Electric Field. Electric field direction Same direction as the force on a positive charge Opposite direction to the force on an electron

Size: px
Start display at page:

Download "Electric Field. Electric field direction Same direction as the force on a positive charge Opposite direction to the force on an electron"

Transcription

1 Electric Field Electric field Space surrounding an electric charge (an energetic aura) Describes electric force Around a charged particle obeys inverse-square law Force per unit charge

2 Electric Field Electric field direction Same direction as the force on a positive charge Opposite direction to the force on an electron

3 The Field Formulation q E q F

4 ELECTRIC FIELD Qualitatively The region of space around a charge where it can exert a force of electrical origin on another charge. Quantitatively The intensity of ELECTRIC FIELD at any point is defined as the force exerted per unit charge by a positive test charge kept at that point. E lim q o q F

5 2.2. Fields lines and Gauss s law A single point charge q, situated at the origin E( r ) r 4 2 Because the field falls off like,the vectors get shorter as I go father away from the origin,and they always point radially outward. This vectors can be connect up the arrows to form the field lines. The magnitude of the field is indicated by the density of the lines. r q 2 rˆ strength length of arrow strength density of field line

6 2.2. (2).Field lines emanate from a point charge symmetrically in all directions. 2.Field lines originate on positive charges and terminate on negative ones. 3.They cannot simply stop in midair, though they may extend out to infinity. 4.Field lines can never cross.

7 ELECTRIC LINES OF FORCE Are imaginary lines of force such that the tangent to it at any point gives the direction of electric field at that point. A positive point charge free to move will move in the direction of electric field and a negative point charge will move in a direction opposite to the direction of electric field along an electric line of force.

8 The lines of force to represent uniform electric field are as shown below The electric lines of force due to point charge q < are as shown below The electric lines of force due to point charge q > are as shown below

9 PROPERTIES OF ELECTRIC LINES OF FORCE Start from a positive charge and end in a negative charge. The tangent to it at any point gives the direction of electric field at that point. They never intersect each other They tend to contract longitudinally and expand laterally. They always enter or emerge normal to the surface of a charged conductor. They are close together in regions of strong electric field and far apart in regions of weak electric field.

10 Electric Field Both Lori and the spherical dome of the Van de Graaff generator are electrically charged.

11 ELECTRIC FLUX Is the total lines of force passing normal to a given surface E s E. ds E = E A for uniform electric field Electric flux is a scalar quantity

12 2.2. (3) Since in this model the fields strength is proportional to the number of lines per unit area, the flux of ( E da ) is proportional to the the number of field lines passing through any surface. The flux of E through a sphere of radius r is: q E da r r d d r q 4 2 ( ˆ) ( sin ˆ) 2 r q The flux through any surface enclosing the charge is According to the principle of superposition, the total field is the sum of all the individual fields: E n E i i, n E E da ( E da) ( qi) n i i i A charge outside the surface would contribute nothing to the total flux,since its field lines go in one side and out other.

13 GAUSS THEOREM States the total electric flux through a closed surface (surface integral of electric field over a closed surface) is equal to / o times the total charge enclosed by the surface. Mathematically s E. ds q enclosed

14 2.2. (4) Gauss s Law in integral form Turn integral form into a differential one, by applying the divergence theorem surface E da ( E) d volume Q enc volume E da Q enc ( ) d Gauss s law in differential form E

15 2.2.3 Application of Gauss s Law Example 2.2 Sol: surface Find the field outside a uniformly charged sphere of radius E da Q enc (a) E point radially outward,as does a da surface E da E da (b)e is constant over the Gaussian surface surface Thus 2 E da E da E 4 r surface E 4 r q E 2 4 r q 2 rˆ

16 2.2.3 (2). Spherical symmetry. Make your Gaussian surface a concentric sphere (Fig 2.8) 2. Cylindrical symmetry. Make your Gaussian surface a coaxial cylinder (Fig 2.9) 3. Plane symmetry. Use a Gaussian surface a coaxial the surface (Fig 2.2)

17 2.2.3 (3) Example 2.3 Find the electric field inside the cylinder which contains charge density as kr Solution: surface E da Q enc The enclosed charge is r 2 Qenc d ( kr)( rdr d dz) 2 k l r dr klr 3 E da E da E da E 2 rl 2 3 (by symmetry) thus 2 E 2rl klr 3 3 E 3 2 kr rˆ

18 2.2.3 (4) Example 2.4 An infinite plane carries a uniform surface charge. Find its electric field. Solution: Draw a Gaussian pillbox Apply Gauss s law to this surface surface E da Q enc By symmetry, E points away from the plane thus, the top and bottom surfaces yields E da 2A E (the sides contribute nothing) 2A E A E 2 nˆ

19 2.2.3 (5) Example 2.5 Two infinite parallel planes carry equal but opposite uniform charge densities.find the field in each of the three regions. Solution: The field is (σ/ε ), and points to the right, between the plane elsewhere it is zero. ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2

20 2.3. introduction to potential Any vector whose curl is zero is equal to the gradient of some scalar. We define a function: Where is some standard reference point ; V depends only on the point P. V is called the electric potential. V ( p) The fundamental theorem for gradients V ( b) V ( a) ( V ) dl b a p E dl V ( b b a b ) V ( a ) E dl E dl a E dl so b a ( V ) dl E dl b a E V

21 2.3.2 Comments on potential ()The name Potential is not potential energy F qe qv U F X V : Joule/coulomb U : Joule

