Electric Potential Lecture 5

Size: px
Start display at page:

Download "Electric Potential Lecture 5"

Transcription

1 Chapter 23 Electric Potential Lecture 5 Dr. Armen Kocharian

2 Electrical Potential Energy When a test charge is placed in an electric field, it experiences a force F = q o E The force is conservative ds is an infinitesimal displacement vector that is oriented tangent to a path through space

3 Electric Potential Energy, cont The work done by the electric field is F. ds = q o E. ds As this work is done by the field, the potential energy of the charge-field system is changed by ΔU = -q o E. ds For a finite displacement of the charge from A to B, U U U q B Δ = = E ds B A o A

4 Electric Potential Energy, final Because q o E is conservative, the line integral does not depend on the path taken by the charge This is the change in potential energy of the system

5 Electric Potential The potential energy per unit charge, U/q o, is the electric potential The potential is independent of the value of q o The potential has a value at every point in an electric field U V = q The electric potential is o

6 Electric Potential, cont. The potential is a scalar quantity Since energy is a scalar As a charged particle moves in an electric field, it will experience a change in potential ΔU B Δ V = = d q E s A o

7 Electric Potential, final The difference in potential is the meaningful quantity We often take the value of the potential to be zero at some convenient point in the field Electric potential is a scalar characteristic of an electric field, independent of any charges that may be placed in the field

8 Work and Electric Potential Assume a charge moves in an electric field without any change in its kinetic energy The work performed on the charge is W = ΔV = q ΔV

9 Units 1 V = 1 J/C V is a volt It takes one joule of work to move a 1- coulomb charge through a potential difference of 1 volt In addition, 1 N/C = 1 V/m This indicates we can interpret the electric field as a measure of the rate of change with position of the electric potential

10 Electron-Volts Another unit of energy that is commonly used in atomic and nuclear physics is the electronvolt One electron-volt is defined as the energy a charge-field system gains or loses when a charge of magnitude e (an electron or a proton) is moved through a potential difference of 1 volt 1 ev = 1.60 x J

11 Potential Difference in a Uniform Field The equations for electric potential can be simplified if the electric field is uniform: B B B A =Δ = E s= s= A A V V V d E d Ed The negative sign indicates that the electric potential at point B is lower than at point A

12 Energy and the Direction of Electric Field When the electric field is directed downward, point B is at a lower potential than point A When a positive test charge moves from A to B, the charge-field system loses potential energy

13 More About Directions A system consisting of a positive charge and an electric field loses electric potential energy when the charge moves in the direction of the field An electric field does work on a positive charge when the charge moves in the direction of the electric field The charged particle gains kinetic energy equal to the potential energy lost by the charge-field system Another example of Conservation of Energy

14 Directions, cont. If q o is negative, then ΔU is positive A system consisting of a negative charge and an electric field gains potential energy when the charge moves in the direction of the field In order for a negative charge to move in the direction of the field, an external agent must do positive work on the charge

15 Equipotentials Point B is at a lower potential than point A Points A and C are at the same potential The name equipotential surface is given to any surface consisting of a continuous distribution of points having the same electric potential

16 Charged Particle in a Uniform Field, Example A positive charge is released from rest and moves in the direction of the electric field The change in potential is negative The change in potential energy is negative The force and acceleration are in the direction of the field

17 Potential and Point Charges A positive point charge produces a field directed radially outward The potential difference between points A and B will be 1 1 VB VA keq = r B r A

18 Potential and Point Charges, cont. The electric potential is independent of the path between points A and B It is customary to choose a reference potential of V = 0 at r A = Then the potential at some point r is V = q ke r

19 Problem 30. = e q V k r Plot a graph for potential along x direction ( ) V x kq = + = + ( + ) ( + ) e 1 kq e 2 ke Q ke Q r r2 x + a x + a ( ) ( ) V x ( ) V x 2kQ e kq e 2 = = 2 2 a 2 x + a ( xa) + 1 = 2 ( kq e a) ( xa) 2 + 1

20 Problem 30, cont. = e q V k r Now let charge at a to be negative (-Q) and plot along y direction ( ) V y ( + ) ( ) kq = + = + r r y a y+ a e 1 kq e 2 ke Q ke Q 1 2 ( ) V y V ( y) ( kq e a) kq e 1 1 = a ya 1 ya = ya 1 ya+ 1

21 Electric Potential of a Point Charge The electric potential in the plane around a single point charge is shown The red line shows the 1/r nature of the potential

22 Electric Potential with Multiple Charges The electric potential due to several point charges is the sum of the potentials due to each individual charge This is another example of the superposition principle The sum is the algebraic sum V = k e i q r V = 0 at r = i i

23 Electric Potential of a Dipole The graph shows the potential (y-axis) of an electric dipole The steep slope between the charges represents the strong electric field in this region

24 Today: Electric Potential Energy You should be familiar with the concept of gravitational potential energy from Physics 1 Let's review If a force acts on a particle as the particle moves from a b, then is the work done by the force ( is the infinitesimal displacement along the path)

25 b a Careful: the force does not necessarily line up with the displacement For example, a block sliding down an inclined plane under the influence of gravity:

26 Conservative force A force is conservative if the work done by the force is independent of path Only depends on the initial and final points b a Then the work done can be written as function of the difference between some properties of the begin and final point

27 U is the potential energy W = -ΔU Work energy theorem: work = change in kinetic energy W a b = K(b) K(a) K(a) + U(a) = K(b) + U(b) Potential energy defined up to additive constant

28 Today: Electric Potential Energy You should be familiar with the concept of gravitational potential energy from Physics 1 Let's review If a force acts on a particle as the particle moves from a b, then is the work done by the force ( is the infinitesimal displacement along the path)

29 U is the potential energy W = -ΔU Work energy theorem: work = change in kinetic energy W a b = K(b) K(a) K(a) + U(a) = K(b) + U(b) Potential energy defined up to additive constant

30 Remember gravitational field, force, potential energy Near the surface of the earth, constant force (F=const) Think of it as mass times constant gravitational field Then gravitational potential energy U=mgh (uniform field) Then gravitational potential energy for two masses is mm 1 2 UG = G r 12

31 Potential Energy of Multiple Charges Consider two charged particles The potential energy of the system is U = k e qq r

32 More About U of Multiple Charges If the two charges are the same sign, U is positive and work must be done to bring the charges together If the two charges have opposite signs, U is negative and work is done to keep the charges apart

33 U with Multiple Charges, final If there are more than two charges, then find U for each pair of charges and add them For three charges: U qq qq qq = ke + + r12 r13 r23 The result is independent of the order of the charges

34 Finding E From V Assume, to start, that E has only an x component dv Ex = dx Similar statements would apply to the y and z components Equipotential surfaces must always be perpendicular to the electric field lines passing through them

35 E and V for an Infinite Sheet of Charge The equipotential lines are the dashed blue lines The electric field lines are the brown lines The equipotential lines are everywhere perpendicular to the field lines

36 E and V for a Point Charge The equipotential lines are the dashed blue lines The electric field lines are the brown lines The equipotential lines are everywhere perpendicular to the field lines

