The Huxley equation: How to Pull with a Burning Rope and Other Stories about Molecular Motors

Size: px
Start display at page:

Download "The Huxley equation: How to Pull with a Burning Rope and Other Stories about Molecular Motors"

Transcription

1 The Huxley equation: How to Pull with a Burning Rope and Other Stories about Molecular Motors J. P. Keener Mathematics Department University of Utah Korea PDE School 217

2 Molecular Motors There are four basic types of molecular motors Cytoskeletal motors such as myosin, kinesin, and dynein Polymerization/depolymerization motors (used for chromosomal segregation) Rotary flagellar motors Nucleic acid motors such as RNA, DNA polymerase

3 Outline of this Talk Main Goal: To show how the Huxley model is used to gain an understanding of several different types of molecular motors Issues to discuss: Load-velocity curves; Huxley model of actin-myosin crossbridges Binding and unbinding of flexible proteins Bidirectional transport Kinetochore motion for Chromosomal segregation

4 Warmup Exercise: Skeletal Muscle

5 Myosin Crossbridges

6 The Power Stroke Kinesin Animation

7 The Huxley Model Suppose a crossbridge can be bound (B) or unbound (U) U kon(x) B, k off (x) Thin filament Thick filament x Unstressed position Let n(x,t) be the density of bound crossbridges with extension x, n t + x [v(t)n] ( = N ) ndx k on(x) k off (x)n v > is contraction Binding site Crossbridge v(t) = filament velocity binding rate: k on, (N n) = free crossbridges unbinding rate k off The force generated is F = kx n(x,t)dx. The Huxley Model is a nonlocal, advection-reaction equation with structure k off k on h koff x

8 Load-Velocity Curve To find the load-velocity curve Pick a velocity v, V = 1..8 n Calculate steady state distribution n(x; v) ñ1.5 ñ1. ñ x/h 1..8 V =.1 V max n ñ1.5 ñ1. ñ x/h 1..8 V =.25 V max n Calculate the force F, ñ1.5 ñ1. ñ x/h 1..8 V = V max n Plot v vs. F. Remark: Although not biophysically accurate, this is a typical load-velocity curve for molecular motors. ñ1.5 ñ1. ñ x/h Speed of shortening Tension

9 Load Dependent Unbinding F Bonds break in a load dependent fashion U k on k off B, k off = βexp( F F ) (Bell s Law). k k G G δx Fx

10 Consequences of Bell s Law Suppose the load is spread uniformly among all bonds S n α n β n S n+1, α n = (N n)k on, β n = nβexp( F nf ) leads to the deterministic equation dθ dt = (1 θ) κθexp(f θ ) with θ = n, κ = β N k on, f = F NF exhibits critical behavior. θ steady state solutions κ =.5 κ =.1.2 Remark: This is an interesting stochastic exit time problem f

11 Position Dependent Binding Unbound flexible proteins undergo an Ornstein-Uhlenbeck process (diffusion with linear restoring force) γdx = kxdt +dξ(t) where ξ(t) represents a white noise stochastic process, and p(x, t) satisfies the Fokker-Planck equation: p t = x (kxp)+ k BT 2 p γ x 2 x with spring constant k, have Gaussian equilibrium distribution, so that the binding rate is also Gaussian k on = κexp( kγx2 2k B T ).

12 Sliding in a Flow Vf V x Let n(x,t) be the density of bound binders with extension x, n t = V n x +α(x) ( N T ) n(x, t)dx β(x)n, α(x) = κexp( kγx2 2k B T ), The force generated is β(x) = k off exp( k x F ), F = k xn(x,t)dx.

13 x And the Answer is n(x,v) Contours Force f V Velocity v with the motion determined by the force balance equation η(v f V) F =. 2 biphasic Force vs. Velocity curve, Velocity vs. V f has hysteretic behavior (explaining the static-kinetic friction transition). Velocity v Velocity v f

14 Bidirectional Transport Goal: To understand the observed switching of transport direction.

15 Motor Density cargo v w - (x) dynein diffusion kinesin w + (x) microtubule x x Let n ± (x,t) = density of + or motors stretched distance x at time t.

16 How does density n ± (x,t) change? (Answer: Use the Huxley model.) n ± t + [{ w ± (x) v(t) } n ±] x ( ) = N ± n ± dx k on(x) ± k ± off (x)n± ( ) Motor stepping rate is load dependent, w(x) = v 1 kx F stall v(t) = cargo velocity binding: unstretched, k on δ(x), (N n) = free motors unbinding: Bell s Law, force unbinding, k off e α x

17 Force Balance cargo velocity: force balance m v +γv = 2k B Tξ(t)+ F + (t)+f (t) forces from motors F ± (t) = kxn ± (x,t;v(t))dx Remark: F ± respond in a time-dependent way to variations of v(t).

18 Ornstein-Uhlenbeck Observation Single run (before unbinding), single motor: t p = x [{w(x) v(t)}p]+d xx p Mean evolution: µ := x(t) µ = w(µ) v(t) Mean force: F = kxp(x,t)dx = kµ Lesson learned: motors track (and generate force) with delayed response to fluctuations in the cargo v(t).