22 2.3.2 (2) (2)Advantage of the potential formulation V is a scalar function, but E is a vector quantity V() r E E xˆ E yˆ E zˆ x y z If you know V, you can easily get E: E V. Ex, Ey, Ezare not independent functions E E 2 y Ey E so x E 3, z E, x E y x y z z x z 2 3 E E E E E E E E y z x z y x z x y x z y x y z y x z z x x z

23 2.3.2 (3) (3)The reference point Changing the reference point amounts to adds a constant to the potential p V ( p) E dl E dl E dl K V ( p) Adding a constant to V will not affect the potential difference between two point: V( b) V( a) V ( b) V ( a) p (Where K is a constant) Since the derivative of a constant is zero: V For the different V, the field E remains the same. V Ordinarily we set V ( )

24 2.3.2 (4) (4)Potential obeys the superposition principle F F F, F QE 2 2 Dividing through by Q E E E Integrating from the common reference point to p, V V V 2 (5)Unit of potential : Volt=Joule/Coulomb F : newton F x: Joule F qe qv V F X q qv X Joule/Coulomb

25 2.3.2 (5) Example 2.6 Find the potential inside and outside a spherical shell of radius R, which carries a uniform surface charge (the total charge is q). solution: for r>r: V r for r<r: _ E Eout 2 in V R 4 r q q E d 4 r 4 r 4 q R r q r rˆ V R V r Ein 4 q R

26 2.3.3 Poisson s Eq. & Laplace s Eq. E V V E V 2 Poisson s Eq. 2 V 2 V Laplace s eq.

27 2.3.4 The Potential of a Localized Charge Distribution E V V V Edr r V r q () q q V r dr 4 4 r 4 r 2 r r Potential for a point charge ( ) q V P 4 R R r r p R Potential for a collection of charge V( P) 4 n i q R i i R r r i i p R i

28 2.3.4 (2) Potential of a continuous distribution for volume charge for a line charge for a surface charge q d q d q da V ( P) d 4 V ( P) R 4 d V ( P) R 4 da R Corresponding electric field E( P) rˆ d 4 2 R ˆ EP ( ) r d 4 EP ( ) rˆ da 2 2 R 4 R Rˆ R R [ ] 2

29 2.3.4 (3) Example 2.7 Find the potential of a uniformly charged spherical shell of radius R. Solution: V ( r) da, r R z 2Rz cos 4 r 2 R sind d 4 V( z) 2 2 R z 2Rz cos 2 sin 2 R d 2 2 R z 2Rz cos R R z 2Rz cos Rz ( ) 2R R z 2Rz R z 2Rz z 2R[ 2 2 ( R z) ( R z) ] z ( ) r

30 2.3.4 (4) 2 R R V ( z) [( R z) ( z R)], 2z z outside R R V ( z) [( R z) ( R z)], 2 z inside

31 Is the surface of a charged conductor an equipotential? Is the electric potential constant everywhere inside a charged conductor and equal to its value at the surface?

32 Electric Potential Difference on the Surface of a Charged Conductor in Equilibrium Let A and B be points on the surface of the charged conductor Let ds be the displacement from A to B. E is always perpendicular to the displacement ds. So, E ds = Therefore, the potential difference between A and B is also zero B V Eds A

33 Electric Potential Difference on the Surface of a Charged Conductor in Equilibrium V is constant everywhere on the surface of a charged conductor in equilibrium ΔV = between any two points on the surface The surface of any charged conductor in electrostatic equilibrium is an equipotential surface

34 What about the inside of a charged conductor? E= inside the conductor in equilibrium E ds = B V Eds A Therefore, the electric potential is constant everywhere inside the conductor and equal to the value at the surface.

35 Solid Conducting Sphere r<r V=kq/R E= r=r V=kq/R E=kQ/R 2 r>r V=kq/r E=kQ/r 2 Note: V is a Scalar related to energy E is a Vector related to force.

36 Irregularly Shaped Conductors The charge density is high where the radius of curvature is small The electric field is high at sharp points

37 Irregularly Shaped Conductors The field lines are perpendicular to the conducting surface The equipotential surfaces are perpendicular to the field lines

38 Electric Potential What we used so far! Electric Potential Potential Difference V Potential for a point charge U q o U B V d q E s A V q ke r o Potential for multiple point charges Potential for continuous charge distribution V V k k e e i q r dq r i i

39 PRINCIPLE OF A CAPACITOR Capacitor is based on the principle that the capacitance of an isolated charged conductor increases when an uncharged earthed conductor is kept near it and the capacitance is further increased by keeping a dielectric medium between the conductors.

40 CAPACITANCE OF A PARALLEL PLATE CAPACITOR Electric field between the plates, E = / But =Q/A E=Q/A Potential difference between the two plates, V = Ed = Qd/A Capacitance, C = Q/V C=A /d

41 CAPACITANCE OF A PARALLEL PLATE CAPACITOR WITH A DIELECTRIC SLAB When a dielectric slab is kept between the plates COMPLETELY filling the gap E = E /K where K is the dielectric constant of the medium. Potential difference V = E d = E d/k=qd/k A Capacitance C = Q/V = K A/d = KC when a dielectric medium is filled between the plates of a capacitor, its capacitance is increased K times.

42 DIELECTRIC STRENGTH Dielectric strength of a dielectric is the maximum electric field that can be applied to it beyond which it breaks down.