37 E and V for a Dipole The equipotential lines are the dashed blue lines The electric field lines are the brown lines The equipotential lines are everywhere perpendicular to the field lines

38 Electric Field from Potential, General In general, the electric potential is a function of all three dimensions Given V (x, y, z) you can find E x, E y and E z as partial derivatives V V V Ex = Ey = Ez = x y z

39 Equipotentials and Conductors We argued previously that the electric field must be perpendicular to the surface of a conductor This is because otherwise the charges on the surface of the conductor would be moving It then follows that the surface of a conductor is an equipotential

40 Potential Gradient We will now derive a fundamental relationship between potential and electric field But This must hold for any (a,b) pair and any path between the two For this to be true then

41 Write out the components Then, in terms of components: Suppose the displacement is in the x-direction Then dy=dz=0, and dv=e x dx, or

42 Can do same thing for the other two components Or in short-hand notation is called the "gradient" or the "grad"

43 If we shift V V + Const. the E-field does not change Makes sense, since V is only defined up-to arbitrary constant The expression above for the gradient is in "Cartesian Coordinates" Cartesian coordinates: x,y,z One important result: If V is a function of r (and not of angle) then

44 Simple applications of gradient law Point charge: Infinite line of charge Slide 16, this lecture constant

45 Electric Potential for a Continuous Charge Distribution Consider a small charge element dq Treat it as a point charge The potential at some point due to this charge element is dq dv = ke r

46 V for a Continuous Charge Distribution, cont. To find the total potential, you need to integrate to include the contributions from all the elements dq V = k e r This value for V uses the reference of V = 0 when P is infinitely far away from the charge distributions

47 V for a Uniformly Charged Ring P is located on the perpendicular central axis of the uniformly charged ring The ring has a radius a and a total charge Q dq dq k = = e V k = e ke dq r x + a x + a

48 V V for a Uniformly Charged Disk The ring has a radiuses b and a and surface charge density of σ kdq e = = ( ) ( 2 2 x r x + r ) a 1 2rdr V = πk σ = πk σ x + r rdr e b kσ2πrdr e ( 2 2) 2 1 e 2 ( ) 2 x r b ( 2 2) ( 2 2) e V = 2πk eσ x + a 2πk σ x + b a

49 V V for a Uniformly Charged Disk The ring has a radiuses a and b and surface charge density of σ kdq e = = kσ2πrdr e ( ) ( 2 2 x r x + r ) b 1 2rdr V = πk σ = πk σ x + r rdr e a ( 2 2) 2 1 e 2 ( ) 2 x r a ( 2 2) ( 2 2) e V = 2πk eσ x + b 2πk σ x + a b

50 V for a Uniformly Charged Disk, cont The ring has a radius a and radius b=0. Surface charge density of σ a ( ) = V πkeσ x + r 2rdr ( 2 2) 2 V = 2πk eσ x + a x

51 V for a Finite Line of Charge A rod of line l has a total charge of Q and a linear charge density of λ l 1 dx Q ( ) = = V keλ k + = 1 e x r dx l ( x + a ) 0 0 Q 1 ( 2 2) 2 ke ln x + x + a l 2 2 kq e + + a V = ln a l

52 V for a Uniformly Charged Sphere A solid sphere of radius R and total charge Q Q For r > R, V = ke r For r < R, E r kq e = 3 R r

53 V for a Uniformly Charged Sphere For r < R, E = e 3 r r kq e VD VC = Erdr = rdr = 3 R kq e 3 R 2R ( 2 r 2) kq e VD VC = R r 3 2R r R kq R r ( 2 2) kq e kq e kq e VD = + R r = 3R r 3 3 R 2R 2R R V C kq = e R ( 2 2) ( 2 2)

54 V for a Uniformly Charged Sphere, Graph The curve for V D is for the potential inside the curve It is parabolic It joins smoothly with the curve for V B The curve for V B is for the potential outside the sphere It is a hyperbola

55 V Due to a Charged Conductor Consider two points on the surface of the charged conductor as shown E is always perpendicular to the displacement ds Therefore, E ds = 0 Therefore, the potential difference between A and B is also zero

56 V Due to a Charged Conductor, cont. V is constant everywhere on the surface of a charged conductor in equilibrium ΔV = 0 between any two points on the surface The surface of any charged conductor in electrostatic equilibrium is an equipotential surface Because the electric field is zero inside the conductor, we conclude that the electric potential is constant everywhere inside the conductor and equal to the value at the surface

57 E Compared to V The electric potential is a function of r The electric field is a function of r 2 The effect of a charge on the space surrounding it: The charge sets up a vector electric field which is related to the force The charge sets up a scalar potential which is related to the energy

58 Irregularly Shaped Objects The charge density is high where the radius of curvature is small And low where the radius of curvature is large The electric field is large near the convex points having small radii of curvature and reaches very high values at sharp points

59 Irregularly Shaped Objects, cont. The field lines are still perpendicular to the conducting surface at all points The equipotential surfaces are perpendicular to the field lines everywhere

60 Cavity in a Conductor Assume an irregularly shaped cavity is inside a conductor Assume no charges are inside the cavity The electric field inside the conductor must be zero

61 Cavity in a Conductor, cont The electric field inside does not depend on the charge distribution on the outside surface of the conductor For all paths between A and B, V B V d A = E s = B A A cavity surrounded by conducting walls is a field-free region as long as no charges are inside the cavity 0

62 Corona Discharge If the electric field near a conductor is sufficiently strong, electrons resulting from random ionizations of air molecules near the conductor accelerate away from their parent molecules These electrons can ionize additional molecules near the conductor

63 Corona Discharge, cont. This creates more free electrons The corona discharge is the glow that results from the recombination of these free electrons with the ionized air molecules The ionization and corona discharge are most likely to occur near very sharp points

64 Millikan Oil-Drop Experiment Experimental Set-Up

65 Millikan Oil-Drop Experiment Robert Millikan measured e, the magnitude of the elementary charge on the electron He also demonstrated the quantized nature of this charge Oil droplets pass through a small hole and are illuminated by a light

66 Oil-Drop Experiment, 2 With no electric field between the plates, the gravitational force and the drag force (viscous) act on the electron The drop reaches terminal velocity with F D = mg

67 Oil-Drop Experiment, 3 When an electric field is set up between the plates The upper plate has a higher potential The drop reaches a new terminal velocity when the electrical force equals the sum of the drag force and gravity

68 Oil-Drop Experiment, final The drop can be raised and allowed to fall numerous times by turning the electric field on and off After many experiments, Millikan determined: q = ne where n = 1, 2, 3, e = 1.60 x C

69 Van de Graaff Generator Charge is delivered continuously to a high-potential electrode by means of a moving belt of insulating material The high-voltage electrode is a hollow metal dome mounted on an insulated column Large potentials can be developed by repeated trips of the belt Protons accelerated through such large potentials receive enough energy to initiate nuclear reactions

