practise, practise... mid-term, 31st may, 9.15-11am As we

More information

Practice Midterm Solutions

Practice Midterm Solutions Practice Midterm Solutions Math 4B: Ordinary Differential Equations Winter 20 University of California, Santa Barbara TA: Victoria Kala DO NOT LOOK AT THESE SOLUTIONS UNTIL YOU HAVE ATTEMPTED EVERY PROBLEM

More information

Chapter 4. Motion in Two Dimensions. With modifications by Pinkney

Chapter 4. Motion in Two Dimensions. With modifications by Pinkney Chapter 4 Motion in Two Dimensions With modifications by Pinkney Kinematics in Two Dimensions covers: the vector nature of position, velocity and acceleration in greater detail projectile motion a special

More information

Physics 114A Introduction to Mechanics (without calculus)

Physics 114A Introduction to Mechanics (without calculus) Physics 114A Introduction to Mechanics (without calculus) A course about learning basic physics concepts and applying them to solve real-world, quantitative, mechanical problems Lecture 6 Review of Vectors

More information

AP Calculus Chapter 3 Testbank (Mr. Surowski)

AP Calculus Chapter 3 Testbank (Mr. Surowski) AP Calculus Chapter 3 Testbank (Mr. Surowski) Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.). If f(x) = 0x 4 3 + x, then f (8) = (A) (B) 4 3 (C) 83 3 (D) 2 3 (E) 2

More information

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find:

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find: Math B Final Eam, Solution Prof. Mina Aganagic Lecture 2, Spring 20 The eam is closed book, apart from a sheet of notes 8. Calculators are not allowed. It is your responsibility to write your answers clearly..

More information

Chapter 11. Special Relativity

Chapter 11. Special Relativity Chapter 11 Special Relativity Note: Please also consult the fifth) problem list associated with this chapter In this chapter, Latin indices are used for space coordinates only eg, i = 1,2,3, etc), while

More information

CHAPTER TWO: THE GEOMETRY OF CURVES

CHAPTER TWO: THE GEOMETRY OF CURVES CHAPTER TWO: THE GEOMETRY OF CURVES Thi material i for June 7, 8 (Tueday to Wed.) 2.1 Parametrized Curve Definition. A parametrized curve i a map α : I R n (n = 2 or 3), where I i an interval in R. We

More information

Lecture 12 Notes, Electromagnetic Theory I Dr. Christopher S. Baird University of Massachusetts Lowell

Lecture 12 Notes, Electromagnetic Theory I Dr. Christopher S. Baird University of Massachusetts Lowell Lecture 12 Notes, Electromagnetic Theory I Dr. Christopher S. Baird University of Massachusetts Lowell 1. Review of Magnetostatics in Magnetic Materials - Currents give rise to curling magnetic fields:

More information

Tensor Analysis in Euclidean Space

Tensor Analysis in Euclidean Space Tensor Analysis in Euclidean Space James Emery Edited: 8/5/2016 Contents 1 Classical Tensor Notation 2 2 Multilinear Functionals 4 3 Operations With Tensors 5 4 The Directional Derivative 5 5 Curvilinear

More information

Chapter 11. Angular Momentum

Chapter 11. Angular Momentum Chapter 11 Angular Momentum Angular Momentum Angular momentum plays a key role in rotational dynamics. There is a principle of conservation of angular momentum. In analogy to the principle of conservation

More information

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration 1 Handout 6: Rotational motion and moment of inertia Angular velocity and angular acceleration In Figure 1, a particle b is rotating about an axis along a circular path with radius r. The radius sweeps

More information

Chapter 4 Force System Resultant Moment of a Force

Chapter 4 Force System Resultant Moment of a Force Chapter 4 Force System Resultant Moment of a Force MOMENT OF A FORCE SCALAR FORMULATION, CROSS PRODUCT, MOMENT OF A FORCE VECTOR FORMULATION, & PRINCIPLE OF MOMENTS Today s Objectives : Students will be

More information

12.5 Equations of Lines and Planes

12.5 Equations of Lines and Planes 12.5 Equations of Lines and Planes Equation of Lines Vector Equation of Lines Parametric Equation of Lines Symmetric Equation of Lines Relation Between Two Lines Equations of Planes Vector Equation of

More information

Chapter 4. Motion in Two Dimensions. Professor Wa el Salah

Chapter 4. Motion in Two Dimensions. Professor Wa el Salah Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail. Will treat projectile motion and uniform circular

More information

Linear and Nonlinear Optimization

Linear and Nonlinear Optimization Linear and Nonlinear Optimization German University in Cairo October 10, 2016 Outline Introduction Gradient descent method Gauss-Newton method Levenberg-Marquardt method Case study: Straight lines have

More information

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( )) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( )) ( ) Solutions Complete solutions to Miscellaneous Exercise. The unit vector, u, can be obtained by using (.5. u= ( 5i+ 7j+ 5 + 7 + 5 7 = ( 5i + 7j+ = i+ j+ 8 8 8 8. (i We have ( 3 ( 6 a+ c= i+ j + i j = i+

More information

Vectors and Scalars. What do you do? 1) What is a right triangle? How many degrees are there in a triangle?

