Today in Physics 217: boundary conditions and electrostatic boundary-value problems

Size: px
Start display at page:

Download "Today in Physics 217: boundary conditions and electrostatic boundary-value problems"

Transcription

1 Today in Physics 17: boundary conditions and electrostatic boundary-value problems Boundary conditions in electrostatics Simple solution of Poisson s equation as a boundary-value problem: the space-charge limited vacuum diode Vx ( i ) ρ ( x i ) x i x i vx ( i ) c x i 7 September 00 Physics 17, Fall 00 1

2 Electrostatic boundary-value problems We have encountered several differential equations relating the field, scalar potential, and charge density, that we will in general want to solve for E or V. But the solutions aren t unique unless enough constraints boundary values are supplied. If the potential, or components of the field, are specified on some surface or line (e.g. equipotentials), a unique solution of the differential equation(s) for V or E in the rest of the volume or area will be obtained. This will usually be how solutions of Laplace s equation will proceed. Specification of the charge density results in specification of boundary conditions on field and potential, as follows. (This often comes in when one solves the Poisson equation.) 7 September 00 Physics 17, Fall 00

3 Surface charges and electric-field boundary conditions Consider a surface with charge per unit area σ, not necessarily constant. What is the relation of this charge to the electric field on either side of the surface? E above Zoom in on an area a ε small enough to consider σ flat, and draw a E below Gaussian surface with planar symmetry that has sides ε ( 0) perpendicular to the surface. Then, since the flux through the sides is negligible, E d a = 4π Qenclosed E E a= 4πσ a E E = 4πσ ( ) ( ), above, below, above, below The charge sheet makes a discontinuity of 4 πσ in E. 7 September 00 Physics 17, Fall 00 3

4 Surface charges and electric-field boundary conditions (continued) ( ) Now consider a loop, ε 0 by L, perpendicular to ε the surface, bisected by the surface, and small σ L enough that the surface is flat over its dimensions. In a line integral of field along this loop the contribution of the short sides is negligibly small, so E d l = 0 ( ) E E L = 0 E E = 0, above, below, above, below The parallel component of E is continuous across the sheet of charge. E above E below 7 September 00 Physics 17, Fall 00 4

5 Surface charges and electric-potential boundary conditions Implications of this on V: For two points a and b, ±ε from the surface, V V = E dl ε above below 0 0 i.e. V is continuous across the charged sheet. Consider the gradient of V. ( ) ( ) Or, with n as the coordinate axis perpendicular to the surface at this point, above below ˆ V V V V n = 4πσ = 4πσ n n 7 September 00 Physics 17, Fall 00 5 b a V V = E E = πσ above below, above, below 4 ( ) above below

6 Griffiths problem!.48: In a vacuum diode, electrons are boiled off a hot cathode, at potential zero, and accelerated across a gap to the anode, which is held at positive potential V 0. The cloud of moving electrons within the gap (called the space charge) quickly builds up to the point where it reduces the field at the surface of the cathode to zero. From then on, a steady current I flows between the plates. Suppose the plates are large relative to the separation d, so that edge effects can be neglected. Then V, ρ, and v (the speed of the electrons) are functions of x alone. (a) Solve Poisson s equation for the potential between the anode and cathode, as a function of x, V 0, and d. 3 (b) Show that I = KV 0, and find the constant K. This expression is called Child s Law. 7 September 00 Physics 17, Fall 00 6

7 (continued) Heater Cathode e - V = 0 V = V 0 v d A Anode x As soon as electrons boil off in large numbers, their presence slows down further electron ejection because they re so slow at first. (This is what is meant by space-charge limited.) The space charge is denser near the cathode. Although the electrons move, the space charge distribution is constant after a while, so this is an electrostatics problem. 7 September 00 Physics 17, Fall 00 7

8 (continued) Poisson s equation, in one dimension: ( x) Boundary conditions: Solution: V 0 = 0, V d = V0, E 0 = 0 First, consider a charge q that makes it to where the potential is V. The field has done work W = qv, so 1 W = qv = ( KE) = mv v = qv m Also consider a slice of the space charge, with thickness : dq = ρ A dq = A Av dt = dt dv V = = 4πρ ( ) ( ) ( ) 7 September 00 Physics 17, Fall 00 8

9 (continued) But dq/dt = I, which is constant if the charge distribution has reached a steady state, so dv I I m 1 = 4πρ = 4π = 4π = βv Av A qv I m where β = 4 π. A q To solve, substitute dv = V, and multiply through by V : dv 1 V = βv V dv 1dV V = βv 7 September 00 Physics 17, Fall 00 9

10 (continued) Integrate with respect to x: dv 1dV V = β V 1 1 V = βv + C dv But V(0) = 0, and E( 0) = 0= ( 0) = V ( 0 ), so C = 0, and dv 14 V = = βv 14 V dv = β 4 34 V = β x+ D 3 7 September 00 Physics 17, Fall 00 10