70 Electrostatic Precipitator An application of electrical discharge in gases is the electrostatic precipitator It removes particulate matter from combustible gases The air to be cleaned enters the duct and moves near the wire As the electrons and negative ions created by the discharge are accelerated toward the outer wall by the electric field, the dirt particles become charged Most of the dirt particles are negatively charged and are drawn to the walls by the electric field

71 Application Xerographic Copiers The process of xerography is used for making photocopies Uses photoconductive materials A photoconductive material is a poor conductor of electricity in the dark but becomes a good electric conductor when exposed to light

72 The Xerographic Process

73 Application Laser Printer The steps for producing a document on a laser printer is similar to the steps in the xerographic process Steps a, c, and d are the same The major difference is the way the image forms on the selenium-coated drum A rotating mirror inside the printer causes the beam of the laser to sweep across the selenium-coated drum The electrical signals form the desired letter in positive charges on the selenium-coated drum Toner is applied and the process continues as in the xerographic process

74 Potentials Due to Various Charge Distributions

75 Application Laser Printer The steps for producing a document on a laser printer is similar to the steps in the xerographic process Steps a, c, and d are the same The major difference is the way the image forms on the selenium-coated drum A rotating mirror inside the printer causes the beam of the laser to sweep across the selenium-coated drum The electrical signals form the desired letter in positive charges on the selenium-coated drum Toner is applied and the process continues as in the xerographic process

76 Problem, Method 1. Alternative way to get term is to recognize that there are 4 side pairs and 2 face diagonal pairs. 4 sides of length s and 2 diagonals with length s 2 U = U = U = U U = U U = 4U + 2U U U e kq e 4kQ 2 1 = + s s kq e kq e = 4+ = 5.41 s 2 s

77 Problem, Method 2. Alternative way to get term is to recognize that there are 4 side pairs and 2 face diagonal pairs. 4 sides of length s and 2 diagonals with length s 2 U = U + U + U + U ( ) ( ) U = 0+ U + U + U + U + U + U U e e e kq kq 1 kq 1 = s s s 2 U kq e kq e = s + = 2 s

78 Problem. Find potential energy. No energy is required for the 20-nC charge placed at its location V 1 ( N m C ) ( C ) kq e 1 = = = r 0.04 m ( ) ( ) U 12 = qv 2 1 = C V = J ( ) U + U = qv + qv = q V + V ( ) kv To place the 10-nC charge there we must put in energy Next, to bring up the 20-nC charge requires energy C C = C N m C m 0.08 m = J J 5 U12 + U 23 + U13 = J

79 Problem, cont. Find 40 nc charge is released. The three fixed charges create potential at the location where the fourth is released: V= V1+ V2+ V3= ( Nm C ) + Cm V = V Energy of the system of four charged objects is conserved as the fourth charge flies away: mv + qv = mv + qv 2 2 i ( 1 )( ) ( 2 ) ( 10 J) C V = kg v + 0 v = = m s kg f 4

80 Quick Quiz 1 In the figure below, two points A and B are located within a region in which there is an electric field. The potential difference ΔV = V B V A is (a) positive (b) negative (c) zero

81 Quick Quiz 1 Answer: (b). When moving straight from A to B, E and ds both point toward the right. Thus, the dot product E ds is positive and ΔV is negative.

82 Quick Quiz 2 In this figure, a negative charge is placed at A and then moved to B. The change in potential energy of the charge field system for this process is (a) positive (b) negative (c) zero

83 Quick Quiz 2 Answer: (a). From ΔU = q 0 ΔV, if a negative test charge is moved through a negative potential difference, the potential energy is positive. Work must be done to move the charge in the direction opposite to the electric force on it.

84 Quick Quiz 3 The labeled points of the figure below are on a series of equipotential surfaces associated with an electric field. Rank (from greatest to least) the work done by the electric field on a positively charged particle that moves along the following transitions. (a) A -> B, B -> C, C -> D, D -> E (b) A -> B, D -> E, B -> C, C -> D (c) B -> C, C -> D, A -> B, D -> E (d) D -> E, C -> D, B -> C, A -> B

85 Quick Quiz 3 Answer: (c). Moving from B to C decreases the electric potential by 2 V, so the electric field performs 2 J of work on each coulomb of positive charge that moves. Moving from C to D decreases the electric potential by 1 V, so 1 J of work is done by the field. It takes no work to move the charge from A to B because the electric potential does not change. Moving from D to E increases the electric potential by 1 V, and thus the field does 1 J of work per unit of positive charge that moves.

86 Quick Quiz 4 For the equipotential surfaces in this figure, what is the approximate direction of the electric field? (a) Out of the page (b) Into the page (c) Toward the right edge of the page (d) Toward the left edge of the page (e) Toward the top of the page (f) Toward the bottom of the page

87 Quick Quiz 4 Answer: (f). The electric field points in the direction of decreasing electric potential.

88 Quick Quiz 5a A spherical balloon contains a positively charged object at its center. As the balloon is inflated to a greater volume while the charged object remains at the center, the electric potential at the surface of the balloon will (a) increase (b) decrease (c) remain the same.

89 Quick Quiz 5a Answer: (b). The electric potential is inversely proportional to the radius (see Eq ).

90 Quick Quiz 5b Recall that the spherical balloon from part a) contains a positively charged object at its center. As the balloon is inflated to a greater volume while the charged object remains at the center, the electric flux through the surface of the balloon will (a) increase (b) decrease (c) remain the same.

91 Quick Quiz 5b Answer: (c). Because the same number of field lines passes through a closed surface of any shape or size, the electric flux through the surface remains constant.

92 Quick Quiz 6 In Figure 25.10a, take q 1 to be a negative source charge and q 2 to be the test charge. If q 2 is initially positive and is changed to a charge of the same magnitude but negative, the potential at the position of q 2 due to q 1 (a) increases (b) decreases (c) remains the same

93 Quick Quiz 6 Answer: (c). The potential is established only by the source charge and is independent of the test charge.

94 Quick Quiz 7 Consider the situation in question 6 again. When q 2 is changed from positive to negative, the potential energy of the two-charge system (a) increases (b) decreases (c) remains the same

95 Quick Quiz 7 Answer: (a). The potential energy of the two-charge system is initially negative, due to the products of charges of opposite sign in Equation When the sign of q 2 is changed, both charges are negative, and the potential energy of the system is positive.

96 Quick Quiz 8 In a certain region of space, the electric potential is zero everywhere along the x axis. From this we can conclude that the x component of the electric field in this region is (a) zero (b) in the x direction (c) in the x direction.

97 Quick Quiz 8 Answer: (a). If the potential is constant (zero in this case), its derivative along this direction is zero.

98 Quick Quiz 9 In a certain region of space, the electric field is zero. From this we can conclude that the electric potential in this region is (a) zero (b) constant (c) positive (d) negative

99 Quick Quiz 9 Answer: (b). If the electric field is zero, there is no change in the electric potential and it must be constant. This constant value could be zero but does not have to be zero.

100 Quick Quiz 10 Consider starting at the center of the left-hand sphere (sphere 1, of radius a) in the figure below and moving to the far right of the diagram, passing through the center of the right-hand sphere (sphere 2, of radius c) along the way. The centers of the spheres are a distance b apart. Draw a graph of the electric potential as a function of position relative to the center of the left-hand sphere.