19 Cargo Velocity Evolution OU process suggests delayed force approximation of the form m v +γv = F 1(µ 1)+F 2(µ 2)+ 2k B Tγξ(t), µ 1 = w 1(µ 1) v µ 2 = w 2(µ 2) v where F is the steady state force from the PDE with v = w(µ), i.e., [{ wj (x) w j (µ j ) } ( ) ] n j = N j n j dx kon j x (x) kj off (x)n j, j= 1,2

20 Final Form of Stochastic Differential Equations Take viscous limit (v F/γ) µ 1 = w 1(µ 1) 1 γ [F1(µ1)+F2(µ2)]+ Dξ(t) µ 2 = w 2(µ 2) 1 γ [F1(µ1)+F2(µ2)]+ Dξ(t) Remark: The two motors experience the same noise μj [nm] μ1 μ t [s] Metastability! frequency

21 Symmetry of motor populations 1D invariant manifold (ζ v) described by the 1-D Fokker-Plank equation: where tp = ζ {A(ζ)p}+4D ζζ p A(ζ) = aζ 2 γ is a double-well potential. Bifurcation diagram: [ F 1( ζ +η 2 )+F ζ ] 2( η ). 2 a b v [nm/s] U(ζ) [nm 2 /s] γ [pn s/nm] x1-3 γ [pn s/nm] x1-2 ζ [nm] Bidirectional motion! (including pausing)

22 Switching Time Mean first passage time to switch τ: Aτ +4Dτ = 1, τ(ζ H ) =, (ζ S ) =. τ [s] γ [pn s/nm] x1-3 Conclusion: We have an explanation of the bidirectional motion of these motors as driven by the stochasticity of the cargo.

23 Eukaryotic Chromosomal Segregation Before cells divide their chromosomes are duplicated and then moved to the center (midline) of the dividing cell. Once they are all centered, they are separated into two equal sets, enabling cell division. Question: How are chromosomes moved?

24 Chromosome/microtubule interactions Chromosomes are connected to microtubules(mt) at the Kinetochores where kinetochore structural complexes (such as Ndc8) bind the MT lattice.

25 Chromosome/microtubule interactions Microtubules change their length by polymerizing and depolymerizing at their tip. Dynamic Instability describes the process by which microtubules switch between polymerizing and depolymerizing states. Chromosome velocities are related to the MT polymerization/depolymerization rates. Question: How can depolymerization/polymerization affect chromosomal movement?

26 Ndc8 Complex Question: How can depolymerizing microtubules pull the chromosomes? Remark: It is known to not be due to walking molecular motors (i.e., dynein). Proposed Answer: Biased diffusion of Ndc8 proteins along the MT. Before now there has been no mechanistically satisfactory model of how biased diffusion actually works.

27 Kinetochore Motion How can depolymerizing microtubules pull? kmt n kt binders T l z L y Let n(z,y,t) be the density of bound kinetochore binders with rest position y and binding position z, (a Huxley model) n t = ( z (vn)+kon(z,y) nt L k on = κexp ( k(y ) z)2 H(l z), 2k B T l ) ndz k off (z,y)n, k off = κ off exp ( k z y F ),

28 Protofilament Shape What is the shape of the depolymerizing protofilament? i) l < ii) < l < L iii) l > L f > f > f < u θ f z Total energy for a protofilament is E = l ( α 2 ( θ φ) 2 + k ) lat 2 u2 +zf ds, du ds = sinθ, To find the equilibrium shape, set δe =. dz ds = cosθ.

29 Shape Equations Shape Equations (linearized): d 2 w dz 2 = k latθ, with boundary conditions α d2 θ dρ = w +ρθ, dz2 f(z) = k L (y z)n(z,y)dy n p dz = f, θ = φ, w =, ρ =, at z = l θ =, u =, at z = Remark: With f = these reduce to the classical beam equation d 4 θ dz 4 k lat α θ =.

30 Depolymerization Rate Curled or loaded filaments break more easily: k break (z) = βexp(κ b θ ρ ρ ) because of curvature and load - (Bell s law). Consequently, the depolymerization velocity is v d = l and total force generated by the bonds is F = k L l k break (z)dz, (y z)n(z,y,t)dzdy.

31 Depolymerization Rate For an end-loaded protofilament: 3 1 Displacement u (nm) z (nm) Relative Depolymerization Rate End Load (nondimensional) Typical of catch-bonds

32 Finding the solution Pick a value of v and l; Find n(z,y;v): = z (vn) + kon(z,y) ( ntl l ndz ) k off (z,y)n Calculate f(z): Find protofilament shape, f(z) = np k L (y z)n(z,y)dy Find v d : v d = l k break(z)dz Adjust l until v d = v (a fixed point problem) Calculate the total force: F = k L l (y z)n(z,y,t)dzdy. Make lots of plots.

33 And the Answer is Load (pn) a b c Velocity (µ m s -1 ) a c b Velocity (µ m s -1 ) δ = l/l Remark: There is no stall force. There is disconnect at high loads.

34 How Does that Work? 1 8 protofilament load force density (pn µ m 1 ) a 5 5 b c y/l u i) l < ii) z < l < L iii) l > L f > f > f < θ f load(pn µ m 1 ) z(nm) Microtubule protofilament shape 25 u, Displacement (nm) a z(nm) a b b c c

35 Effects of Parameters? γ = L2 k α (protein stiffness/protofilament bending stiffness): γ=7 6 1 Load (pn) γ=14 Velocity (µ m s -1 ) 1-1 γ= γ= Velocity (µ m s -1 ) δ = l/l k (Ndc8 spring constant): There is an optimal k κ=6 6 1 Load (pn) κ=1 Velocity (µ m s -1 ) 1-1 κ=1 κ=6 κ= κ= Velocity (µ m s -1 ) δ = l/l

36 Effects of Parameters? ρ (Bell s law coefficient for protofilaments): ρ= 6 ρ=1 1 Load (pn) ρ=5 Velocity (µ m s -1 ) 1-1 ρ= ρ=1 1 ρ= Velocity (µ m s -1 ) δ = l/l Remark: Notice the flat load-velocity profile. (This has been observed experimentally.)