11 (continued) V(0) = 0 once again mandates that D = 0. Also V d V0 = βd β = V0 3 3d ( ) = V 0, so x V( x) = β x = V0 x = V0 3d d That s the solution of part (a). To work out the current (part b), start by getting the charge density and speed: 1 dv 1 V V0 ρ = 4 = 4 d x = π π π d x qv qv0 x v = = m m d 3 ( ) 7 September 00 Physics 17, Fall 00 11

12 (continued) Thus I VA 0 qv0 x = ρ Av = 3 m d 9π ( d x) 3 A q = V = 9π d m KV0, where K = A q. 9π d m Child s Law Note that the current and voltage are not directly proportional, as in Ohm s law. 7 September 00 Physics 17, Fall 00 1

TUTORIAL 4. Proof. Computing the potential at the center and pole respectively,

TUTORIAL 4. Proof. Computing the potential at the center and pole respectively, TUTORIAL 4 Problem 1 An inverted hemispherical bowl of radius R carries a uniform surface charge density σ. Find the potential difference between the north pole and the center. Proof. Computing the potential

More information

How Electronics Started! And JLab Hits the Wall!

How Electronics Started! And JLab Hits the Wall! How Electronics Started! And JLab Hits the Wall! In electronics, a vacuum diode or tube is a device used to amplify, switch, otherwise modify, or create an electrical signal by controlling the movement

More information

Chapter 21: Gauss law Tuesday September 13 th. Gauss law and conductors Electrostatic potential energy (more likely on Thu.)

Chapter 21: Gauss law Tuesday September 13 th. Gauss law and conductors Electrostatic potential energy (more likely on Thu.) Chapter 21: Gauss law Tuesday September 13 th LABS START THIS WEEK Quick review of Gauss law The flux of a vector field The shell theorem Gauss law for other symmetries A uniformly charged sheet A uniformly

More information

IMPORTANT: LABS START NEXT WEEK

IMPORTANT: LABS START NEXT WEEK Chapter 21: Gauss law Thursday September 8 th IMPORTANT: LABS START NEXT WEEK Gauss law The flux of a vector field Electric flux and field lines Gauss law for a point charge The shell theorem Examples

More information

Chapter 4. Electrostatic Fields in Matter

Chapter 4. Electrostatic Fields in Matter Chapter 4. Electrostatic Fields in Matter 4.1. Polarization 4.2. The Field of a Polarized Object 4.3. The Electric Displacement 4.4. Linear Dielectrics 4.5. Energy in dielectric systems 4.6. Forces on

More information

Today in Physics 217: electric potential

Today in Physics 217: electric potential Today in Physics 17: electric potential Finish Friday s discussion of the field from a uniformly-charged sphere, and the gravitational analogue of Gauss Law. Electric potential Example: a field and its

More information

free space (vacuum) permittivity [ F/m]

free space (vacuum) permittivity [ F/m] Electrostatic Fields Electrostatic fields are static (time-invariant) electric fields produced by static (stationary) charge distributions. The mathematical definition of the electrostatic field is derived

More information

Questions on Electric Fields MS

Questions on Electric Fields MS Questions on Electric Fields MS 1. The diagram shows a positively charged oil drop held at rest between two parallel conducting plates A and B. A Oil drop 2.50 cm B The oil drop has a mass 9.79 x 10 15

More information

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/ Physics GRE: Electromagnetism G. J. Loges University of Rochester Dept. of Physics & stronomy xkcd.com/567/ c Gregory Loges, 206 Contents Electrostatics 2 Magnetostatics 2 3 Method of Images 3 4 Lorentz

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. Millikan determined the charge on individual oil droplets using an arrangement as represented in the diagram. The plate voltage necessary to hold a charged droplet stationary

More information

Conductors and Dielectrics

Conductors and Dielectrics 5.1 Current and Current Density Conductors and Dielectrics Electric charges in motion constitute a current. The unit of current is the ampere (A), defined as a rate of movement of charge passing a given

More information

Magnetostatics. P.Ravindran, PHY041: Electricity & Magnetism 22 January 2013: Magntostatics

Magnetostatics. P.Ravindran, PHY041: Electricity & Magnetism 22 January 2013: Magntostatics Magnetostatics Magnetic Fields We saw last lecture that some substances, particularly iron, possess a property we call magnetism that exerts forces on other magnetic materials We also saw that t single

More information

Where k = 1. The electric field produced by a point charge is given by

Where k = 1. The electric field produced by a point charge is given by Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

More information

Electric Field. Electric field direction Same direction as the force on a positive charge Opposite direction to the force on an electron