101 Quick Quiz 10 Answer: The graph would look like the sketch below. Notice the flat plateaus at each conductor, representing the constant electric potential inside a solid conductor.

102 Conceptual questions for practice on chapter 23

103 The positive charge is the end view of a positively charged glass rod. A negatively charged particle moves in a circular arc around the glass rod. Is the work done on the charged particle by the rod s electric field positive, negative or zero? 1. Positive 2. Negative 3. Zero

104 The positive charge is the end view of a positively charged glass rod. A negatively charged particle moves in a circular arc around the glass rod. Is the work done on the charged particle by the rod s electric field positive, negative or zero? 1. Positive 2. Negative 3. Zero

105 Rank in order, from largest to smallest, the potential energies U a to U d of these four pairs of charges. Each + symbol represents the same amount of charge. 1. U a = U b > U c = U d 2. U a = U c > U b = U d 3. U b = U d > U a = U c 4. U d > U b = U c > U a 5. U d > U c > U b > U a

106 Rank in order, from largest to smallest, the potential energies U a to U d of these four pairs of charges. Each + symbol represents the same amount of charge. 1. U a = U b > U c = U d 2. U a = U c > U b = U d 3. U b = U d > U a = U c 4. U d > U b = U c > U a 5. U d > U c > U b > U a

107 A proton is released from rest at point B, where the potential is 0 V. Afterward, the proton 1. moves toward A with an increasing speed. 2. moves toward A with a steady speed. 3. remains at rest at B. 4. moves toward C with a steady speed. 5. moves toward C with an increasing speed.

108 A proton is released from rest at point B, where the potential is 0 V. Afterward, the proton 1. moves toward A with an increasing speed. 2. moves toward A with a steady speed. 3. remains at rest at B. 4. moves toward C with a steady speed. 5. moves toward C with an increasing speed.

109 Rank in order, from largest to smallest, the potentials V a to V e at the points a to e. 1. V a = V b = V c = V d = V e 2. V a = V b > V c > V d = V e 3. V d = V e > V c > V a = V b 4. V b = V c = V e > V a = V d 5. V a = V b = V d = V e > V c

110 Rank in order, from largest to smallest, the potentials V a to V e at the points a to e. 1. V a = V b = V c = V d = V e 2. V a = V b > V c > V d = V e 3. V d = V e > V c > V a = V b 4. V b = V c = V e > V a = V d 5. V a = V b = V d = V e > V c

111 Rank in order, from largest to smallest, the potential differences V 12, V 13, and V 23 between points 1 and 2, points 1 and 3, and points 2 and V 12 > V 13 = V V 13 > V 12 > V V 13 > V 23 > V V 13 = V 23 > V V 23 > V 12 > V 13

112 Rank in order, from largest to smallest, the potential differences V 12, V 13, and V 23 between points 1 and 2, points 1 and 3, and points 2 and V 12 > V 13 = V V 13 > V 12 > V V 13 > V 23 > V V 13 = V 23 > V V 23 > V 12 > V 13

113 What are the units of potential difference? 1. Amperes 2. Potentiometers 3. Farads 4. Volts 5. Henrys

114 What are the units of potential difference? 1. Amperes 2. Potentiometers 3. Farads 4. Volts 5. Henrys

115 New units of the electric field were introduced in this chapter. They are: 1. V/C. 2. N/C. 3. V/m. 4. J/m W/m.

116 New units of the electric field were introduced in this chapter. They are: 1. V/C. 2. N/C. 3. V/m. 4. J/m W/m.

117 The electric potential inside a capacitor 1. is constant. 2. increases linearly from the negative to the positive plate. 3. decreases linearly from the negative to the positive plate. 4. decreases inversely with distance from the negative plate. 5. decreases inversely with the square of the distance from the negative plate.

118 The electric potential inside a capacitor 1. is constant. 2. increases linearly from the negative to the positive plate. 3. decreases linearly from the negative to the positive plate. 4. decreases inversely with distance from the negative plate. 5. decreases inversely with the square of the distance from the negative plate.

What will the electric field be like inside the cavity?

What will the electric field be like inside the cavity? What will the electric field be like inside the cavity? 1. There is no charge inside the gaussian surface so E = 0 2. There is no net flux through the surface but there is an E field 3. Gauss s law doesn

More information

Chapter 25. Electric Potential

Chapter 25. Electric Potential Chapter 25 Electric Potential Electric Potential Electromagnetism has been connected to the study of forces in previous chapters. In this chapter, electromagnetism will be linked to energy. By using an

More information

Chapter 25. Electric Potential

Chapter 25. Electric Potential Chapter 25 Electric Potential Electric Potential Electromagnetism has been connected to the study of forces in previous chapters. In this chapter, electromagnetism will be linked to energy. By using an

More information

Electrical Potential Energy. Chapter 25. Electric Potential Energy, final. Electric Potential Energy. Electric Potential.

Electrical Potential Energy. Chapter 25. Electric Potential Energy, final. Electric Potential Energy. Electric Potential. Chapter 25 Chapter 25 Electric Potential Electrical Potential Energy! When a test charge, q 0 is placed in an electric field E, it experiences a force: F = q E 0! Is this force conservative? 1 2 Electric

More information

EX. Potential for uniformly charged thin ring

EX. Potential for uniformly charged thin ring EX. Potential for uniformly charged thin ring Q dq r R dφ 0 V ( Z ) =? z kdq Q Q V =, dq = Rdϕ = dϕ Q r 2πR 2π 2π k Q 0 = d ϕ 0 r 2π kq 0 2π = 0 d ϕ 2π r kq 0 = r kq 0 = 2 2 R + z EX. Potential for uniformly

More information

Electric Potential Energy & Voltage. Tesla Envy =jlzeqz4efqa&feature=related

Electric Potential Energy & Voltage. Tesla Envy  =jlzeqz4efqa&feature=related Electric Potential Energy & Voltage Tesla Envy http://www.youtube.com/watch?v =jlzeqz4efqa&feature=related Ch 23 & 24: Electric Force and Field F qq k r 1 2rˆ 12 2 F qe kq Electric Field E due to q : E

More information

Electrostatics so far

Electrostatics so far Electrostatics so far F = 1 2 1 2 2 Electric Force b/n q and q : qq 1 2 kq Electric Field E due to q : E = 1 1 r 2 kq q r q e = 1.6 x10-19 C k = 9 x 10 9 Nm 2 /C 2 Tesla Envy http://www.youtube.com/watch?v=jl

More information

Chapter 16. Electric Energy and Capacitance

Chapter 16. Electric Energy and Capacitance Chapter 16 Electric Energy and Capacitance Electric Potential of a Point Charge The point of zero electric potential is taken to be at an infinite distance from the charge The potential created by a point

More information

MTE1 results. Mean 75% = 90/120

MTE1 results. Mean 75% = 90/120 MTE1 results Mean 75% = 90/120 Scores available at Learn@UW, your TAs have exams If your score is an F or a D, talk to us and your TAs for suggestions on how to improve From last times Electric charges