Vectors and Scalars. What do you do? 1) What is a right triangle? How many degrees are there in a triangle? Vectors and Scalars Some quantities in physics such as mass, length, or time are called scalars. A quantity is a scalar if it obeys the ordinary mathematical rules of addition and subtraction. All that

More information

Math 241, Exam 1 Information.

Math 241, Exam 1 Information. Math 241, Exam 1 Information. 2/13/13, LC 310, 11:15-12:05. Exam 1 will be based on: Sections 12.1-12.5, 14.2. The corresponding assigned homework problems (see http://www.math.sc.edu/ boylan/sccourses/241sp13/241.html)

More information

Definition of differential equations and their classification. Methods of solution of first-order differential equations

Definition of differential equations and their classification. Methods of solution of first-order differential equations Introduction to differential equations: overview Definition of differential equations and their classification Solutions of differential equations Initial value problems Existence and uniqueness Mathematical

More information

CSC 470 Introduction to Computer Graphics. Mathematical Foundations Part 2

CSC 470 Introduction to Computer Graphics. Mathematical Foundations Part 2 CSC 47 Introduction to Computer Graphics Mathematical Foundations Part 2 Vector Magnitude and Unit Vectors The magnitude (length, size) of n-vector w is written w 2 2 2 w = w + w2 + + w n Example: the

More information

Chapter 8 Gradient Methods

Chapter 8 Gradient Methods Chapter 8 Gradient Methods An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Introduction Recall that a level set of a function is the set of points satisfying for some constant. Thus, a point

More information

Math512 PDE Homework 2

Math512 PDE Homework 2 Math51 PDE Homework October 11, 009 Exercise 1.3. Solve u = xu x +yu y +(u x+y y/ = 0 with initial conditon u(x, 0 = 1 x. Proof. In this case, we have F = xp + yq + (p + q / z = 0 and Γ parameterized as

More information

Tutorial General Relativity

Tutorial General Relativity Tutorial General Relativity Winter term 016/017 Sheet No. 3 Solutions will be discussed on Nov/9/16 Lecturer: Prof. Dr. C. Greiner Tutor: Hendrik van Hees 1. Tensor gymnastics (a) Let Q ab = Q ba be a

More information

Projectile Motion. directions simultaneously. deal with is called projectile motion. ! An object may move in both the x and y

Projectile Motion. directions simultaneously. deal with is called projectile motion. ! An object may move in both the x and y Projectile Motion! An object may move in both the x and y directions simultaneously! The form of two-dimensional motion we will deal with is called projectile motion Assumptions of Projectile Motion! The

More information

*P46958A0244* IAL PAPER JANUARY 2016 DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA. 1. f(x) = (3 2x) 4, x 3 2

*P46958A0244* IAL PAPER JANUARY 2016 DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA. 1. f(x) = (3 2x) 4, x 3 2 Edexcel "International A level" "C3/4" papers from 016 and 015 IAL PAPER JANUARY 016 Please use extra loose-leaf sheets of paper where you run out of space in this booklet. 1. f(x) = (3 x) 4, x 3 Find

More information

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Rotational Kinematics and Dynamics. UCVTS AIT Physics Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,

More information

1. To analyze the deformation of a conical membrane, it is proposed to use a two-dimensional conical-polar coordinate system ( s,

1. To analyze the deformation of a conical membrane, it is proposed to use a two-dimensional conical-polar coordinate system ( s, EN2210: Continuum Mechanics Homework 2: Kinematics Due Wed September 26, 2012 School of Engineering Brown University 1. To analyze the deformation of a conical membrane, it is proposed to use a two-dimensional

More information

Robotics: Tutorial 3

Robotics: Tutorial 3 Robotics: Tutorial 3 Mechatronics Engineering Dr. Islam Khalil, MSc. Omar Mahmoud, Eng. Lobna Tarek and Eng. Abdelrahman Ezz German University in Cairo Faculty of Engineering and Material Science October

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 16

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 16 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Module - 01 Lecture - 16 In the last lectures, we have seen one-dimensional boundary value

More information

Ch 4 Differentiation

Ch 4 Differentiation Ch 1 Partial fractions Ch 6 Integration Ch 2 Coordinate geometry C4 Ch 5 Vectors Ch 3 The binomial expansion Ch 4 Differentiation Chapter 1 Partial fractions We can add (or take away) two fractions only

More information

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings:

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings: Introduction Up to this point we have considered only the kinematics of a manipulator. That is, only the specification of motion without regard to the forces and torques required to cause motion In this

More information

F A C U L T Y O F E D U C A T I O N. Physics Electromagnetism: Induced Currents Science and Mathematics Education Research Group

F A C U L T Y O F E D U C A T I O N. Physics Electromagnetism: Induced Currents Science and Mathematics Education Research Group F A C U L T Y O F E D U C A T I O N Department of Curriculum and Pedagogy Physics Electromagnetism: Induced Currents Science and Mathematics Education Research Group Supported by UBC Teaching and Learning