Chapter 2. Electrostatics. Introduction to Electrodynamics, 3 rd or 4 rd Edition, David J. Griffiths

Chapter 2. Electrostatics. Introduction to Electrodynamics, 3 rd or 4 rd Edition, David J. Griffiths Chapter 2. Electrostatics Introduction to Electrodynamics, 3 rd or 4 rd Edition, David J. Griffiths 2.1 The Electric Field Test charge 2.1.1 Introduction Source charges The fundamental problem that electromagnetic

More information

Chapter 1 The Electric Force

Chapter 1 The Electric Force Chapter 1 The Electric Force 1. Properties of the Electric Charges 1- There are two kinds of the electric charges in the nature, which are positive and negative charges. - The charges of opposite sign

More information

Chapter 4. Electrostatic Fields in Matter

Chapter 4. Electrostatic Fields in Matter Chapter 4. Electrostatic Fields in Matter 4.1. Polarization 4.2. The Field of a Polarized Object 4.3. The Electric Displacement 4.4. Linear Dielectrics 4.5. Energy in dielectric systems 4.6. Forces on

More information

1. ELECTRIC CHARGES AND FIELDS

1. ELECTRIC CHARGES AND FIELDS 1. ELECTRIC CHARGES AND FIELDS 1. What are point charges? One mark questions with answers A: Charges whose sizes are very small compared to the distance between them are called point charges 2. The net

More information

Quiz. Chapter 15. Electrical Field. Quiz. Electric Field. Electric Field, cont. 8/29/2011. q r. Electric Forces and Electric Fields

Quiz. Chapter 15. Electrical Field. Quiz. Electric Field. Electric Field, cont. 8/29/2011. q r. Electric Forces and Electric Fields Chapter 15 Electric Forces and Electric Fields uiz Four point charges, each of the same magnitude, with varying signs as specified, are arranged at the corners of a square as shown. Which of the arrows

More information

Phys 2102 Spring 2002 Exam 1

Phys 2102 Spring 2002 Exam 1 Phys 2102 Spring 2002 Exam 1 February 19, 2002 1. When a positively charged conductor touches a neutral conductor, the neutral conductor will: (a) Lose protons (b) Gain electrons (c) Stay neutral (d) Lose

More information

Today in Physics 122: electrostatics review

Today in Physics 122: electrostatics review Today in Physics 122: electrostatics review David Blaine takes the practical portion of his electrostatics midterm (Gawker). 11 October 2012 Physics 122, Fall 2012 1 Electrostatics As you have probably

More information

Chapter 17 & 18. Electric Field and Electric Potential

Chapter 17 & 18. Electric Field and Electric Potential Chapter 17 & 18 Electric Field and Electric Potential Electric Field Maxwell developed an approach to discussing fields An electric field is said to exist in the region of space around a charged object

More information

Gauss s Law. The first Maxwell Equation A very useful computational technique This is important!

Gauss s Law. The first Maxwell Equation A very useful computational technique This is important! Gauss s Law The first Maxwell quation A very useful computational technique This is important! P05-7 Gauss s Law The Idea The total flux of field lines penetrating any of these surfaces is the same and

More information

Physics / Higher Physics 1A. Electricity and Magnetism Revision

Physics / Higher Physics 1A. Electricity and Magnetism Revision Physics / Higher Physics 1A Electricity and Magnetism Revision Electric Charges Two kinds of electric charges Called positive and negative Like charges repel Unlike charges attract Coulomb s Law In vector

More information

Topic 7. Electric flux Gauss s Law Divergence of E Application of Gauss Law Curl of E

Topic 7. Electric flux Gauss s Law Divergence of E Application of Gauss Law Curl of E Topic 7 Electric flux Gauss s Law Divergence of E Application of Gauss Law Curl of E urface enclosing an electric dipole. urface enclosing charges 2q and q. Electric flux Flux density : The number of field

More information

Lecture 4-1 Physics 219 Question 1 Aug Where (if any) is the net electric field due to the following two charges equal to zero?

Lecture 4-1 Physics 219 Question 1 Aug Where (if any) is the net electric field due to the following two charges equal to zero? Lecture 4-1 Physics 219 Question 1 Aug.31.2016. Where (if any) is the net electric field due to the following two charges equal to zero? y Q Q a x a) at (-a,0) b) at (2a,0) c) at (a/2,0) d) at (0,a) and

More information

Chapter 24. Gauss s Law

Chapter 24. Gauss s Law Chapter 24 Gauss s Law Electric Flux Electric flux is the product of the magnitude of the electric field and the surface area, A, perpendicular to the field Φ E = EA Defining Electric Flux EFM06AN1 Electric

More information

Chapter 24. Gauss s Law

Chapter 24. Gauss s Law Chapter 24 Gauss s Law Let s return to the field lines and consider the flux through a surface. The number of lines per unit area is proportional to the magnitude of the electric field. This means that

More information

What will the electric field be like inside the cavity?