Electric Field. Electric field direction Same direction as the force on a positive charge Opposite direction to the force on an electron Electric Field Electric field Space surrounding an electric charge (an energetic aura) Describes electric force Around a charged particle obeys inverse-square law Force per unit charge Electric Field Electric

More information

Phys102 General Physics II. Chapter 24: Gauss s Law

Phys102 General Physics II. Chapter 24: Gauss s Law Phys102 General Physics II Gauss Law Chapter 24: Gauss s Law Flux Electric Flux Gauss Law Coulombs Law from Gauss Law Isolated conductor and Electric field outside conductor Application of Gauss Law Charged

More information

Homework 2: Forces on Charged Particles

Homework 2: Forces on Charged Particles Homework 2: Forces on Charged Particles 1. In the arrangement shown below, 2 C of positive charge is moved from plate S, which is at a potential of 250 V, to plate T, which is at a potential of 750 V.

More information

Today in Physics 122: electrostatics review

Today in Physics 122: electrostatics review Today in Physics 122: electrostatics review David Blaine takes the practical portion of his electrostatics midterm (Gawker). 11 October 2012 Physics 122, Fall 2012 1 Electrostatics As you have probably

More information

Chapter 25 Current Resistance, and Electromotive Force

Chapter 25 Current Resistance, and Electromotive Force Chapter 25 Current Resistance, and Electromotive Force 1 Current In previous chapters we investigated the properties of charges at rest. In this chapter we want to investigate the properties of charges

More information

6.013 Recitation 11. Quasistatic Electric and Magnetic Fields in Devices and Circuit Elements

6.013 Recitation 11. Quasistatic Electric and Magnetic Fields in Devices and Circuit Elements 6.013 Recitation 11 Quasistatic Electric and Magnetic Fields in Devices and Circuit Elements A. Introduction The behavior of most electric devices depends on static or slowly varying (quasistatic 1 ) electric

More information

Electric Flux and Gauss Law

Electric Flux and Gauss Law Electric Flux and Gauss Law Gauss Law can be used to find the electric field of complex charge distribution. Easier than treating it as a collection of point charge and using superposition To use Gauss

More information

Maxwell s Equations. In the previous chapters we saw the four fundamental equations governging electrostatics and magnetostatics. They are.

Maxwell s Equations. In the previous chapters we saw the four fundamental equations governging electrostatics and magnetostatics. They are. Maxwell s Equations Introduction In the previous chapters we saw the four fundamental equations governging electrostatics and magnetostatics. They are D = ρ () E = 0 (2) B = 0 (3) H = J (4) In the integral

More information

Welcome. to Electrostatics

Welcome. to Electrostatics Welcome to Electrostatics Outline 1. Coulomb s Law 2. The Electric Field - Examples 3. Gauss Law - Examples 4. Conductors in Electric Field Coulomb s Law Coulomb s law quantifies the magnitude of the electrostatic

More information

Chapter 21. Electric Fields

Chapter 21. Electric Fields Chapter 21 Electric Fields The Origin of Electricity The electrical nature of matter is inherent in the atoms of all substances. An atom consists of a small relatively massive nucleus that contains particles

More information

Physics 202, Exam 1 Review

Physics 202, Exam 1 Review Physics 202, Exam 1 Review Logistics Topics: Electrostatics (Chapters 21-24.6) Point charges: electric force, field, potential energy, and potential Distributions: electric field, electric potential. Interaction

More information

Physics 202 Review Lectures

Physics 202 Review Lectures Physics 202 Review Lectures Exam 1&2 materials: today Optics: Reviewed Dec 11, 2008. (available on Web) Exam 3 materials: Reviewed on Nov. 21/22/23 (available on web). Also: Exam 1 and Exam 2 were reviewed

More information

Handout 3: Electric potential and electric potential energy. Electric potential

Handout 3: Electric potential and electric potential energy. Electric potential Handout 3: Electric potential and electric potential energy Electric potential Consider a charge + fixed in space as in Figure. Electric potential V at any point in space is defined as the work done by

More information

Electricity. Revision Notes. R.D.Pilkington

Electricity. Revision Notes. R.D.Pilkington Electricity Revision Notes R.D.Pilkington DIRECT CURRENTS Introduction Current: Rate of charge flow, I = dq/dt Units: amps Potential and potential difference: work done to move unit +ve charge from point

More information

Physics 142 Steady Currents Page 1. Steady Currents

Physics 142 Steady Currents Page 1. Steady Currents Physics 142 Steady Currents Page 1 Steady Currents If at first you don t succeed, try, try again. Then quit. No sense being a damn fool about it. W.C. Fields Electric current: the slow average drift of

More information

Exam 1 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1

Exam 1 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Exam 1 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 A rod of charge per unit length λ is surrounded by a conducting, concentric cylinder