More information

Chapter 17 & 18. Electric Field and Electric Potential

Chapter 17 & 18. Electric Field and Electric Potential Chapter 17 & 18 Electric Field and Electric Potential Electric Field Maxwell developed an approach to discussing fields An electric field is said to exist in the region of space around a charged object

More information

Chapter Electric Forces and Electric Fields. Prof. Armen Kocharian

Chapter Electric Forces and Electric Fields. Prof. Armen Kocharian Chapter 25-26 Electric Forces and Electric Fields Prof. Armen Kocharian First Observations Greeks Observed electric and magnetic phenomena as early as 700 BC Found that amber, when rubbed, became electrified

More information

PHYSICS 1/23/2019. Chapter 25 Lecture. Chapter 25 The Electric Potential. Chapter 25 Preview

PHYSICS 1/23/2019. Chapter 25 Lecture. Chapter 25 The Electric Potential. Chapter 25 Preview PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 25 Lecture RANDALL D. KNIGHT Chapter 25 The Electric Potential IN THIS CHAPTER, you will learn to use the electric potential and electric

More information

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons. Particle Mass Electric Charge. m e = 9.

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons. Particle Mass Electric Charge. m e = 9. Electrostatics 1) electric charge: 2 types of electric charge: positive and negative 2) charging by friction: transfer of electrons from one object to another 3) positive object: lack of electrons negative

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 2 Electrostatics Electric flux and Gauss s law Electrical energy potential difference and electric potential potential energy of charged conductors http://www.physics.wayne.edu/~alan/

More information

HW Chapter 16 Q 6,8,10,18,19,21 P 1,2,3,4. Chapter 16. Part 1: Electric Forces and Electric Fields. Dr. Armen Kocharian

HW Chapter 16 Q 6,8,10,18,19,21 P 1,2,3,4. Chapter 16. Part 1: Electric Forces and Electric Fields. Dr. Armen Kocharian HW Chapter 16 Q 6,8,10,18,19,21 P 1,2,3,4 Chapter 16 Part 1: Electric Forces and Electric Fields Dr. Armen Kocharian First Observations Greeks Observed electric and magnetic phenomena as early as 700 BC

More information

Electric Potential Energy Chapter 16

Electric Potential Energy Chapter 16 Electric Potential Energy Chapter 16 Electric Energy and Capacitance Sections: 1, 2, 4, 6, 7, 8, 9 The electrostatic force is a conservative force It is possible to define an electrical potential energy

More information

Chapter 15. Electric Forces and Electric Fields

Chapter 15. Electric Forces and Electric Fields Chapter 15 Electric Forces and Electric Fields First Observations Greeks Observed electric and magnetic phenomena as early as 700 BC Found that amber, when rubbed, became electrified and attracted pieces

More information

Lecture 4 Electric Potential and/ Potential Energy Ch. 25

Lecture 4 Electric Potential and/ Potential Energy Ch. 25 Lecture 4 Electric Potential and/ Potential Energy Ch. 5 Review from Lecture 3 Cartoon - There is an electric energy associated with the position of a charge. Opening Demo - Warm-up problems Physlet Topics

More information

Lesson 3. Electric Potential. Capacitors Current Electricity

Lesson 3. Electric Potential. Capacitors Current Electricity Electric Potential Lesson 3 Potential Differences in a Uniform Electric Field Electric Potential and Potential Energy The Millikan Oil-Drop Experiment Capacitors Current Electricity Ohm s Laws Resistance

More information

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc.

Chapter 23 Electric Potential. Copyright 2009 Pearson Education, Inc. Chapter 23 Electric Potential Units of Chapter 23 Electric Potential Energy and Potential Difference Relation between Electric Potential and Electric Field Electric Potential Due to Point Charges Potential

More information

Chapter 22 Electric Potential (Voltage)

Chapter 22 Electric Potential (Voltage) Chapter 22 Electric Potential (Voltage) Question 29.5 Work and Electric Potential I Which requires the most work, to move a positive charge from P to points 1, 2, 3 or 4? All points are the same distance

More information

Chapter 23 Electric Potential (Voltage)

Chapter 23 Electric Potential (Voltage) Chapter 23 Electric Potential (Voltage) Electric potential energy Recall how a conservative force is related to the potential energy associated with that force: The electric potential energy: Change in

More information

PHYS102 Previous Exam Problems. Electric Potential

PHYS102 Previous Exam Problems. Electric Potential PHYS102 Previous Exam Problems CHAPTER 24 Electric Potential Electric potential energy of a point charge Calculating electric potential from electric field Electric potential of point charges Calculating

More information

Electric Potential. Capacitors (Chapters 28, 29)

Electric Potential. Capacitors (Chapters 28, 29) Electric Potential. Capacitors (Chapters 28, 29) Electric potential energy, U Electric potential energy in a constant field Conservation of energy Electric potential, V Relation to the electric field strength

More information

Chapter 24. Capacitance and Dielectrics Lecture 1. Dr. Armen Kocharian

Chapter 24. Capacitance and Dielectrics Lecture 1. Dr. Armen Kocharian Chapter 24 Capacitance and Dielectrics Lecture 1 Dr. Armen Kocharian Capacitors Capacitors are devices that store electric charge Examples of where capacitors are used include: radio receivers filters

More information

Chapter 15. Electric Forces and Electric Fields

Chapter 15. Electric Forces and Electric Fields Chapter 15 Electric Forces and Electric Fields First Studies Greeks Observed electric and magnetic phenomena as early as 700 BC Found that amber, when rubbed, became electrified and attracted pieces of

More information

Introduction)! Electrostatics is the study of stationary electric charges and fields (as opposed to moving charges and currents)

Introduction)! Electrostatics is the study of stationary electric charges and fields (as opposed to moving charges and currents) Higher'Physics'1B Electricity) Electrostatics)) Introduction) Electrostatics is the study of stationary electric charges and fields (as opposed to moving charges and currents) Properties)of)Electric)Charges)

More information

Chapter 1 The Electric Force

Chapter 1 The Electric Force Chapter 1 The Electric Force 1. Properties of the Electric Charges 1- There are two kinds of the electric charges in the nature, which are positive and negative charges. - The charges of opposite sign

More information

Electric Potential. Chapter 23. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman

Electric Potential. Chapter 23. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Chapter 23 Electric Potential PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by Reza Khanbabaie Goals for Chapter 23 Reminder about gravitational

More information

Quiz. Chapter 15. Electrical Field. Quiz. Electric Field. Electric Field, cont. 8/29/2011. q r. Electric Forces and Electric Fields

Quiz. Chapter 15. Electrical Field. Quiz. Electric Field. Electric Field, cont. 8/29/2011. q r. Electric Forces and Electric Fields Chapter 15 Electric Forces and Electric Fields uiz Four point charges, each of the same magnitude, with varying signs as specified, are arranged at the corners of a square as shown. Which of the arrows

More information

4 Chapter. Electric Potential

4 Chapter. Electric Potential 4 Chapter Electric Potential 4.1 Potential and Potential Energy... 4-3 4.2 Electric Potential in a Uniform Field... 4-7 4.3 Electric Potential due to Point Charges... 4-8 4.3.1 Potential Energy in a System

More information

Electric Potential (Chapter 25)

Electric Potential (Chapter 25) Electric Potential (Chapter 25) Electric potential energy, U Electric potential energy in a constant field Conservation of energy Electric potential, V Relation to the electric field strength The potential

More information

Which requires the most work, to move a positive charge from P to points 1, 2, 3 or 4? All points are the same distance from P.