What will the electric field be like inside the cavity? What will the electric field be like inside the cavity? 1. There is no charge inside the gaussian surface so E = 0 2. There is no net flux through the surface but there is an E field 3. Gauss s law doesn

More information

Fall Lee - Midterm 2 solutions

Fall Lee - Midterm 2 solutions Fall 2009 - Lee - Midterm 2 solutions Problem 1 Solutions Part A Because the middle slab is a conductor, the electric field inside of the slab must be 0. Parts B and C Recall that to find the electric

More information

Chapter (2) Gauss s Law

Chapter (2) Gauss s Law Chapter (2) Gauss s Law How you can determine the amount of charge within a closed surface by examining the electric field on the surface! What is meant by electric flux and how you can calculate it. How

More information

Chapter 23. Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 23. Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 23 Gauss Law Copyright 23-1 Electric Flux Electric field vectors and field lines pierce an imaginary, spherical Gaussian surface that encloses a particle with charge +Q. Now the enclosed particle

More information

Gauss s Law & Potential

Gauss s Law & Potential Gauss s Law & Potential Lecture 7: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Flux of an Electric Field : In this lecture we introduce Gauss s law which happens to

More information

Flux. Flux = = va. This is the same as asking What is the flux of water through the rectangle? The answer depends on:

Flux. Flux = = va. This is the same as asking What is the flux of water through the rectangle? The answer depends on: Ch. 22: Gauss s Law Gauss s law is an alternative description of Coulomb s law that allows for an easier method of determining the electric field for situations where the charge distribution contains symmetry.

More information

Electric Flux. If we know the electric field on a Gaussian surface, we can find the net charge enclosed by the surface.

Electric Flux. If we know the electric field on a Gaussian surface, we can find the net charge enclosed by the surface. Chapter 23 Gauss' Law Instead of considering the electric fields of charge elements in a given charge distribution, Gauss' law considers a hypothetical closed surface enclosing the charge distribution.

More information

Chapter 25. Electric Potential

Chapter 25. Electric Potential Chapter 25 Electric Potential Electric Potential Electromagnetism has been connected to the study of forces in previous chapters. In this chapter, electromagnetism will be linked to energy. By using an

More information

Chapter 21: Gauss law Tuesday September 13 th. Gauss law and conductors Electrostatic potential energy (more likely on Thu.)

Chapter 21: Gauss law Tuesday September 13 th. Gauss law and conductors Electrostatic potential energy (more likely on Thu.) Chapter 21: Gauss law Tuesday September 13 th LABS START THIS WEEK Quick review of Gauss law The flux of a vector field The shell theorem Gauss law for other symmetries A uniformly charged sheet A uniformly

More information

Chapter 25. Electric Potential

Chapter 25. Electric Potential Chapter 25 Electric Potential Electric Potential Electromagnetism has been connected to the study of forces in previous chapters. In this chapter, electromagnetism will be linked to energy. By using an

More information

AMPERE'S LAW. B dl = 0

AMPERE'S LAW. B dl = 0 AMPERE'S LAW The figure below shows a basic result of an experiment done by Hans Christian Oersted in 1820. It shows the magnetic field produced by a current in a long, straight length of current-carrying

More information

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law Electric Flux Gauss s Law: Definition Chapter 22 Gauss s Law Applications of Gauss s Law Uniform Charged Sphere Infinite Line of Charge Infinite Sheet of Charge Two infinite sheets of charge Phys 2435:

More information

Welcome. to Electrostatics

Welcome. to Electrostatics Welcome to Electrostatics Outline 1. Coulomb s Law 2. The Electric Field - Examples 3. Gauss Law - Examples 4. Conductors in Electric Field Coulomb s Law Coulomb s law quantifies the magnitude of the electrostatic

More information

3 Chapter. Gauss s Law

3 Chapter. Gauss s Law 3 Chapter Gauss s Law 3.1 Electric Flux... 3-2 3.2 Gauss s Law (see also Gauss s Law Simulation in Section 3.10)... 3-4 Example 3.1: Infinitely Long Rod of Uniform Charge Density... 3-9 Example 3.2: Infinite

More information

Phys102 General Physics II. Chapter 24: Gauss s Law

Phys102 General Physics II. Chapter 24: Gauss s Law Phys102 General Physics II Gauss Law Chapter 24: Gauss s Law Flux Electric Flux Gauss Law Coulombs Law from Gauss Law Isolated conductor and Electric field outside conductor Application of Gauss Law Charged

More information

n Higher Physics 1B (Special) (PHYS1241) (6UOC) n Advanced Science n Double Degree (Science/Engineering) n Credit or higher in Physics 1A

n Higher Physics 1B (Special) (PHYS1241) (6UOC) n Advanced Science n Double Degree (Science/Engineering) n Credit or higher in Physics 1A Physics in Session 2: I n Physics / Higher Physics 1B (PHYS1221/1231) n Science, dvanced Science n Engineering: Electrical, Photovoltaic,Telecom n Double Degree: Science/Engineering n 6 UOC n Waves n Physical

More information

IMPORTANT: LABS START NEXT WEEK

IMPORTANT: LABS START NEXT WEEK Chapter 21: Gauss law Thursday September 8 th IMPORTANT: LABS START NEXT WEEK Gauss law The flux of a vector field Electric flux and field lines Gauss law for a point charge The shell theorem Examples

More information

Chapter 24. Gauss s Law

Chapter 24. Gauss s Law Chapter 24 Gauss s Law Gauss Law Gauss Law can be used as an alternative procedure for calculating electric fields. Gauss Law is based on the inverse-square behavior of the electric force between point

More information

EX. Potential for uniformly charged thin ring

EX. Potential for uniformly charged thin ring EX. Potential for uniformly charged thin ring Q dq r R dφ 0 V ( Z ) =? z kdq Q Q V =, dq = Rdϕ = dϕ Q r 2πR 2π 2π k Q 0 = d ϕ 0 r 2π kq 0 2π = 0 d ϕ 2π r kq 0 = r kq 0 = 2 2 R + z EX. Potential for uniformly