More information

Lecture 7. Capacitors and Electric Field Energy. Last lecture review: Electrostatic potential

Lecture 7. Capacitors and Electric Field Energy. Last lecture review: Electrostatic potential Lecture 7. Capacitors and Electric Field Energy Last lecture review: Electrostatic potential V r = U r q Q Iclicker question The figure shows cross sections through two equipotential surfaces. In both

More information

Physics 2212 GH Quiz #2 Solutions Spring 2015

Physics 2212 GH Quiz #2 Solutions Spring 2015 Physics 2212 GH uiz #2 Solutions Spring 2015 Fundamental Charge e = 1.602 10 19 C Mass of an Electron m e = 9.109 10 31 kg Coulomb constant K = 8.988 10 9 N m 2 /C 2 Vacuum Permittivity ϵ 0 = 8.854 10

More information

Electrical Potential Energy and Electric Potential (Chapter 29)

Electrical Potential Energy and Electric Potential (Chapter 29) Electrical Potential Energy and Electric Potential (Chapter 29) A Refresher Course on Gravity and Mechanical Energy Total mechanical energy: E mech = K + U, K= 1 2 mv2,u = potential energy f W = F!" ids

More information

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge. MP204, Important Equations page 1 Below is a list of important equations that we meet in our study of Electromagnetism in the MP204 module. For your exam, you are expected to understand all of these, and

More information

Section 1: Electric Fields

Section 1: Electric Fields PHY 132 Outline of Lecture Notes i Section 1: Electric Fields A property called charge is part of the basic nature of protons and electrons. Large scale objects become charged by gaining or losing electrons.

More information

Physics 202, Lecture 3. The Electric Field

Physics 202, Lecture 3. The Electric Field Physics 202, Lecture 3 Today s Topics Electric Field (Review) Motion of charged particles in external E field Conductors in Electrostatic Equilibrium (Ch. 21.9) Gauss s Law (Ch. 22) Reminder: HW #1 due

More information

Physics 202, Exam 1 Review

Physics 202, Exam 1 Review Physics 202, Exam 1 Review Logistics Topics: Electrostatics + Capacitors (Chapters 21-24) Point charges: electric force, field, potential energy, and potential Distributions: electric field, electric potential.

More information

MTE1 results. Mean 75% = 90/120

MTE1 results. Mean 75% = 90/120 MTE1 results Mean 75% = 90/120 Scores available at Learn@UW, your TAs have exams If your score is an F or a D, talk to us and your TAs for suggestions on how to improve From last times Electric charges

More information

Chapter 22 Gauss s law. Electric charge and flux (sec &.3) Gauss s Law (sec &.5) Charges on conductors (sec. 22.6)

Chapter 22 Gauss s law. Electric charge and flux (sec &.3) Gauss s Law (sec &.5) Charges on conductors (sec. 22.6) Chapter 22 Gauss s law Electric charge and flux (sec. 22.2 &.3) Gauss s Law (sec. 22.4 &.5) Charges on conductors (sec. 22.6) 1 Learning Goals for CH 22 Determine the amount of charge within a closed surface

More information

Chapters 22/23: Potential/Capacitance Tuesday September 20 th

Chapters 22/23: Potential/Capacitance Tuesday September 20 th Chapters 22/23: Potential/Capacitance Tuesday September 20 th Mini Exam 2 on Thursday: Covers Chs. 21 and 22 (Gauss law and potential) Covers LONCAPA #3 to #6 (due this Wed.) No formula sheet allowed!!

More information

Chapter 19 Electric Potential and Electric Field

Chapter 19 Electric Potential and Electric Field Chapter 19 Electric Potential and Electric Field The electrostatic force is a conservative force. Therefore, it is possible to define an electrical potential energy function with this force. Work done

More information

Physics 112. Study Notes for Exam II

Physics 112. Study Notes for Exam II Chapter 20 Electric Forces and Fields Physics 112 Study Notes for Exam II 4. Electric Field Fields of + and point charges 5. Both fields and forces obey (vector) superposition Example 20.5; Figure 20.29

More information

Gauss s Law. The first Maxwell Equation A very useful computational technique This is important!