Which requires the most work, to move a positive charge from P to points 1, 2, 3 or 4? All points are the same distance from P. week 4 Which requires the most work, to move a positive charge from P to points 1, 2, 3 or 4? All points are the same distance from P. 1) P 1 2) P 2 3) P 3 4) P 4 5) all require the same amount of work

More information

Physics 1302W.500 Lecture 9 Introductory Physics for Scientists and Engineering II

Physics 1302W.500 Lecture 9 Introductory Physics for Scientists and Engineering II Physics 1302W.500 Lecture 9 Introductory Physics for Scientists and Engineering II In today s lecture, we will finish our discussion of Gauss law. Slide 25-1 Applying Gauss s law Procedure: Calculating

More information

Chapter 19 Electric Potential and Electric Field Sunday, January 31, Key concepts:

Chapter 19 Electric Potential and Electric Field Sunday, January 31, Key concepts: Chapter 19 Electric Potential and Electric Field Sunday, January 31, 2010 10:37 PM Key concepts: electric potential electric potential energy the electron-volt (ev), a convenient unit of energy when dealing

More information

Chapter 21 Chapter 24. Electric Potential. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 21 Chapter 24. Electric Potential. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 21 Chapter 24 Electric Potential Copyright 24-1 What is Physics? Experimentally, physicists and engineers discovered that the electric force is conservative and thus has an associated electric

More information

Electrostatics. Electrical properties generated by static charges. Introduction

Electrostatics. Electrical properties generated by static charges. Introduction Electrostatics Electrical properties generated by static charges Introduction First Greek discovery Found that amber, when rubbed, became electrified and attracted pieces of straw or feathers Introduction

More information

Electric Potential. 1/28/14 Physics for Scientists & Engineers 2, Chapter 23 1

Electric Potential. 1/28/14 Physics for Scientists & Engineers 2, Chapter 23 1 Electric Potential 1/28/14 Physics for Scientists & Engineers 2, Chapter 23 1 Notes! Correction set 1 Due Thursday evening at 10pm Name: Correction #1 RS Must answer all questions correctly to receive

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 4 Electrostatics Electric flux and Gauss s law Electrical energy potential difference and electric potential potential energy of charged conductors http://www.physics.wayne.edu/~apetrov/phy2140/

More information

Electricity and Magnetism. Electric Potential Energy and Voltage

Electricity and Magnetism. Electric Potential Energy and Voltage Electricity and Magnetism Electric Potential Energy and Voltage Work and Potential Energy Recall from Mechanics that E mech = K + U is a conserved quantity for particles that interact via conservative

More information

Chapter 16. Electric Energy and Capacitance

Chapter 16. Electric Energy and Capacitance Chapter 16 Electric Energy and Capacitance Electric Potential Energy The electrostatic force is a conservative force It is possible to define an electrical potential energy function with this force Work

More information

Chapter 19 Electric Potential Energy and Electric Potential Sunday, January 31, Key concepts:

Chapter 19 Electric Potential Energy and Electric Potential Sunday, January 31, Key concepts: Chapter 19 Electric Potential Energy and Electric Potential Sunday, January 31, 2010 10:37 PM Key concepts: electric potential electric potential energy the electron-volt (ev), a convenient unit of energy

More information

Chapter 19 Electric Potential and Electric Field

Chapter 19 Electric Potential and Electric Field Chapter 19 Electric Potential and Electric Field The electrostatic force is a conservative force. Therefore, it is possible to define an electrical potential energy function with this force. Work done

More information

Chapter 23. Electric Fields

Chapter 23. Electric Fields Chapter 23 Electric Fields Electric Charges There are two kinds of electric charges Called positive and negative Negative charges are the type possessed by electrons Positive charges are the type possessed

More information

Electric Force and Potential Energy

Electric Force and Potential Energy Class 04 (Class 03: whiteboard exercises of Gauss' law.) Electric Force and Potential Energy For a charge q 0 in an electric field: The force picture F=q 0 E Can we similarly look for an energy picture?

More information

This is known as charge quantization. Neutral particles, like neutron and photon have zero charge.

This is known as charge quantization. Neutral particles, like neutron and photon have zero charge. Module 2: Electrostatics Lecture 6: Quantization of Charge Objectives In this lecture you will learn the following Quantization Of Charge and its measurement Coulomb's Law of force between electric charge

More information

CH 24. Electric Potential

CH 24. Electric Potential CH 24 Electric Potential [SHIVOK SP212] January 8, 2016 I. Electric Potential Energy A. Experimentally, physicists and engineers discovered that the electric force is conservative and thus has an associated

More information

Lecture 15. PHYC 161 Fall 2016

Lecture 15. PHYC 161 Fall 2016 Lecture 15 PHYC 161 Fall 2016 Q23.11 A solid spherical conductor has a spherical cavity in its interior. The cavity is not centered on the center of the conductor. If there is a net positive charge on

More information

What You Already Know

What You Already Know What You Already Know Coulomb s law Electric fields Gauss law Electric fields for several configurations Point Line Plane (nonconducting) Sheet (conducting) Ring (along axis) Disk (along axis) Sphere Cylinder

More information

What You Already Know

What You Already Know What You Already Know Coulomb s law Electric fields Gauss law Electric fields for several configurations Point Line Plane (nonconducting) Sheet (conducting) Ring (along axis) Disk (along axis) Sphere Cylinder

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 5 Electrostatics Electrical energy potential difference and electric potential potential energy of charged conductors Capacitance and capacitors http://www.physics.wayne.edu/~apetrov/phy2140/

More information

PHYS 2426 Brooks INTRODUCTION. Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli

PHYS 2426 Brooks INTRODUCTION.  Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli PHYS 2426 Brooks INTRODUCTION http://iws.ccccd.edu/mbrooks Physics for Scientists and Engineers, with Modern Physics, 4 th edition Giancoli Chapter 21 Electric Charge and Electric Field Static Electricity;

More information

Chapter 25. Electric Potential

Chapter 25. Electric Potential Chapter 25 Electric Potential Outline 25.1 Potential difference and electric Potential 25.2 Potential Difference and electric field 25.3 Electric Potential and Potential energy due to point charges 25.1

More information

Electric Potential Energy

Electric Potential Energy Electric Potential Energy the electric potential energy of two charges depends on the distance between the charges when two like charges are an infinite distance apart, the potential energy is zero An

More information

Ch 25 Electric Potential

Ch 25 Electric Potential Ch 25 Electric Potential Electric Energy, Electric Potential Energy concepts are going to be extremely important to us as we consider the behavior of charges in electric fields. How do energy concepts