More information

Roll Number SET NO. 42/1

Roll Number SET NO. 42/1 Roll Number SET NO. 4/1 INDIAN SCHOOL MUSCAT FIRST TERM EXAMINATION PHYSICS CLASS: XII Sub. Code: 04 Time Allotted: Hrs 0.04.018 Max. Marks: 70 General Instructions: 1. All questions are compulsory. There

More information

Exam 1 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1

Exam 1 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Exam 1 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 A rod of charge per unit length λ is surrounded by a conducting, concentric cylinder

More information

24 Gauss s Law. Gauss s Law 87:

24 Gauss s Law. Gauss s Law 87: Green Items that must be covered for the national test Blue Items from educator.com Red Items from the 8 th edition of Serway 24 Gauss s Law 24.1 Electric Flux 24.2 Gauss s Law 24.3 Application of Gauss

More information

Lecture 13: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay. Poisson s and Laplace s Equations

Lecture 13: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay. Poisson s and Laplace s Equations Poisson s and Laplace s Equations Lecture 13: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay We will spend some time in looking at the mathematical foundations of electrostatics.

More information

Summary: Applications of Gauss Law

Summary: Applications of Gauss Law Physics 2460 Electricity and Magnetism I, Fall 2006, Lecture 15 1 Summary: Applications of Gauss Law 1. Field outside of a uniformly charged sphere of radius a: 2. An infinite, uniformly charged plane

More information

Coulomb s Law Pearson Education Inc.

Coulomb s Law Pearson Education Inc. Coulomb s Law Coulomb s Law: The magnitude of the electric force between two point charges is directly proportional to the product of their charges and inversely proportional to the square of the distance

More information

Electric Field Lines. lecture 4.1.1

Electric Field Lines. lecture 4.1.1 Electric Field Lines Two protons, A and B, are in an electric field. Which proton has the larger acceleration? A. Proton A B. Proton B C. Both have the same acceleration. lecture 4.1.1 Electric Field Lines

More information

Introduction)! Electrostatics is the study of stationary electric charges and fields (as opposed to moving charges and currents)

Introduction)! Electrostatics is the study of stationary electric charges and fields (as opposed to moving charges and currents) Higher'Physics'1B Electricity) Electrostatics)) Introduction) Electrostatics is the study of stationary electric charges and fields (as opposed to moving charges and currents) Properties)of)Electric)Charges)

More information

Chapter 2. Electrostatics. Introduction to Electrodynamics, 3 rd or 4 rd Edition, David J. Griffiths

Chapter 2. Electrostatics. Introduction to Electrodynamics, 3 rd or 4 rd Edition, David J. Griffiths Chapter 2. Electrostatics Introduction to Electrodynamics, 3 rd or 4 rd Edition, David J. Griffiths 2.3 Electric Potential 2.3.1 Introduction to Potential E 0 We're going to reduce a vector problem (finding

More information

CPS lesson Electric Field ANSWER KEY

CPS lesson Electric Field ANSWER KEY CPS lesson Electric Field ANSWER KEY 1. A positively charged rod is brought near a conducting sphere on an insulated base. The opposite side of the sphere is briefly grounded. If the rod is now withdrawn,

More information

This is known as charge quantization. Neutral particles, like neutron and photon have zero charge.

This is known as charge quantization. Neutral particles, like neutron and photon have zero charge. Module 2: Electrostatics Lecture 6: Quantization of Charge Objectives In this lecture you will learn the following Quantization Of Charge and its measurement Coulomb's Law of force between electric charge

More information

2014 F 2014 AI. 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason.

2014 F 2014 AI. 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason. 2014 F 1. Why must electrostatic field at the surface of a charged conductor be normal to the surface at every point? Give reason. 2. Figure shows the field lines on a positive charge. Is the work done

More information

APPLICATIONS OF GAUSS S LAW

APPLICATIONS OF GAUSS S LAW APPLICATIONS OF GAUSS S LAW Although Gauss s Law is always correct it is generally only useful in cases with strong symmetries. The basic problem is that it gives the integral of E rather than E itself.

More information

Chapter 24 Gauss Law

Chapter 24 Gauss Law Chapter 24 Gauss Law A charge inside a box can be probed with a test charge q o to measure E field outside the box. The volume (V) flow rate (dv/dt) of fluid through the wire rectangle (a) is va when the

More information

Chapter 25. Capacitance

Chapter 25. Capacitance Chapter 25 Capacitance 1 1. Capacitors A capacitor is a twoterminal device that stores electric energy. 2 2. Capacitance The figure shows the basic elements of any capacitor two isolated conductors of

More information

This is known as charge quantization. Neutral particles, like neutron and photon have zero charge.