Gauss s Law. The first Maxwell Equation A very useful computational technique This is important! Gauss s Law The first Maxwell quation A very useful computational technique This is important! P05-7 Gauss s Law The Idea The total flux of field lines penetrating any of these surfaces is the same and

More information

Today in Physics 122: resistance

Today in Physics 122: resistance Today in Physics 122: resistance Ohm s Law Resistivity and the physics behind resistance Resistors of different shapes and sizes, and how to calculate their resistance from their resistivity Resistor networks

More information

ELECTROSTATIC FIELDS

ELECTROSTATIC FIELDS ELECTROSTATIC FIELDS Electric charge Ordinary matter is made up of atoms which have positively charged nuclei and negatively charged electrons surrounding them. A body can become charged if it loses or

More information

Electric Potential. 1/28/14 Physics for Scientists & Engineers 2, Chapter 23 1

Electric Potential. 1/28/14 Physics for Scientists & Engineers 2, Chapter 23 1 Electric Potential 1/28/14 Physics for Scientists & Engineers 2, Chapter 23 1 Notes! Correction set 1 Due Thursday evening at 10pm Name: Correction #1 RS Must answer all questions correctly to receive

More information

Electrostatics. Chapter Maxwell s Equations

Electrostatics. Chapter Maxwell s Equations Chapter 1 Electrostatics 1.1 Maxwell s Equations Electromagnetic behavior can be described using a set of four fundamental relations known as Maxwell s Equations. Note that these equations are observed,

More information

Let s go to something more concrete

Let s go to something more concrete Let s go to something more concrete Let me define an electric current Whenever charges of like sign are moving, an electric current exists Suppose I have a surface A with charges (assume + because of Franklin

More information

INF5490 RF MEMS. LN03: Modeling, design and analysis. Spring 2008, Oddvar Søråsen Department of Informatics, UoO

INF5490 RF MEMS. LN03: Modeling, design and analysis. Spring 2008, Oddvar Søråsen Department of Informatics, UoO INF5490 RF MEMS LN03: Modeling, design and analysis Spring 2008, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture MEMS functional operation Transducer principles Sensor principles Methods

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Part 1: Electric Force Review of Vectors Review your vectors! You should know how to convert from polar form to component form and vice versa add and subtract vectors multiply vectors by scalars Find

More information

Potentials and Fields

Potentials and Fields Potentials and Fields Review: Definition of Potential Potential is defined as potential energy per unit charge. Since change in potential energy is work done, this means V E x dx and E x dv dx etc. The

More information

Tutorial: simulating a rod pinch diode for pulsed radiography with Trak and GamBet

Tutorial: simulating a rod pinch diode for pulsed radiography with Trak and GamBet Tutorial: simulating a rod pinch diode for pulsed radiography with Trak and GamBet Stanley Humphries, Copyright 2012 Field Precision PO Box 13595, Albuquerque, NM 87192 U.S.A. Telephone: +1-505-220-3975

More information

F S E S 1. r 2 r N. t = pe sin f. T S p : E S. U = -p S # E

F S E S 1. r 2 r N. t = pe sin f. T S p : E S. U = -p S # E Coulomb s law: For charges q 1 and q separated by a distance r, the magnitude of the electric force on either F = (1.) 1 ƒq 1 q ƒ 4pP 0 r charge is proportional to the product q 1 q and inversely proportional

More information

Chapter 24 Gauss Law

Chapter 24 Gauss Law Chapter 24 Gauss Law A charge inside a box can be probed with a test charge q o to measure E field outside the box. The volume (V) flow rate (dv/dt) of fluid through the wire rectangle (a) is va when the

More information

Review. Spring Semester /21/14. Physics for Scientists & Engineers 2 1

Review. Spring Semester /21/14. Physics for Scientists & Engineers 2 1 Review Spring Semester 2014 Physics for Scientists & Engineers 2 1 Notes! Homework set 13 extended to Tuesday, 4/22! Remember to fill out SIRS form: https://sirsonline.msu.edu Physics for Scientists &

More information

Chapter 27 Current and Resistance 27.1 Electric Current

Chapter 27 Current and Resistance 27.1 Electric Current Chapter 27 Current and esistance 27.1 Electric Current Electric current: dq dt, unit: ampere 1A = 1C s The rate at which charge flows through a surface. No longer have static equilibrium. E and Q can 0

More information

AQA Physics A-level Section 7: Fields and Their Consequences

AQA Physics A-level Section 7: Fields and Their Consequences AQA Physics A-level Section 7: Fields and Their Consequences Key Points Gravitational fields A force field is a region in which a body experiences a non-contact force. Gravity is a universal force acting

More information

xˆ z ˆ. A second vector is given by B 2xˆ yˆ 2z ˆ.

xˆ z ˆ. A second vector is given by B 2xˆ yˆ 2z ˆ. Directions for all homework submissions Submit your work on plain-white or engineering paper (not lined notebook paper). Write each problem statement above each solution. Report answers using decimals

More information

Today in Physics 217: begin electrostatics

Today in Physics 217: begin electrostatics Today in Physics 217: begin electrostatics Fields and potentials, and the Helmholtz theorem The empirical basis of electrostatics Coulomb s Law At right: the classic hand-to-thevan-de-graaf experiment.