More information

1. The diagram shows the electric field lines produced by an electrostatic focussing device.

1. The diagram shows the electric field lines produced by an electrostatic focussing device. 1. The diagram shows the electric field lines produced by an electrostatic focussing device. Which one of the following diagrams best shows the corresponding equipotential lines? The electric field lines

More information

Chapter 24. Gauss s Law

Chapter 24. Gauss s Law Chapter 24 Gauss s Law Gauss Law Gauss Law can be used as an alternative procedure for calculating electric fields. Gauss Law is based on the inverse-square behavior of the electric force between point

More information

Physics Notes Chapter 17 Electric Forces and Fields

Physics Notes Chapter 17 Electric Forces and Fields Physics Notes Chapter 17 Electric Forces and Fields I. Basic rules and ideas related to electricity a. electricity is about charges or charged objects where they are and how they move electrostatics is

More information

Physics 212 Exam I Sample Question Bank 2008 Multiple Choice: choose the best answer "none of the above" may can be a valid answer

Physics 212 Exam I Sample Question Bank 2008 Multiple Choice: choose the best answer none of the above may can be a valid answer Multiple Choice: choose the best answer "none of the above" may can be a valid answer The (attempted) demonstration in class with the pith balls and a variety of materials indicated that () there are two

More information

Chapter 21. Electric Fields. Lecture 2. Dr. Armen Kocharian

Chapter 21. Electric Fields. Lecture 2. Dr. Armen Kocharian Chapter 21 Electric Fields Lecture 2 Dr. Armen Kocharian Electric Field Introduction The electric force is a field force Field forces can act through space The effect is produced even with no physical

More information

PHYSICS. Electrostatics

PHYSICS. Electrostatics Electrostatics Coulomb s Law: SYNOPSIS SI unit of electric intensity is NC -1 Dimensions The electric intensity due to isolated point charge, Electric dipole moment, P = q (2a), SI unit is C m Torque on

More information

Electric Potential II

Electric Potential II Electric Potential II Physics 2415 Lecture 7 Michael Fowler, UVa Today s Topics Field lines and equipotentials Partial derivatives Potential along a line from two charges Electric breakdown of air Potential

More information

Downloaded from

Downloaded from Question 1.1: What is the force between two small charged spheres having charges of 2 10 7 C and 3 10 7 C placed 30 cm apart in air? Repulsive force of magnitude 6 10 3 N Charge on the first sphere, q

More information

Fall 2004 Physics 3 Tu-Th Section

Fall 2004 Physics 3 Tu-Th Section Fall 2004 Physics 3 Tu-Th Section Claudio Campagnari Lecture 11: 2 Nov. 2004 Web page: http://hep.ucsb.edu/people/claudio/ph3-04/ 1 Midterm Results Pick up your graded exam from Debbie Ceder, Broida 5114

More information

Lecture Notes (Applications Of Electric Fields)

Lecture Notes (Applications Of Electric Fields) Electric Potential Energy: Lecture Notes (Applications Of Electric Fields) - an object has a gravitational energy because of its location in a gravitational field; likewise, a charged object has potential

More information

Physics 222, Spring 2010 Quiz 3, Form: A

Physics 222, Spring 2010 Quiz 3, Form: A Physics 222, Spring 2010 Quiz 3, Form: A Name: Date: Instructions You must sketch correct pictures and vectors, you must show all calculations, and you must explain all answers for full credit. Neatness

More information

Chapter 17. Electric Potential Energy and the Electric Potential

Chapter 17. Electric Potential Energy and the Electric Potential Chapter 17 Electric Potential Energy and the Electric Potential Consider gravity near the surface of the Earth The gravitational field is uniform. This means it always points in the same direction with

More information

Electric Potential. 1/22/14 Physics for Scientists & Engineers 2, Chapter 23 1

Electric Potential. 1/22/14 Physics for Scientists & Engineers 2, Chapter 23 1 Electric Potential 1/22/14 Physics for Scientists & Engineers 2, Chapter 23 1 Announcements! First exam is next Tuesday, January 28 45 minute exam during lecture time You can bring a 5 by 8 size cheat

More information

Objects can be charged by rubbing

Objects can be charged by rubbing Electrostatics Objects can be charged by rubbing Charge comes in two types, positive and negative; like charges repel and opposite charges attract Electric charge is conserved the arithmetic sum of the

More information

Ch 25 Electric Potential! Electric Energy, Electric Potential!

Ch 25 Electric Potential! Electric Energy, Electric Potential! Ch 25 Electric Potential Electric Energy, Electric Potential Energy concepts are going to be extremely important to us as we consider the behavior of charges in electric fields. How do energy concepts

More information

Class XII Chapter 1 Electric Charges And Fields Physics

Class XII Chapter 1 Electric Charges And Fields Physics Class XII Chapter 1 Electric Charges And Fields Physics Question 1.1: What is the force between two small charged spheres having charges of 2 10 7 C and 3 10 7 C placed 30 cm apart in air? Answer: Repulsive

More information

7 ELECTRIC POTENTIAL

7 ELECTRIC POTENTIAL Chapter 7 Electric Potential 285 7 ELECTRIC POTENTIAL Figure 7.1 The energy released in a lightning strike is an excellent illustration of the vast quantities of energy that may be stored and released

More information

Chapter 23. Electric Fields

Chapter 23. Electric Fields Chapter 23 Electric Fields Electricity and Magnetism The laws of electricity and magnetism play a central role in the operation of many modern devices. The interatomic and intermolecular forces responsible

More information

PHYS ST semester Dr. Nadyah Alanazi. Lecture 11

PHYS ST semester Dr. Nadyah Alanazi. Lecture 11 1 PHYS 104 1 ST semester 1439-1440 Dr. Nadyah Alanazi Lecture 11 25.1 Potential Difference and Electric Potential When a test charge q 0 is placed in an electric field E created by some source charge,

More information

Chapter 20. Electric Potential Electric Potential Energy

Chapter 20. Electric Potential Electric Potential Energy Chapter 20 Electric Potential Electric Potential Energy CONSERVTIVE FORCES conservative force gives back work that has been done against it Gravitational and electrostatic forces are conservative Friction

More information

Physics 240 Fall 2003: Exam #1. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2003: Exam #1. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 4 Fall 3: Exam #1 Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above. This will be a 1.5

More information

Physics / Higher Physics 1A. Electricity and Magnetism Revision

Physics / Higher Physics 1A. Electricity and Magnetism Revision Physics / Higher Physics 1A Electricity and Magnetism Revision Electric Charges Two kinds of electric charges Called positive and negative Like charges repel Unlike charges attract Coulomb s Law In vector

More information

Electric Fields Part 1: Coulomb s Law

Electric Fields Part 1: Coulomb s Law Electric Fields Part 1: Coulomb s Law F F Last modified: 07/02/2018 Contents Links Electric Charge & Coulomb s Law Electric Charge Coulomb s Law Example 1: Coulomb s Law Electric Field Electric Field Vector