37 Conclusion Protein flexibility plays an important role in their binding and unbinding, etc., and may lead to critical behaviors (i.e., thresholds, bifurcations, etc.). Biased diffusion of Ndc8 proteins enables depolymerizing microtubules to pull chromosomes, answering the question of how to pull with a burning rope. cf. Shtylla and Keener, J. Theor. Biol. 263, pp (21) cf. Shtylla and Keener, SIAM J. Appl. Math. 71, pp (211).

38 Thanks! Thanks to Blerta Shtylla, Pomona College Chris Miles, Utah NSF (funding)

Flexing Protein muscles: How to Pull with a "Burning Rope"

Flexing Protein muscles: How to Pull with a Burning Rope Flexing Protein muscles: How to Pull with a "Burning Rope" J. P. Keener 215 Joint International Conference on via Guangzhou University and Huaihua University Huaihua 8/15 p.1/28 Eukaryotic Chromosomal

More information

Intracellular transport

Intracellular transport Transport in cells Intracellular transport introduction: transport in cells, molecular players etc. cooperation of motors, forces good and bad transport regulation, traffic issues, Stefan Klumpp image

More information

Anatoly B. Kolomeisky. Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS?

Anatoly B. Kolomeisky. Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS? Anatoly B. Kolomeisky Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS? Motor Proteins Enzymes that convert the chemical energy into mechanical

More information

For slowly varying probabilities, the continuum form of these equations is. = (r + d)p T (x) (u + l)p D (x) ar x p T(x, t) + a2 r

For slowly varying probabilities, the continuum form of these equations is. = (r + d)p T (x) (u + l)p D (x) ar x p T(x, t) + a2 r 3.2 Molecular Motors A variety of cellular processes requiring mechanical work, such as movement, transport and packaging material, are performed with the aid of protein motors. These molecules consume

More information

A MATHEMATICAL MODEL FOR FORCE GENERATION AT THE KINETOCHORE-MICROTUBULE INTERFACE

A MATHEMATICAL MODEL FOR FORCE GENERATION AT THE KINETOCHORE-MICROTUBULE INTERFACE SIAM J. APPL. MATH. Vol. 71, No. 5, pp. 1821 1848 c 211 Society for Industrial and Applied Mathematics A MATHEMATICAL MODEL FOR FORCE GENERATION AT THE KINETOCHORE-MICROTUBULE INTERFACE BLERTA SHTYLLA

More information

Lecture 7 : Molecular Motors. Dr Eileen Nugent

Lecture 7 : Molecular Motors. Dr Eileen Nugent Lecture 7 : Molecular Motors Dr Eileen Nugent Molecular Motors Energy Sources: Protonmotive Force, ATP Single Molecule Biophysical Techniques : Optical Tweezers, Atomic Force Microscopy, Single Molecule

More information

The biological motors

The biological motors Motor proteins The definition of motor proteins Miklós Nyitrai, November 30, 2016 Molecular machines key to understand biological processes machines in the micro/nano-world (unidirectional steps): nm,

More information

16. Working with the Langevin and Fokker-Planck equations

16. Working with the Langevin and Fokker-Planck equations 16. Working with the Langevin and Fokker-Planck equations In the preceding Lecture, we have shown that given a Langevin equation (LE), it is possible to write down an equivalent Fokker-Planck equation

More information

Pulling forces in Cell Division

Pulling forces in Cell Division Pulling forces in Cell Division Frank Jülicher Max Planck Institute for the Physics of Complex Systems Dresden, Germany Max Planck Institute for the Physics of Complex Systems A. Zumdieck A. J.-Dalmaroni

More information

BME Engineering Molecular Cell Biology. Basics of the Diffusion Theory. The Cytoskeleton (I)

BME Engineering Molecular Cell Biology. Basics of the Diffusion Theory. The Cytoskeleton (I) BME 42-620 Engineering Molecular Cell Biology Lecture 07: Basics of the Diffusion Theory The Cytoskeleton (I) BME42-620 Lecture 07, September 20, 2011 1 Outline Diffusion: microscopic theory Diffusion:

More information

Chapter 16. Cellular Movement: Motility and Contractility. Lectures by Kathleen Fitzpatrick Simon Fraser University Pearson Education, Inc.

Chapter 16. Cellular Movement: Motility and Contractility. Lectures by Kathleen Fitzpatrick Simon Fraser University Pearson Education, Inc. Chapter 16 Cellular Movement: Motility and Contractility Lectures by Kathleen Fitzpatrick Simon Fraser University Two eukaryotic motility systems 1. Interactions between motor proteins and microtubules

More information

Biological motors 18.S995 - L10

Biological motors 18.S995 - L10 Biological motors 18.S995 - L1 Reynolds numbers Re = UL µ = UL m the organism is mo E.coli (non-tumbling HCB 437) Drescher, Dunkel, Ganguly, Cisneros, Goldstein (211) PNAS Bacterial motors movie: V. Kantsler

More information

Path integrals for classical Markov processes

Path integrals for classical Markov processes Path integrals for classical Markov processes Hugo Touchette National Institute for Theoretical Physics (NITheP) Stellenbosch, South Africa Chris Engelbrecht Summer School on Non-Linear Phenomena in Field

More information

Transport of single molecules along the periodic parallel lattices with coupling

Transport of single molecules along the periodic parallel lattices with coupling THE JOURNAL OF CHEMICAL PHYSICS 124 204901 2006 Transport of single molecules along the periodic parallel lattices with coupling Evgeny B. Stukalin The James Franck Institute The University of Chicago

More information

A mechanistic model for seed dispersal

A mechanistic model for seed dispersal A mechanistic model for seed dispersal Tom Robbins Department of Mathematics University of Utah and Centre for Mathematical Biology, Department of Mathematics University of Alberta A mechanistic model