More information

Class 4 : Maxwell s Equations for Electrostatics

Class 4 : Maxwell s Equations for Electrostatics Class 4 : Maxwell s Equations for Electrostatics Concept of charge density Maxwell s 1 st and 2 nd Equations Physical interpretation of divergence and curl How do we check whether a given vector field

More information

Fall Lee - Midterm 2 solutions

Fall Lee - Midterm 2 solutions Fall 2009 - Lee - Midterm 2 solutions Problem 1 Solutions Part A Because the middle slab is a conductor, the electric field inside of the slab must be 0. Parts B and C Recall that to find the electric

More information

Physics 2B. Lecture 24B. Gauss 10 Deutsche Mark

Physics 2B. Lecture 24B. Gauss 10 Deutsche Mark Physics 2B Lecture 24B Gauss 10 Deutsche Mark Electric Flux Flux is the amount of something that flows through a given area. Electric flux, Φ E, measures the amount of electric field lines that passes

More information

Physics (

Physics ( Question 2.12: A charge of 8 mc is located at the origin. Calculate the work done in taking a small charge of 2 10 9 C from a point P (0, 0, 3 cm) to a point Q (0, 4 cm, 0), via a point R (0, 6 cm, 9 cm).

More information

Chapter 24. Electric Potential. MFMcGraw-PHY 2426 Ch24d-Electric Potential-Revised 8/23/2012 1

Chapter 24. Electric Potential. MFMcGraw-PHY 2426 Ch24d-Electric Potential-Revised 8/23/2012 1 Chapter 24 Electric Potential MFMcGraw-PHY 2426 Ch24d-Electric Potential-Revised 8/23/2012 1 Electric Potential 1. Potential Difference 2. Potential Due to a System of Point Charges 3. Computing the Electric

More information

Lecture 14 Date:

Lecture 14 Date: Lecture 14 Date: 06.01.014 Energy Density in Electrostatic Field Conduction and Convection Current Conductors Ohm s Law Resistor Energy Density in Electrostatic Field To determine the energy in an assembly

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Final Exam Equation Sheet. B( r) = µ o 4π

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2014 Final Exam Equation Sheet. B( r) = µ o 4π MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2014 Final Exam Equation Sheet Force Law: F q = q( E ext + v q B ext ) Poynting Vector: S = ( E B) / µ 0 Force on Current Carrying

More information

EECS 117 Lecture 13: Method of Images / Steady Currents

EECS 117 Lecture 13: Method of Images / Steady Currents EECS 117 Lecture 13: Method of Images / Steady Currents Prof. Niknejad University of California, Berkeley University of California, Berkeley EECS 217 Lecture 13 p. 1/21 Point Charge Near Ground Plane Consider

More information

Turn in scantron You keep these question sheets

Turn in scantron You keep these question sheets Exam 2 on OCT. 15. 2018 - Physics 106 R. Schad YOUR NAME ¼À Turn in scantron You keep these question sheets 1) This is to identify the exam version you have IMPORTANT Mark the A 2) This is to identify

More information

Lecture 9 Electric Flux and Its Density Gauss Law in Integral Form

Lecture 9 Electric Flux and Its Density Gauss Law in Integral Form Lecture 9 Electric Flux and Its Density Gauss Law in Integral Form ections: 3.1, 3.2, 3.3 Homework: ee homework file Faraday s Experiment (1837), Electric Flux ΨΨ charge transfer from inner to outer sphere

More information

Electric Flux. If we know the electric field on a Gaussian surface, we can find the net charge enclosed by the surface.

Electric Flux. If we know the electric field on a Gaussian surface, we can find the net charge enclosed by the surface. Chapter 23 Gauss' Law Instead of considering the electric fields of charge elements in a given charge distribution, Gauss' law considers a hypothetical closed surface enclosing the charge distribution.

More information

v = E B FXA 2008 UNIT G485 Module Magnetic Fields BQv = EQ THE MASS SPECTROMETER

v = E B FXA 2008 UNIT G485 Module Magnetic Fields BQv = EQ THE MASS SPECTROMETER UNIT G485 Module 1 5.1.2 Magnetic Fields 11 Thus, in order for the particle to suffer NO DEFLECTION and so exit the device at Y : From which : MAGNETIC FORCE UP = ELECTRIC FORCE DOWN BQv = EQ THE MASS

More information

The Steady Magnetic Field LECTURE 7

The Steady Magnetic Field LECTURE 7 The Steady Magnetic Field LECTURE 7 Learning Objectives Understand the Biot-Savart Law Understand the Ampere s Circuital Law Explain the Application of Ampere s Law Motivating the Magnetic Field Concept:

More information

1. The diagram shows the electric field lines produced by an electrostatic focussing device.

1. The diagram shows the electric field lines produced by an electrostatic focussing device. 1. The diagram shows the electric field lines produced by an electrostatic focussing device. Which one of the following diagrams best shows the corresponding equipotential lines? The electric field lines