More information

INTRODUCTION ELECTROSTATIC POTENTIAL ENERGY. Introduction. Electrostatic potential energy. Electric potential. for a system of point charges

INTRODUCTION ELECTROSTATIC POTENTIAL ENERGY. Introduction. Electrostatic potential energy. Electric potential. for a system of point charges Chapter 4 ELECTRIC POTENTIAL Introduction Electrostatic potential energy Electric potential for a system of point charges for a continuous charge distribution Why determine electic potential? Determination

More information

Physics 1202: Lecture 3 Today s Agenda

Physics 1202: Lecture 3 Today s Agenda Physics 1202: Lecture 3 Today s Agenda Announcements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW assignments, solutions etc. Homework #1: On Masterphysics: due this coming Friday Go to the syllabus

More information

Potentials and Fields

Potentials and Fields Potentials and Fields Review: Definition of Potential Potential is defined as potential energy per unit charge. Since change in potential energy is work done, this means V E x dx and E x dv dx etc. The

More information

Electric Potential Practice Problems

Electric Potential Practice Problems Electric Potential Practice Problems AP Physics Name Multiple Choice 1. A negative charge is placed on a conducting sphere. Which statement is true about the charge distribution (A) Concentrated at the

More information

Chapter 22. Dr. Armen Kocharian. Gauss s Law Lecture 4

Chapter 22. Dr. Armen Kocharian. Gauss s Law Lecture 4 Chapter 22 Dr. Armen Kocharian Gauss s Law Lecture 4 Field Due to a Plane of Charge E must be perpendicular to the plane and must have the same magnitude at all points equidistant from the plane Choose

More information

EL FORCE and EL FIELD HW-PRACTICE 2016

EL FORCE and EL FIELD HW-PRACTICE 2016 1 EL FORCE and EL FIELD HW-PRACTICE 2016 1.A difference between electrical forces and gravitational forces is that electrical forces include a. separation distance. b. repulsive interactions. c. the inverse

More information

Nicholas J. Giordano. Chapter 18. Electric Potential. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.  Chapter 18. Electric Potential. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 18 Electric Potential Marilyn Akins, PhD Broome Community College Electric Potential Electric forces can do work on a charged object Electrical

More information

Solution. ANSWERS - AP Physics Multiple Choice Practice Electrostatics. Answer

Solution. ANSWERS - AP Physics Multiple Choice Practice Electrostatics. Answer NSWRS - P Physics Multiple hoice Practice lectrostatics Solution nswer 1. y definition. Since charge is free to move around on/in a conductor, excess charges will repel each other to the outer surface

More information

2014 F 2014 AI. 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason.

2014 F 2014 AI. 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason. 2014 F 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason. 2. Figure shows the field lines on a positive charge. Is the work done

More information

You should be able to demonstrate and show your understanding of:

You should be able to demonstrate and show your understanding of: OCR B Physics H557 Module 6: Field and Particle Physics You should be able to demonstrate and show your understanding of: 6.1: Fields (Charge and Field) Field: A potential gradient Field Strength: Indicates

More information

Halliday/Resnick/Walker Fundamentals of Physics

Halliday/Resnick/Walker Fundamentals of Physics Halliday/Resnick/Walker Fundamentals of Physics Classroom Response System Questions Chapter 24 Electric Potential Interactive Lecture Questions 24.2.1. Two electrons are separated by a distance R. If the

More information

Greeks noticed when they rubbed things against amber an invisible force of attraction occurred.

Greeks noticed when they rubbed things against amber an invisible force of attraction occurred. Ben Franklin, 1750 Kite Experiment link between lightening and sparks Electrostatics electrical fire from the clouds Greeks noticed when they rubbed things against amber an invisible force of attraction

More information

Electric fields summary problems HW Complete + Self-mark using answers at the back.

Electric fields summary problems HW Complete + Self-mark using answers at the back. Electric fields summary problems HW Complete + Self-mark using answers at the back. Part 1: Uniform Electric fields problems 1) Here are two closely spaced metal plates connected to a 500 V supply. + 500

More information

Ch 7 Electric Potential

Ch 7 Electric Potential Ch 7 Electric Potential Electric Energy, Electric Potential Energy concepts are going to be extremely important to us as we consider the behavior of charges in electric fields. How do energy concepts help

More information

This is known as charge quantization. Neutral particles, like neutron and photon have zero charge.

This is known as charge quantization. Neutral particles, like neutron and photon have zero charge. Electrostatics Quantization of Charge Objectives In this lecture you will learn the following Quantization Of Charge and its measurement Coulomb's Law of force between electric charge Superposition principle

More information

PHYSICS - CLUTCH CH 22: ELECTRIC FORCE & FIELD; GAUSS' LAW

PHYSICS - CLUTCH CH 22: ELECTRIC FORCE & FIELD; GAUSS' LAW !! www.clutchprep.com CONCEPT: ELECTRIC CHARGE e Atoms are built up of protons, neutrons and electrons p, n e ELECTRIC CHARGE is a property of matter, similar to MASS: MASS (m) ELECTRIC CHARGE (Q) - Mass

More information

Lecture 2 Electric Fields Chp. 22 Ed. 7

Lecture 2 Electric Fields Chp. 22 Ed. 7 Lecture Electric Fields Chp. Ed. 7 Cartoon - Analogous to gravitational field Warm-up problems, Physlet Topics Electric field Force per unit Charge Electric Field Lines Electric field from more than 1

More information

PHYSICS - Electrostatics

PHYSICS - Electrostatics PHYSICS - Electrostatics Electrostatics, or electricity at rest, involves electric charges, the forces between them, and their behavior in materials. 22.1 Electrical Forces and Charges The fundamental

More information

Chapter 24. Gauss s Law

Chapter 24. Gauss s Law Chapter 24 Gauss s Law Electric Flux Electric flux is the product of the magnitude of the electric field and the surface area, A, perpendicular to the field Φ E = EA Defining Electric Flux EFM06AN1 Electric

More information

7. A capacitor has been charged by a D C source. What are the magnitude of conduction and displacement current, when it is fully charged?

7. A capacitor has been charged by a D C source. What are the magnitude of conduction and displacement current, when it is fully charged? 1. In which Orientation, a dipole placed in uniform electric field is in (a) stable (b) unstable equilibrium. 2. Two point charges having equal charges separated by 1 m in distance experience a force of

More information

Electric Force and Coulombs Law

Electric Force and Coulombs Law Electric Force and Coulombs Law 1 Coulombs law is an inverse squared law prove this graphically / experimentally 2 NOTE: THIS IS ONLY FOR POINT CHARGES. Schematics I.) +5C 3C II.) Q Q 3 III.) more than

More information

charge of opposite signs attract / charges of the same sign repel

charge of opposite signs attract / charges of the same sign repel VISUAL PHYSICS ONLINE MODULE 4.1 ELECTRICITY ELECTRIC FIELD ELECTRIC POTENTIAL QUESTIONS and PROBLEMS (with ANSWRES) ex41b ex41c electric force F E [N] charge of opposite signs attract / charges of the

More information