This is known as charge quantization. Neutral particles, like neutron and photon have zero charge. Electrostatics Quantization of Charge Objectives In this lecture you will learn the following Quantization Of Charge and its measurement Coulomb's Law of force between electric charge Superposition principle

More information

Electric Field Lines

Electric Field Lines Electric Field Lines Electric forces Electric fields: - Electric field lines emanate from positive charges - Electric field lines disappear at negative charges If you see a bunch of field lines emanating

More information

A) 1, 2, 3, 4 B) 4, 3, 2, 1 C) 2, 3, 1, 4 D) 2, 4, 1, 3 E) 3, 2, 4, 1. Page 2

A) 1, 2, 3, 4 B) 4, 3, 2, 1 C) 2, 3, 1, 4 D) 2, 4, 1, 3 E) 3, 2, 4, 1. Page 2 1. Two parallel-plate capacitors with different plate separation but the same capacitance are connected in series to a battery. Both capacitors are filled with air. The quantity that is NOT the same for

More information

Class XII Chapter 1 Electric Charges And Fields Physics

Class XII Chapter 1 Electric Charges And Fields Physics Class XII Chapter 1 Electric Charges And Fields Physics Question 1.1: What is the force between two small charged spheres having charges of 2 10 7 C and 3 10 7 C placed 30 cm apart in air? Answer: Repulsive

More information

week 3 chapter 28 - Gauss s Law

week 3 chapter 28 - Gauss s Law week 3 chapter 28 - Gauss s Law Here is the central idea: recall field lines... + + q 2q q (a) (b) (c) q + + q q + +q q/2 + q (d) (e) (f) The number of electric field lines emerging from minus the number

More information

LESSON 2 PHYSICS NOTES

LESSON 2 PHYSICS NOTES LESSON 2 ELECTROSTATIC POTENTIAL AND CAPACITANCE SECTION I ELECTROSTATIC POTENTIAL ELECTRIC FIELD IS CONSERVATIVE In an electric field work done by the electric field in moving a unit positive charge from

More information

Physics 202, Exam 1 Review

Physics 202, Exam 1 Review Physics 202, Exam 1 Review Logistics Topics: Electrostatics (Chapters 21-24.6) Point charges: electric force, field, potential energy, and potential Distributions: electric field, electric potential. Interaction

More information

Potential & Potential Energy

Potential & Potential Energy Potential & Potential Energy Lecture 10: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Electrostatic Boundary Conditions : We had seen that electric field has a discontinuity

More information

free space (vacuum) permittivity [ F/m]

free space (vacuum) permittivity [ F/m] Electrostatic Fields Electrostatic fields are static (time-invariant) electric fields produced by static (stationary) charge distributions. The mathematical definition of the electrostatic field is derived

More information

Practice Questions Exam 1/page1. PES Physics 2 Practice Exam 1 Questions. Name: Score: /.

Practice Questions Exam 1/page1. PES Physics 2 Practice Exam 1 Questions. Name: Score: /. Practice Questions Exam 1/page1 PES 110 - Physics Practice Exam 1 Questions Name: Score: /. Instructions Time allowed for this is exam is 1 hour 15 minutes 5 multiple choice (5 points) 3 to 5 written problems

More information

Electric Force and Potential Energy

Electric Force and Potential Energy Class 04 (Class 03: whiteboard exercises of Gauss' law.) Electric Force and Potential Energy For a charge q 0 in an electric field: The force picture F=q 0 E Can we similarly look for an energy picture?

More information

Quiz Fun! This box contains. 1. a net positive charge. 2. no net charge. 3. a net negative charge. 4. a positive charge. 5. a negative charge.

Quiz Fun! This box contains. 1. a net positive charge. 2. no net charge. 3. a net negative charge. 4. a positive charge. 5. a negative charge. Quiz Fun! This box contains 1. a net positive charge. 2. no net charge. 3. a net negative charge. 4. a positive charge. 5. a negative charge. Quiz Fun! This box contains 1. a net positive charge. 2. no

More information

Chapter 21. Electric Fields

Chapter 21. Electric Fields Chapter 21 Electric Fields The Origin of Electricity The electrical nature of matter is inherent in the atoms of all substances. An atom consists of a small relatively massive nucleus that contains particles

More information

PHY102 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law

PHY102 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law PHY1 Electricity Topic 3 (Lectures 4 & 5) Gauss s Law In this topic, we will cover: 1) Electric Flux ) Gauss s Law, relating flux to enclosed charge 3) Electric Fields and Conductors revisited Reading

More information

Chapter 4. Electric Fields in Matter

Chapter 4. Electric Fields in Matter Chapter 4. Electric Fields in Matter 4.1.2 Induced Dipoles What happens to a neutral atom when it is placed in an electric field E? The atom now has a tiny dipole moment p, in the same direction as E.

More information

Physics 202, Exam 1 Review

Physics 202, Exam 1 Review Physics 202, Exam 1 Review Logistics Topics: Electrostatics + Capacitors (Chapters 21-24) Point charges: electric force, field, potential energy, and potential Distributions: electric field, electric potential.

More information

Physics 212 Exam I Sample Question Bank 2008 Multiple Choice: choose the best answer "none of the above" may can be a valid answer

Physics 212 Exam I Sample Question Bank 2008 Multiple Choice: choose the best answer none of the above may can be a valid answer Multiple Choice: choose the best answer "none of the above" may can be a valid answer The (attempted) demonstration in class with the pith balls and a variety of materials indicated that () there are two

More information

Chapter 15. Electric Forces and Electric Fields

Chapter 15. Electric Forces and Electric Fields Chapter 15 Electric Forces and Electric Fields First Observations Greeks Observed electric and magnetic phenomena as early as 700 BC Found that amber, when rubbed, became electrified and attracted pieces

More information

7. A capacitor has been charged by a D C source. What are the magnitude of conduction and displacement current, when it is fully charged?