More information

AP Physics Study Guide Chapter 17 Electric Potential and Energy Name. Circle the vector quantities below and underline the scalar quantities below

AP Physics Study Guide Chapter 17 Electric Potential and Energy Name. Circle the vector quantities below and underline the scalar quantities below AP Physics Study Guide Chapter 17 Electric Potential and Energy Name Circle the vector quantities below and underline the scalar quantities below electric potential electric field electric potential energy

More information

COLLEGE PHYSICS Chapter 19 ELECTRIC POTENTIAL AND ELECTRIC FIELD

COLLEGE PHYSICS Chapter 19 ELECTRIC POTENTIAL AND ELECTRIC FIELD COLLEGE PHYSICS Chapter 19 ELECTRIC POTENTIAL AND ELECTRIC FIELD Electric Potential Energy and Electric Potential Difference It takes work to move a charge against an electric field. Just as with gravity,

More information

Physics 202, Lecture 8

Physics 202, Lecture 8 Physics 202, Lecture 8 Today s Topics Middle Term 1 Review When and where About Exam 1 Wednesday Feb. 22 nd 5:30-7:00 pm (Rooms will be announced this Friday by email) Format Closed book One 8x11 formula

More information

Electrostatics: Electrostatic Devices

Electrostatics: Electrostatic Devices Electrostatics: Electrostatic Devices EE331 Electromagnetic Field Theory Outline Laplace s Equation Derivation Meaning Solving Laplace s equation Resistors Capacitors Electrostatics -- Devices Slide 1

More information

Electromagnetic Field Theory (EMT)

Electromagnetic Field Theory (EMT) Electromagnetic Field Theory (EMT) Lecture # 9 1) Coulomb s Law and Field Intensity 2) Electric Fields Due to Continuous Charge Distributions Line Charge Surface Charge Volume Charge Coulomb's Law Coulomb's

More information

Questions A hair dryer is rated as 1200 W, 120 V. Its effective internal resistance is (A) 0.1 Ω (B) 10 Ω (C) 12Ω (D) 120 Ω (E) 1440 Ω

Questions A hair dryer is rated as 1200 W, 120 V. Its effective internal resistance is (A) 0.1 Ω (B) 10 Ω (C) 12Ω (D) 120 Ω (E) 1440 Ω Questions 4-41 36. Three 1/ µf capacitors are connected in series as shown in the diagram above. The capacitance of the combination is (A).1 µf (B) 1 µf (C) /3 µf (D) ½ µf (E) 1/6 µf 37. A hair dryer is

More information

ELECTRO MAGNETIC FIELDS

ELECTRO MAGNETIC FIELDS SET - 1 1. a) State and explain Gauss law in differential form and also list the limitations of Guess law. b) A square sheet defined by -2 x 2m, -2 y 2m lies in the = -2m plane. The charge density on the

More information

Questions on Electric Fields

Questions on Electric Fields Questions on Electric Fields 1. The diagram shows a positively charged oil drop held at rest between two parallel conducting plates A and B. Oil drop A B 2.50 cm The oil drop has a mass 9.79 x 10 15 kg.

More information

Motion of a charged particle in an electric field. Electric flux

Motion of a charged particle in an electric field. Electric flux Lecture 3 Chapter 23 Motion of a charged particle in an electric field. Electric flux 95.144 Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter

More information

r 4 r 2 q 2 r 3 V () r En dln (r) 1 q 1 Negative sign from integration of E field cancels the negative sign from the original equation.

r 4 r 2 q 2 r 3 V () r En dln (r) 1 q 1 Negative sign from integration of E field cancels the negative sign from the original equation. Question from last class Potential due to a Group of Point Charges rr V () r E dl r r 1 q 1 X rr N V () r E dl r n n N V(r) V n (r) 1 n1 4 o 1/30/2018 2 q 2 N r r N r r q n V () r En dln dr 2 n n r n r

More information

Experiment 2 Electric Field Mapping

Experiment 2 Electric Field Mapping Experiment 2 Electric Field Mapping I hear and I forget. I see and I remember. I do and I understand Anonymous OBJECTIVE To visualize some electrostatic potentials and fields. THEORY Our goal is to explore

More information

Chapter 3: Electric Current And Direct-Current Circuits

Chapter 3: Electric Current And Direct-Current Circuits Chapter 3: Electric Current And Direct-Current Circuits 3.1 Electric Conduction 3.1.1 Describe the microscopic model of current Mechanism of Electric Conduction in Metals Before applying electric field

More information

Chapter 27. Gauss s Law

Chapter 27. Gauss s Law Chapter 27 Gauss s Law Electric Flux Field lines penetrating an area A perpendicular to the field The product of EA is the flux, Φ In general: Φ E = E A sin θ Electric