More information

Lecture 1: Introduction. Keywords: Mathematics as a language, Need of learning mathematics, Applications of mathematics in BIology

Lecture 1: Introduction. Keywords: Mathematics as a language, Need of learning mathematics, Applications of mathematics in BIology NPTEL Syllabus Biomathematics - Video course COURSE OUTLINE Graphs and functions, Derivative of a function, Techniques of differentiation Differentiation and its application in Biology, Finding maxima,

More information

Acto-myosin: from muscles to single molecules. Justin Molloy MRC National Institute for Medical Research LONDON

Acto-myosin: from muscles to single molecules. Justin Molloy MRC National Institute for Medical Research LONDON Acto-myosin: from muscles to single molecules. Justin Molloy MRC National Institute for Medical Research LONDON Energy in Biological systems: 1 Photon = 400 pn.nm 1 ATP = 100 pn.nm 1 Ion moving across

More information

Linear Motors. Nanostrukturphysik II, Manuel Bastuck

Linear Motors. Nanostrukturphysik II, Manuel Bastuck Molecular l Motors I: Linear Motors Nanostrukturphysik II, Manuel Bastuck Why can he run so fast? Usain Bolt 100 m / 9,58 s Usain Bolt: http://www.wallpaperdev.com/stock/fantesty-usain-bolt.jpg muscle:

More information

Introduction to nonequilibrium physics

Introduction to nonequilibrium physics Introduction to nonequilibrium physics Jae Dong Noh December 18, 2016 Preface This is a note for the lecture given in the 2016 KIAS-SNU Physics Winter Camp which is held at KIAS in December 17 23, 2016.

More information

Dynamics of an inchworm nano walker

Dynamics of an inchworm nano walker Dynamics of an inchworm nano walker A. Ciudad a, J.M. Sancho a A.M. Lacasta b a Departament d Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, Diagonal 647, E-08028

More information

Biology in Time and Space: A Partial Differential Equation Approach. James P. Keener University of Utah

Biology in Time and Space: A Partial Differential Equation Approach. James P. Keener University of Utah Biology in Time and Space: A Partial Differential Equation Approach James P. Keener University of Utah 26 December, 2015 2 Contents I The Text 9 1 Introduction 11 2 Conservation 13 2.1 The Conservation

More information

Nanomotors: Nanoscale machines

Nanomotors: Nanoscale machines Nanomotors: Nanoscale machines October 31, 2016 1 Introduction to nanomotors In this part of the course we will study nanomotors. First we will define what we mean by nanomotor. A motor (of any size) is

More information

Langevin Methods. Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 10 D Mainz Germany

Langevin Methods. Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 10 D Mainz Germany Langevin Methods Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 1 D 55128 Mainz Germany Motivation Original idea: Fast and slow degrees of freedom Example: Brownian motion Replace

More information

Polymerization and force generation

Polymerization and force generation Polymerization and force generation by Eric Cytrynbaum April 8, 2008 Equilibrium polymer in a box An equilibrium polymer is a polymer has no source of extraneous energy available to it. This does not mean

More information

5 Applying the Fokker-Planck equation

5 Applying the Fokker-Planck equation 5 Applying the Fokker-Planck equation We begin with one-dimensional examples, keeping g = constant. Recall: the FPE for the Langevin equation with η(t 1 )η(t ) = κδ(t 1 t ) is = f(x) + g(x)η(t) t = x [f(x)p

More information

Nuclear import of DNA: genetic modification of plants

Nuclear import of DNA: genetic modification of plants Nuclear import of DNA: genetic modification of plants gene delivery by Agrobacterium tumefaciens T. Tzfira & V. Citovsky. 2001. Trends in Cell Biol. 12: 121-129 VirE2 binds ssdna in vitro forms helical

More information

BME Engineering Molecular Cell Biology. Review: Basics of the Diffusion Theory. The Cytoskeleton (I)

BME Engineering Molecular Cell Biology. Review: Basics of the Diffusion Theory. The Cytoskeleton (I) BME 42-620 Engineering Molecular Cell Biology Lecture 08: Review: Basics of the Diffusion Theory The Cytoskeleton (I) BME42-620 Lecture 08, September 22, 2011 1 Outline Background: FRAP & SPT Review: microscopic

More information

Local vs. Nonlocal Diffusions A Tale of Two Laplacians

Local vs. Nonlocal Diffusions A Tale of Two Laplacians Local vs. Nonlocal Diffusions A Tale of Two Laplacians Jinqiao Duan Dept of Applied Mathematics Illinois Institute of Technology Chicago duan@iit.edu Outline 1 Einstein & Wiener: The Local diffusion 2

More information

Smoluchowski Diffusion Equation

Smoluchowski Diffusion Equation Chapter 4 Smoluchowski Diffusion Equation Contents 4. Derivation of the Smoluchoswki Diffusion Equation for Potential Fields 64 4.2 One-DimensionalDiffusoninaLinearPotential... 67 4.2. Diffusion in an

More information

Asymptotic Analysis of Cooperative Molecular Motor System

Asymptotic Analysis of Cooperative Molecular Motor System Asymptotic Analysis of Cooperative Molecular Motor System Peter Kramer 1,2 Avanti Athreya 1,3, Scott McKinley 1,4, John Fricks 1,5 1 Statistical and Applied Mathematical Sciences Institute 2 Rensselaer

More information

Biophysik der Moleküle!