7. A capacitor has been charged by a D C source. What are the magnitude of conduction and displacement current, when it is fully charged? 1. In which Orientation, a dipole placed in uniform electric field is in (a) stable (b) unstable equilibrium. 2. Two point charges having equal charges separated by 1 m in distance experience a force of

More information

Physics 2B. Lecture 24B. Gauss 10 Deutsche Mark

Physics 2B. Lecture 24B. Gauss 10 Deutsche Mark Physics 2B Lecture 24B Gauss 10 Deutsche Mark Electric Flux Flux is the amount of something that flows through a given area. Electric flux, Φ E, measures the amount of electric field lines that passes

More information

Chapter 15. Electric Forces and Electric Fields

Chapter 15. Electric Forces and Electric Fields Chapter 15 Electric Forces and Electric Fields First Studies Greeks Observed electric and magnetic phenomena as early as 700 BC Found that amber, when rubbed, became electrified and attracted pieces of

More information

Chapter 21 Chapter 23 Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 21 Chapter 23 Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 21 Chapter 23 Gauss Law Copyright 23-1 What is Physics? Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface. Gauss law considers

More information

Chapter 21: Gauss s Law

Chapter 21: Gauss s Law Chapter 21: Gauss s Law Electric field lines Electric field lines provide a convenient and insightful way to represent electric fields. A field line is a curve whose direction at each point is the direction

More information

Chapter 23: Gauss Law. PHY2049: Chapter 23 1

Chapter 23: Gauss Law. PHY2049: Chapter 23 1 Chapter 23: Gauss Law PHY2049: Chapter 23 1 Two Equivalent Laws for Electricity Coulomb s Law equivalent Gauss Law Derivation given in Sec. 23-5 (Read!) Not derived in this book (Requires vector calculus)

More information

PRACTICE EXAM 1 for Midterm 1

PRACTICE EXAM 1 for Midterm 1 PRACTICE EXAM 1 for Midterm 1 Multiple Choice Questions 1) The figure shows three electric charges labeled Q 1, Q 2, Q 3, and some electric field lines in the region surrounding the charges. What are the

More information

Ch 24 Electric Flux, & Gauss s Law

Ch 24 Electric Flux, & Gauss s Law Ch 24 Electric Flux, & Gauss s Law Electric Flux...is related to the number of field lines penetrating a given surface area. Φ e = E A Φ = phi = electric flux Φ units are N m 2 /C Electric Flux Φ = E A

More information

Physics 240 Fall 2003: Exam #1. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2003: Exam #1. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 4 Fall 3: Exam #1 Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above. This will be a 1.5

More information

Gauss Law. Challenge Problems

Gauss Law. Challenge Problems Gauss Law Challenge Problems Problem 1: The grass seeds figure below shows the electric field of three charges with charges +1, +1, and -1, The Gaussian surface in the figure is a sphere containing two

More information

4 Chapter. Electric Potential

4 Chapter. Electric Potential 4 Chapter Electric Potential 4.1 Potential and Potential Energy... 4-3 4.2 Electric Potential in a Uniform Field... 4-7 4.3 Electric Potential due to Point Charges... 4-8 4.3.1 Potential Energy in a System

More information

Dielectrics - III. Lecture 22: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay

Dielectrics - III. Lecture 22: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Dielectrics - III Lecture 22: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay We continue with our discussion of dielectric medium. Example : Dielectric Sphere in a uniform

More information

Electric flux. Electric Fields and Gauss s Law. Electric flux. Flux through an arbitrary surface

Electric flux. Electric Fields and Gauss s Law. Electric flux. Flux through an arbitrary surface Electric flux Electric Fields and Gauss s Law Electric flux is a measure of the number of field lines passing through a surface. The flux is the product of the magnitude of the electric field and the surface

More information

Gauss s Law. 3.1 Quiz. Conference 3. Physics 102 Conference 3. Physics 102 General Physics II. Monday, February 10th, Problem 3.

Gauss s Law. 3.1 Quiz. Conference 3. Physics 102 Conference 3. Physics 102 General Physics II. Monday, February 10th, Problem 3. Physics 102 Conference 3 Gauss s Law Conference 3 Physics 102 General Physics II Monday, February 10th, 2014 3.1 Quiz Problem 3.1 A spherical shell of radius R has charge Q spread uniformly over its surface.

More information

Chapter 19 Electric Potential and Electric Field

Chapter 19 Electric Potential and Electric Field Chapter 19 Electric Potential and Electric Field The electrostatic force is a conservative force. Therefore, it is possible to define an electrical potential energy function with this force. Work done

More information

Chapter 1. Introduction to Electrostatics

Chapter 1. Introduction to Electrostatics Chapter. Introduction to Electrostatics. Electric charge, Coulomb s Law, and Electric field Electric charge Fundamental and characteristic property of the elementary particles There are two and only two

More information

Gauss s Law. q 4. The Gaussian surfaces do not have to be spheres. Constant flux through any closed surface.

Gauss s Law. q 4. The Gaussian surfaces do not have to be spheres. Constant flux through any closed surface. The beauty of 1/R 2 Gauss s Law For a single point charge: The density of field lines signifies field strength, 1/R 2. Surface area 1/R 2. Constant flux of field lines through spheres, regardless of R.