More information

20D - Homework Assignment 4

20D - Homework Assignment 4 Brian Bowers (TA for Hui Sun) MATH 0D Homework Assignment November, 03 0D - Homework Assignment First, I will give a brief overview of how to use variation of parameters. () Ensure that the differential

More information

Modeling with First Order ODEs (cont). Existence and Uniqueness of Solutions to First Order Linear IVP. Second Order ODEs

Modeling with First Order ODEs (cont). Existence and Uniqueness of Solutions to First Order Linear IVP. Second Order ODEs Modeling with First Order ODEs (cont). Existence and Uniqueness of Solutions to First Order Linear IVP. Second Order ODEs September 18 22, 2017 Mixing Problem Yuliya Gorb Example: A tank with a capacity

More information

PLC Papers. Created For:

PLC Papers. Created For: PLC Papers Created For: t followed by close scrutiny of the marking scheme followed by reassessing every 3 days to attain at least 8 out o Approximate solutions to equations using iteration 1 Grade 9 Objective:

More information

Central Force Problem

Central Force Problem Central Force Problem Consider two bodies of masses, say earth and moon, m E and m M moving under the influence of mutual gravitational force of potential V(r). Now Langangian of the system is where, µ

More information

Conductors and Dielectrics

Conductors and Dielectrics 5.1 Current and Current Density Conductors and Dielectrics Electric charges in motion constitute a current. The unit of current is the ampere (A), defined as a rate of movement of charge passing a given

More information

Mathematics 308 Geometry. Chapter 2. Elementary coordinate geometry

Mathematics 308 Geometry. Chapter 2. Elementary coordinate geometry Mathematics 308 Geometry Chapter 2. Elementary coordinate geometry Using a computer to produce pictures requires translating geometry to numbers, which is carried out through a coordinate system. Through

More information

Summary: Curvilinear Coordinates

Summary: Curvilinear Coordinates Physics 2460 Electricity and Magnetism I, Fall 2007, Lecture 10 1 Summary: Curvilinear Coordinates 1. Summary of Integral Theorems 2. Generalized Coordinates 3. Cartesian Coordinates: Surfaces of Constant

More information

MA304 Differential Geometry

MA304 Differential Geometry MA34 Differential Geometr Homework solutions, Spring 8, 3% of the final mark Let I R, where I = (a, b) or I = [a, b] Let α : I R 3 be a regular parameterised differentiable curve (not necessaril b arc

More information

Introduction to Vector Functions

Introduction to Vector Functions Introduction to Vector Functions Limits and Continuity Philippe B Laval KSU Spring 2012 Philippe B Laval (KSU) Introduction to Vector Functions Spring 2012 1 / 14 Introduction In this section, we study

More information

ENGI 4430 Parametric Vector Functions Page dt dt dt

ENGI 4430 Parametric Vector Functions Page dt dt dt ENGI 4430 Parametric Vector Functions Page 2-01 2. Parametric Vector Functions (continued) Any non-zero vector r can be decomposed into its magnitude r and its direction: r rrˆ, where r r 0 Tangent Vector:

More information

Exam. There are 6 problems. Your 5 best answers count. Please pay attention to the presentation of your work! Best 5

Exam. There are 6 problems. Your 5 best answers count. Please pay attention to the presentation of your work! Best 5 Department of Mathematical Sciences Instructor: Daiva Pucinskaite Calculus III June, 06 Name: Exam There are 6 problems. Your 5 best answers count. Please pay attention to the presentation of your work!

More information

Single Particle Motion

Single Particle Motion Single Particle Motion C ontents Uniform E and B E = - guiding centers Definition of guiding center E gravitation Non Uniform B 'grad B' drift, B B Curvature drift Grad -B drift, B B invariance of µ. Magnetic

More information

Mark Scheme (Results) January 2011

Mark Scheme (Results) January 2011 Mark Scheme (Results) January 011 GCE GCE Mechanics M3 (6679) Paper 1 Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH Edexcel is one

More information

MOMENT OF A FORCE ABOUT A POINT

MOMENT OF A FORCE ABOUT A POINT MOMENT OF A FORCE ABOUT A POINT The tendency of a body to rotate about an axis passing through a specific point O when acted upon by a force (sometimes called a torque). 1 APPLICATIONS A torque or moment

More information

Culminating Review for Vectors

Culminating Review for Vectors Culminating Review for Vectors 0011 0010 1010 1101 0001 0100 1011 An Introduction to Vectors Applications of Vectors Equations of Lines and Planes 4 12 Relationships between Points, Lines and Planes An

More information

The spacetime of special relativity

The spacetime of special relativity 1 The spacetime of special relativity We begin our discussion of the relativistic theory of gravity by reviewing some basic notions underlying the Newtonian and special-relativistic viewpoints of space

More information

22.3. Repeated Eigenvalues and Symmetric Matrices. Introduction. Prerequisites. Learning Outcomes

22.3. Repeated Eigenvalues and Symmetric Matrices. Introduction. Prerequisites. Learning Outcomes Repeated Eigenvalues and Symmetric Matrices. Introduction In this Section we further develop the theory of eigenvalues and eigenvectors in two distinct directions. Firstly we look at matrices where one

More information