Biophysik der Moleküle! Biophysik der Moleküle!!"#$%&'()*+,-$./0()'$12$34!4! Molecular Motors:! - linear motors" 6. Dec. 2010! Muscle Motors and Cargo Transporting Motors! There are striking structural similarities but functional

More information

SMASIS A STOCHASTIC MECHANO-CHEMICAL MODEL FOR COOPERATIVE MOTOR PROTEIN DYNAMICS

SMASIS A STOCHASTIC MECHANO-CHEMICAL MODEL FOR COOPERATIVE MOTOR PROTEIN DYNAMICS Proceedings of SMASIS 8 8 ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems October 8-3, 8, Ellicott City, Maryland, USA SMASIS8-585 A STOCHASTIC MECHANO-CHEMICAL MODEL FOR

More information

Phys101 Second Major-152 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 2016 Page: 1

Phys101 Second Major-152 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 2016 Page: 1 Phys101 Second Major-15 Zero Version Coordinator: Dr. W. Basheer Monday, March 07, 016 Page: 1 Q1. Figure 1 shows two masses; m 1 = 4.0 and m = 6.0 which are connected by a massless rope passing over a

More information

Statistical Mechanics of Active Matter

Statistical Mechanics of Active Matter Statistical Mechanics of Active Matter Umberto Marini Bettolo Marconi University of Camerino, Italy Naples, 24 May,2017 Umberto Marini Bettolo Marconi (2017) Statistical Mechanics of Active Matter 2017

More information

Regularity and synchrony in motor proteins

Regularity and synchrony in motor proteins Regularity and synchrony in motor proteins R. E. Lee DeVille and Eric Vanden-Eijnden Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 1 Corresponding author: R. E. Lee

More information

arxiv: v1 [q-bio.sc] 15 Sep 2014

arxiv: v1 [q-bio.sc] 15 Sep 2014 Collective cargo hauling by a bundle of parallel microtubules: bi-directional motion caused by load-dependent polymerization and depolymerization Dipanwita Ghanti 1 and Debashish Chowdhury 1 1 Department

More information

Polymerization/depolymerization motors

Polymerization/depolymerization motors Polymerization/depolymerization motors Movement formation Kuo Lab, J.H.U. http://www.nature.com/nature/journal/v407/n6807/extref/40 71026a0_S3.mov http://www.bme.jhu.edu/~skuo/movies/macrophchase.mov http://www.bme.jhu.edu/~skuo/movies/gc_filo.mov

More information

3 Biopolymers Uncorrelated chains - Freely jointed chain model

3 Biopolymers Uncorrelated chains - Freely jointed chain model 3.4 Entropy When we talk about biopolymers, it is important to realize that the free energy of a biopolymer in thermal equilibrium is not constant. Unlike solids, biopolymers are characterized through

More information

In-Class Problems 20-21: Work and Kinetic Energy Solutions

In-Class Problems 20-21: Work and Kinetic Energy Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 In-Class Problems 20-21: Work and Kinetic Energy Solutions In-Class-Problem 20 Calculating Work Integrals a) Work

More information

Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part. Andrea and Yinyun April 4 th,2012

Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part. Andrea and Yinyun April 4 th,2012 Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part Andrea and Yinyun April 4 th,2012 I. Equilibrium Force Reminder: http://www.youtube.com/watch?v=yt59kx_z6xm

More information

The Kramers problem and first passage times.

The Kramers problem and first passage times. Chapter 8 The Kramers problem and first passage times. The Kramers problem is to find the rate at which a Brownian particle escapes from a potential well over a potential barrier. One method of attack

More information

Ornstein-Uhlenbeck processes for geophysical data analysis

Ornstein-Uhlenbeck processes for geophysical data analysis Ornstein-Uhlenbeck processes for geophysical data analysis Semere Habtemicael Department of Mathematics North Dakota State University May 19, 2014 Outline 1 Introduction 2 Model 3 Characteristic function

More information

Neurite formation & neuronal polarization

Neurite formation & neuronal polarization Neurite formation & neuronal polarization Paul Letourneau letou001@umn.edu Chapter 16; The Cytoskeleton; Molecular Biology of the Cell, Alberts et al. 1 An immature neuron in cell culture first sprouts

More information

Chapter 6 - Random Processes

Chapter 6 - Random Processes EE385 Class Notes //04 John Stensby Chapter 6 - Random Processes Recall that a random variable X is a mapping between the sample space S and the extended real line R +. That is, X : S R +. A random process

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

Molecular Machines and Enzymes

Molecular Machines and Enzymes Molecular Machines and Enzymes Principles of functioning of molecular machines Enzymes and catalysis Molecular motors: kinesin 1 NB Queste diapositive sono state preparate per il corso di Biofisica tenuto

More information

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale Miguel Rubi References S.R. de Groot and P. Mazur, Non equilibrium Thermodynamics, Dover, New York, 1984 J.M. Vilar and

More information

Active Matter Lectures for the 2011 ICTP School on Mathematics and Physics of Soft and Biological Matter Lecture 3: Hydrodynamics of SP Hard Rods

Active Matter Lectures for the 2011 ICTP School on Mathematics and Physics of Soft and Biological Matter Lecture 3: Hydrodynamics of SP Hard Rods Active Matter Lectures for the 2011 ICTP School on Mathematics and Physics of Soft and Biological Matter Lecture 3: of SP Hard Rods M. Cristina Marchetti Syracuse University Baskaran & MCM, PRE 77 (2008);

More information

Fluctuations in Small Systems the case of single molecule experiments

Fluctuations in Small Systems the case of single molecule experiments Fluctuations in Small Systems the case of single molecule experiments Fabio Marchesoni, Università di Camerino, Italy Perugia, Aug. 2 nd, 2011 force distance k B T >> quantum scale I do not believe a word

More information

Modelling Muscle Contraction a multiscale approach

Modelling Muscle Contraction a multiscale approach Porto Ercole, M&MKT 2016 Multiscale Systems from Particles to Continuum: Modelling and Computation Modelling Muscle Contraction a multiscale approach Giovanni Naldi Dipartimento di Matematica ``F. Enriques

More information

Lecture 11: Non-linear Diffusion

Lecture 11: Non-linear Diffusion Lecture 11: Non-linear Diffusion Scribe: Lou Odette - American International Group (AIG) October 17, 006 1 Non-linear Drift In the continuum limit the PDF ρ(x, t) for the x at time t of a single random

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

Biophysics Biological soft matter

Biophysics Biological soft matter Biophysics Biological soft matter!"#$%&'(&)%*+,-.& /"#$%("%*+,-.0."122,13$(%4(5+& Biophysics lectures outline Biological soft matter 1. Biopolymers 2. Molecular motors 3. The cytoskeleton Biophysics 1.