More information

Physics 202, Lecture 3. The Electric Field

Physics 202, Lecture 3. The Electric Field Physics 202, Lecture 3 Today s Topics Electric Field (Review) Motion of charged particles in external E field Conductors in Electrostatic Equilibrium (Ch. 21.9) Gauss s Law (Ch. 22) Reminder: HW #1 due

More information

Summary of electrostatics

Summary of electrostatics Summary of electrostatics 1 In electrostatics we deal with the electric effects of charges at rest. Electric charge can be defined as is the intrinsic characteristic that is associated with fundamental

More information

8.022 (E&M) Lecture 6

8.022 (E&M) Lecture 6 8.0 (E&M) Lecture 6 Topics: More on capacitors Minireview of electrostatics (almost) all you need to know for uiz 1 Last time Capacitor: System of charged conductors Capacitance: C = It depends only on

More information

Questions Chapter 23 Gauss' Law

Questions Chapter 23 Gauss' Law Questions Chapter 23 Gauss' Law 23-1 What is Physics? 23-2 Flux 23-3 Flux of an Electric Field 23-4 Gauss' Law 23-5 Gauss' Law and Coulomb's Law 23-6 A Charged Isolated Conductor 23-7 Applying Gauss' Law:

More information

2. Gauss Law [1] Equipment: This is a theoretical lab so your equipment is pencil, paper, and textbook.

2. Gauss Law [1] Equipment: This is a theoretical lab so your equipment is pencil, paper, and textbook. Purpose: Theoretical study of Gauss law. 2. Gauss Law [1] Equipment: This is a theoretical lab so your equipment is pencil, paper, and textbook. When drawing field line pattern around charge distributions

More information

Conductors and Insulators

Conductors and Insulators Conductors and Insulators Lecture 11: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Self Energy of a Charge Distribution : In Lecture 1 we briefly discussed what we called

More information

Capacitors And Dielectrics

Capacitors And Dielectrics 1 In this small e-book we ll learn about capacitors and dielectrics in short and then we ll have some questions discussed along with their solutions. I ll also give you a practices test series which you

More information

3/5/2009 PHYS202 SPRING Lecture notes Electrostatics

3/5/2009 PHYS202 SPRING Lecture notes Electrostatics PHYS0 SPRING 009 Lecture notes Electrostatics 1 What is Electricity Static effects known since ancient times. Static charges can be made by rubbing certain materials together. Described by Benjamin Franklin

More information

Gauss Law 1. Name Date Partners GAUSS' LAW. Work together as a group on all questions.

Gauss Law 1. Name Date Partners GAUSS' LAW. Work together as a group on all questions. Gauss Law 1 Name Date Partners 1. The statement of Gauss' Law: (a) in words: GAUSS' LAW Work together as a group on all questions. The electric flux through a closed surface is equal to the total charge

More information

Chapter 24 Solutions The uniform field enters the shell on one side and exits on the other so the total flux is zero cm cos 60.

Chapter 24 Solutions The uniform field enters the shell on one side and exits on the other so the total flux is zero cm cos 60. Chapter 24 Solutions 24.1 (a) Φ E EA cos θ (3.50 10 3 )(0.350 0.700) cos 0 858 N m 2 /C θ 90.0 Φ E 0 (c) Φ E (3.50 10 3 )(0.350 0.700) cos 40.0 657 N m 2 /C 24.2 Φ E EA cos θ (2.00 10 4 N/C)(18.0 m 2 )cos

More information

FIELD LINES. Gauss s Law. Consider an arbitrary volume bounded by a closed surface. The volume contains an assortment of charges.

FIELD LINES. Gauss s Law. Consider an arbitrary volume bounded by a closed surface. The volume contains an assortment of charges. FIELD LINES We now consider an alternative method of graphically displaying vectors as directed by arrows where the length of the arrow gives the magnitude of the vector and it s direction gives the direction

More information

Electric Potential. Capacitors (Chapters 28, 29)

Electric Potential. Capacitors (Chapters 28, 29) Electric Potential. Capacitors (Chapters 28, 29) Electric potential energy, U Electric potential energy in a constant field Conservation of energy Electric potential, V Relation to the electric field strength

More information

Fall 2004 Physics 3 Tu-Th Section

Fall 2004 Physics 3 Tu-Th Section Fall 2004 Physics 3 Tu-Th Section Claudio Campagnari Lecture 9: 21 Oct. 2004 Web page: http://hep.ucsb.edu/people/claudio/ph3-04/ 1 Last time: Gauss's Law To formulate Gauss's law, introduced a few new

More information

Physics 202 Review Lectures

Physics 202 Review Lectures Physics 202 Review Lectures Exam 1&2 materials: today Optics: Reviewed Dec 11, 2008. (available on Web) Exam 3 materials: Reviewed on Nov. 21/22/23 (available on web). Also: Exam 1 and Exam 2 were reviewed

More information

Today in Physics 217: electric potential

Today in Physics 217: electric potential Today in Physics 17: electric potential Finish Friday s discussion of the field from a uniformly-charged sphere, and the gravitational analogue of Gauss Law. Electric potential Example: a field and its

More information

PHYSICS. Chapter 24 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 24 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 24 Lecture RANDALL D. KNIGHT Chapter 24 Gauss s Law IN THIS CHAPTER, you will learn about and apply Gauss s law. Slide 24-2 Chapter

More information

xˆ z ˆ. A second vector is given by B 2xˆ yˆ 2z ˆ.

xˆ z ˆ. A second vector is given by B 2xˆ yˆ 2z ˆ. Directions for all homework submissions Submit your work on plain-white or engineering paper (not lined notebook paper). Write each problem statement above each solution. Report answers using decimals

More information