More information

Physics 202, Lecture 12. Today s Topics

Physics 202, Lecture 12. Today s Topics Physics 202, Lecture 12 Today s Topics Magnetic orces (Ch. 27) Review: magnetic force, magnetic dipoles Motion of charge in uniform field: Applications: cyclotron, velocity selector, Hall effect Sources

More information

CHARGED PARTICLES IN FIELDS

CHARGED PARTICLES IN FIELDS The electron beam used to study motion of charged particles in electric and/or magnetic fields. CHARGED PARTICLES IN FIELDS Physics 41/61 Fall 01 1 Introduction The precise control of charged particles

More information

Lecture 4-1 Physics 219 Question 1 Aug Where (if any) is the net electric field due to the following two charges equal to zero?

Lecture 4-1 Physics 219 Question 1 Aug Where (if any) is the net electric field due to the following two charges equal to zero? Lecture 4-1 Physics 219 Question 1 Aug.31.2016. Where (if any) is the net electric field due to the following two charges equal to zero? y Q Q a x a) at (-a,0) b) at (2a,0) c) at (a/2,0) d) at (0,a) and

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 1

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 1 EE 6340 Intermediate EM Waves Fall 2016 Prof. David R. Jackson Dept. of EE Notes 1 1 Maxwell s Equations E D rt 2, V/m, rt, Wb/m T ( ) [ ] ( ) ( ) 2 rt, /m, H ( rt, ) [ A/m] B E = t (Faraday's Law) D H

More information

General Physics - E&M (PHY 1308) - Lecture Notes. General Physics - E&M (PHY 1308) Lecture Notes

General Physics - E&M (PHY 1308) - Lecture Notes. General Physics - E&M (PHY 1308) Lecture Notes General Physics - E&M (PHY 1308) Lecture Notes Lecture 014: RC Circuits and Magnetism SteveSekula, 21 March 2011 (created 7 March 2011) Capacitors in Circuits no tags What happens if we add a capacitor

More information

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance First Six-Weeks Second Six-Weeks Third Six-Weeks Lab safety Lab practices and ethical practices Math and Calculus

More information

News. Charge and Potential. Charge Density. Charge and Potential Quiz #2: Monday, 3/14, 10AM Same procedure as for quiz R +

News. Charge and Potential. Charge Density. Charge and Potential Quiz #2: Monday, 3/14, 10AM Same procedure as for quiz R + News Charge and Potential Quiz #2: Monday, 3/14, 10AM Same procedure as for quiz 1 Review in class Fri, 3/11 Evening review, Fri, 3/11, 68PM 2 practice quizzes ( practice problems) Formula sheet R Charged

More information

Physics Jonathan Dowling. Final Exam Review

Physics Jonathan Dowling. Final Exam Review Physics 2102 Jonathan Dowling Physics 2102 Final Exam Review A few concepts: electric force, field and potential Electric force: What is the force on a charge produced by other charges? What is the force

More information

Experiment V Motion of electrons in magnetic field and measurement of e/m

Experiment V Motion of electrons in magnetic field and measurement of e/m Experiment V Motion of electrons in magnetic field and measurement of e/m In Experiment IV you observed the quantization of charge on a microscopic bead and measured the charge on a single electron. In

More information

Electric Field Mapping

Electric Field Mapping Electric Field Mapping I hear and I forget. I see and I remember. I do and I understand Anonymous OBJECTIVE To visualize some electrostatic potentials and fields. THEORY Our goal is to explore the electric

More information

Unit-1 Electrostatics-1

Unit-1 Electrostatics-1 1. Describe about Co-ordinate Systems. Co-ordinate Systems Unit-1 Electrostatics-1 In order to describe the spatial variations of the quantities, we require using appropriate coordinate system. A point

More information

AP Physics C. Magnetism - Term 4

AP Physics C. Magnetism - Term 4 AP Physics C Magnetism - Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world

More information

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc.

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc. Chapter 23 Electric Potential Units of Chapter 23 Electric Potential Energy and Potential Difference Relation between Electric Potential and Electric Field Electric Potential Due to Point Charges Potential

More information

UNIT I ELECTROSTATIC FIELDS

UNIT I ELECTROSTATIC FIELDS UNIT I ELECTROSTATIC FIELDS 1) Define electric potential and potential difference. 2) Name few applications of gauss law in electrostatics. 3) State point form of Ohm s Law. 4) State Divergence Theorem.

More information

Electric Potential Lecture 5

Electric Potential Lecture 5 Chapter 23 Electric Potential Lecture 5 Dr. Armen Kocharian Electrical Potential Energy When a test charge is placed in an electric field, it experiences a force F = q o E The force is conservative ds

More information