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2005

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2005 Lecture /4/ University of Washington Department of Chemistry Chemistry 4 Winter Quarter A. Polymer Properties of DNA When a linear polymer like DNA becomes long enough it can no longer be treated as a

More information

Use separation of variables to solve the following differential equations with given initial conditions. y 1 1 y ). y(y 1) = 1

Use separation of variables to solve the following differential equations with given initial conditions. y 1 1 y ). y(y 1) = 1 Chapter 11 Differential Equations 11.1 Use separation of variables to solve the following differential equations with given initial conditions. (a) = 2ty, y(0) = 10 (b) = y(1 y), y(0) = 0.5, (Hint: 1 y(y

More information

Molecular Motors. Structural and Mechanistic Overview! Kimberly Nguyen - December 6, 2013! MOLECULAR MOTORS - KIMBERLY NGUYEN

Molecular Motors. Structural and Mechanistic Overview! Kimberly Nguyen - December 6, 2013! MOLECULAR MOTORS - KIMBERLY NGUYEN Molecular Motors Structural and Mechanistic Overview!! Kimberly Nguyen - December 6, 2013!! 1 Molecular Motors: A Structure and Mechanism Overview! Introduction! Molecular motors are fundamental agents

More information

Bifurcation of Velocity Distributions in Cooperative Transport of Filaments by Fast and Slow Motors

Bifurcation of Velocity Distributions in Cooperative Transport of Filaments by Fast and Slow Motors 666 Biophysical Journal Volume 104 February 2013 666 676 Bifurcation of Velocity Distributions in Cooperative Transport of Filaments by Fast and Slow Motors Xin Li, Reinhard Lipowsky, and Jan Kierfeld

More information

Simulating Track/Sprocket and Track/Wheel/Terrain Contact in Tracked Vehicles

Simulating Track/Sprocket and Track/Wheel/Terrain Contact in Tracked Vehicles Simulating Track/Sprocket and Track/Wheel/Terrain Contact in Tracked Vehicles Z.-D. Ma C. Scholar N. C. Perkins University of Michigan Objective Efficient simulation of vehicle response including track

More information

Project Number: ERT MQP 12Q2

Project Number: ERT MQP 12Q2 Project Number: ERT MQP 12Q2 ANALYSIS OF ACTIN FILAMENT BENDING IN GLIDING ASSAYS Major Qualifying Project Report completed in partial fulfillment of the Bachelor of Science degree at Worcester Polytechnic

More information

Models for Single Molecule Experiments

Models for Single Molecule Experiments Models for Single Molecule Experiments Binding Unbinding Folding - Unfolding -> Kramers Bell theory 1 Polymer elasticity: - Hooke s law (?) - FJC (Freely joined chain) - WLC (Worm-like chain) 3 Molecular

More information

Chapter 6: Work and Kinetic Energy

Chapter 6: Work and Kinetic Energy Chapter 6: Work and Kinetic Energy Suppose you want to find the final velocity of an object being acted on by a variable force. Newton s 2 nd law gives the differential equation (for 1D motion) dv dt =

More information

Motility States of Molecular Motors Engaged in a Stochastic Tug-of-War

Motility States of Molecular Motors Engaged in a Stochastic Tug-of-War J Stat Phys (2008) 133: 1059 1081 DOI 10.1007/s10955-008-9651-7 Motility States of Molecular Motors Engaged in a Stochastic Tug-of-War Melanie J.I. Müller Stefan Klumpp Reinhard Lipowsky Received: 30 July

More information

MOLECULAR MOTORS. The miracle of motion. Primož Dolenc Adviser: Dr. Andrej Vilfan

MOLECULAR MOTORS. The miracle of motion. Primož Dolenc Adviser: Dr. Andrej Vilfan MOLECULAR MOTORS The miracle of motion Primož Dolenc Adviser: Dr. Andrej Vilfan University of Ljubljana Faculty of Mathematics and Physics February 006 Abstract Biological motion from the contraction of

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS 2757 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS TRINITY TERM 2011 Monday, 27 June, 9.30 am 12.30 pm Answer

More information

Effects of Nonequilibrium Processes on Actin Polymerization and Force Generation

Effects of Nonequilibrium Processes on Actin Polymerization and Force Generation Effects of Nonequilibrium Processes on Actin Polymerization and Force Generation Anders Carlsson Washington University in St Louis Biological cells constantly utilize the influx of energy mediated by ATP

More information

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm Anomalous Lévy diffusion: From the flight of an albatross to optical lattices Eric Lutz Abteilung für Quantenphysik, Universität Ulm Outline 1 Lévy distributions Broad distributions Central limit theorem

More information

Analysis of Active Transport by Fluorescence Recovery after Photobleaching. MV Ciocanel, JA Kreiling, JA Gagnon, KL Mowry, B Sandstede

Analysis of Active Transport by Fluorescence Recovery after Photobleaching. MV Ciocanel, JA Kreiling, JA Gagnon, KL Mowry, B Sandstede Analysis of Active Transport by Fluorescence Recovery after Photobleaching MV Ciocanel, JA Kreiling, JA Gagnon, KL Mowry, B Sandstede Analysis of Active Transport by Fluorescence Recovery after Photobleaching

More information

Diffusion in the cell

Diffusion in the cell Diffusion in the cell Single particle (random walk) Microscopic view Macroscopic view Measuring diffusion Diffusion occurs via Brownian motion (passive) Ex.: D = 100 μm 2 /s for typical protein in water

More information

Tecniche sperimentali: le optical tweezers

Tecniche sperimentali: le optical tweezers Tecniche sperimentali: le optical tweezers Le tecniche di molecola singola rispetto a quelle di insieme ensemble z z z z z z frequency activity activity time z z z Single molecule frequency activity activity

More information

t For l = 1 a monomer cannot be destroyed or created from nothing: = b p(2,t) a p(1,t).

t For l = 1 a monomer cannot be destroyed or created from nothing: = b p(2,t) a p(1,t). IITS: Statistical Physics in Biology Assignment # 5 KU Leuven 5/31/2013 Drift, Diffusion, and Dynamic Instability 1. Treadmilling Actin: Actin filaments are long, asymmetric, polymers involved in a variety

More information

PHYSICAL REVIEW E 80,

PHYSICAL REVIEW E 80, PHYSICAL REVIEW E 8, 464 9 Binding site models of friction due to the formation and rupture of bonds: State-function formalism, force-velocity relations, response to slip velocity transients, and slip

More information

Introduction to multiscale modeling and simulation. Explicit methods for ODEs : forward Euler. y n+1 = y n + tf(y n ) dy dt = f(y), y(0) = y 0

Introduction to multiscale modeling and simulation. Explicit methods for ODEs : forward Euler. y n+1 = y n + tf(y n ) dy dt = f(y), y(0) = y 0 Introduction to multiscale modeling and simulation Lecture 5 Numerical methods for ODEs, SDEs and PDEs The need for multiscale methods Two generic frameworks for multiscale computation Explicit methods

More information

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis uke University epartment of Civil and Environmental Engineering CEE 42L. Matrix Structural Analysis Henri P. Gavin Fall, 22 Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods

More information

Harnack Inequalities and Applications for Stochastic Equations

Harnack Inequalities and Applications for Stochastic Equations p. 1/32 Harnack Inequalities and Applications for Stochastic Equations PhD Thesis Defense Shun-Xiang Ouyang Under the Supervision of Prof. Michael Röckner & Prof. Feng-Yu Wang March 6, 29 p. 2/32 Outline

More information

Chapter 4 Bidirectional membrane tubes driven by nonprocessive motors

Chapter 4 Bidirectional membrane tubes driven by nonprocessive motors Chapter 4 Bidirectional membrane tubes driven by nonprocessive motors In cells, membrane tubes are extracted by molecular motors. Although individual motors cannot provide enough force to pull a tube,

More information

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p Doob s inequality Let X(t) be a right continuous submartingale with respect to F(t), t 1 P(sup s t X(s) λ) 1 λ {sup s t X(s) λ} X + (t)dp 2 For 1 < p

More information

Neurite formation & neuronal polarization. The cytoskeletal components of neurons have characteristic distributions and associations

Neurite formation & neuronal polarization. The cytoskeletal components of neurons have characteristic distributions and associations Mechanisms of neuronal migration & Neurite formation & neuronal polarization Paul Letourneau letou001@umn.edu Chapter 16; The Cytoskeleton; Molecular Biology of the Cell, Alberts et al. 1 The cytoskeletal

More information

Chapter 6 Work and Kinetic Energy

Chapter 6 Work and Kinetic Energy Chapter 6 Work and Kinetic Energy Up until now, we have assumed that the force is constant and thus, the acceleration is constant. Is there a simple technique for dealing with non-constant forces? Fortunately,

More information

in Bounded Domains Ariane Trescases CMLA, ENS Cachan

in Bounded Domains Ariane Trescases CMLA, ENS Cachan CMLA, ENS Cachan Joint work with Yan GUO, Chanwoo KIM and Daniela TONON International Conference on Nonlinear Analysis: Boundary Phenomena for Evolutionnary PDE Academia Sinica December 21, 214 Outline

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

LECTURE 12 FRICTION, STRINGS & SPRINGS. Instructor: Kazumi Tolich

LECTURE 12 FRICTION, STRINGS & SPRINGS. Instructor: Kazumi Tolich LECTURE 12 FRICTION, STRINGS & SPRINGS Instructor: Kazumi Tolich Lecture 12 2! Reading chapter 6-1 to 6-4! Friction " Static friction " Kinetic friction! Strings! Pulleys! Springs Origin of friction 3!!

More information

A Model for Integrin Binding in Cells

A Model for Integrin Binding in Cells A Model for Integrin Binding in Cells By: Kara Huyett Advisor: Doctor Stolarska 31 st of August, 2015 Cell movement, and cell crawling in particular, has implications in various biological phenomena. For

More information

Are Solitary Waves Color Blind to Noise?

Are Solitary Waves Color Blind to Noise? Are Solitary Waves Color Blind to Noise? Dr. Russell Herman Department of Mathematics & Statistics, UNCW March 29, 2008 Outline of Talk 1 Solitary Waves and Solitons 2 White Noise and Colored Noise? 3

More information

Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine

Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine Lecture 2 The wave equation Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine V1.0 28/09/2018 1 Learning objectives of this lecture Understand the fundamental properties of the wave equation

More information

Fitting Force-dependent Kinetic Models to Single-Molecule Dwell Time Records

Fitting Force-dependent Kinetic Models to Single-Molecule Dwell Time Records Fitting Force-dependent Kinetic Models to Single-Molecule Dwell Time Records Abstract Micromanipulation techniques such as optical tweezers atomic force microscopy allow us to identify characterize force-dependent

More information

PROTEIN FLEXIBILITY AND THE CORRELATION RATCHET

PROTEIN FLEXIBILITY AND THE CORRELATION RATCHET SIAM J. APPL. MATH. Vol. 61, No. 3, pp. 776 791 c 2 Society for Industrial and Applied Mathematics PROTEIN FLEXIBILITY AND THE CORRELATION RATCHET TIMOTHY C. ELSTON, DWIGHT YOU, AND CHARLES S. PESKIN Abstract.

More information

Lecture 7: Simple genetic circuits I

Lecture 7: Simple genetic circuits I Lecture 7: Simple genetic circuits I Paul C Bressloff (Fall 2018) 7.1 Transcription and translation In Fig. 20 we show the two main stages in the expression of a single gene according to the central dogma.

More information

Physics of Cellular materials: Filaments

Physics of Cellular materials: Filaments Physics of Cellular materials: Filaments Tom Chou Dept. of Biomathematics, UCLA, Los Angeles, CA 995-766 (Dated: December 6, ) The basic filamentary structures in a cell are reviewed. Their basic structures

More information

(TRAVELLING) 1D WAVES. 1. Transversal & Longitudinal Waves

(TRAVELLING) 1D WAVES. 1. Transversal & Longitudinal Waves (TRAVELLING) 1D WAVES 1. Transversal & Longitudinal Waves Objectives After studying this chapter you should be able to: Derive 1D wave equation for transversal and longitudinal Relate propagation speed

More information

Bell Ringer: What is Newton s 3 rd Law? Which force acts downward? Which force acts upward when two bodies are in contact?

Bell Ringer: What is Newton s 3 rd Law? Which force acts downward? Which force acts upward when two bodies are in contact? Bell Ringer: What is Newton s 3 rd Law? Which force acts downward? Which force acts upward when two bodies are in contact? Does the moon attract the Earth with the same force that the Earth attracts the

More information

Centralized Versus Decentralized Control - A Solvable Stylized Model in Transportation

Centralized Versus Decentralized Control - A Solvable Stylized Model in Transportation Centralized Versus Decentralized Control - A Solvable Stylized Model in Transportation M.-O. Hongler, O. Gallay, R. Colmorn, P. Cordes and M. Hülsmann Ecole Polytechnique Fédérale de Lausanne (EPFL), (CH)

More information

3.2.2 All cells arise from other cells

3.2.2 All cells arise from other cells alevelbiology.co.uk SPECIFICATION Within multicellular organisms, not all cells retain the ability to divide. Eukaryotic cells that do retain the ability to divide show a cell cycle. DNA replication occurs

More information

Towards Multi-field Inflation with a Random Potential

Towards Multi-field Inflation with a Random Potential Towards Multi-field Inflation with a Random Potential Jiajun Xu LEPP, Cornell Univeristy Based on H. Tye, JX, Y. Zhang, arxiv:0812.1944 and work in progress 1 Outline Motivation from string theory A scenario

More information

NIH Public Access Author Manuscript J Phys Condens Matter. Author manuscript; available in PMC 2014 November 20.

NIH Public Access Author Manuscript J Phys Condens Matter. Author manuscript; available in PMC 2014 November 20. NIH Public Access Author Manuscript Published in final edited form as: J Phys Condens Matter. 2013 November 20; 25(46):. doi:10.1088/0953-8984/25/46/463101. Motor Proteins and Molecular Motors: How to

More information

Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6.2, 6.3

Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6.2, 6.3 M9 Shafts: Torsion of Circular Shafts Reading: Crandall, Dahl and Lardner 6., 6.3 A shaft is a structural member which is long and slender and subject to a torque (moment) acting about its long axis. We

More information

Hypothesis testing for Stochastic PDEs. Igor Cialenco

Hypothesis testing for Stochastic PDEs. Igor Cialenco Hypothesis testing for Stochastic PDEs Igor Cialenco Department of Applied Mathematics Illinois Institute of Technology igor@math.iit.edu Joint work with Liaosha Xu Research partially funded by NSF grants

More information

Centralized Versus Decentralized Control - A Solvable Stylized Model in Transportation Logistics

Centralized Versus Decentralized Control - A Solvable Stylized Model in Transportation Logistics Centralized Versus Decentralized Control - A Solvable Stylized Model in Transportation Logistics O. Gallay, M.-O. Hongler, R. Colmorn, P. Cordes and M. Hülsmann Ecole Polytechnique Fédérale de Lausanne

More information

08. Brownian Motion. University of Rhode Island. Gerhard Müller University of Rhode Island,

08. Brownian Motion. University of Rhode Island. Gerhard Müller University of Rhode Island, University of Rhode Island DigitalCommons@URI Nonequilibrium Statistical Physics Physics Course Materials 1-19-215 8. Brownian Motion Gerhard Müller University of Rhode Island, gmuller@uri.edu Follow this

More information

Lecture 1: Pragmatic Introduction to Stochastic Differential Equations

Lecture 1: Pragmatic Introduction to Stochastic Differential Equations Lecture 1: Pragmatic Introduction to Stochastic Differential Equations Simo Särkkä Aalto University, Finland (visiting at Oxford University, UK) November 13, 2013 Simo Särkkä (Aalto) Lecture 1: Pragmatic

More information

Sophie Dumont BP204 March

Sophie Dumont BP204 March Sophie Dumont BP204 March 9 2015 1 Molecules Mechanics What can we learn? Tools? Framework? Challenges? Looking ahead? structure, chemistry Cells 2 What biological activities are associated with force?

More information