Status of the Knudsen Compressor for Use in Distributed and Autonomous Sampling Systems

Size: px
Start display at page:

Download "Status of the Knudsen Compressor for Use in Distributed and Autonomous Sampling Systems"

Transcription

1 Status of the Knudsen Compressor for Use in Distributed and Autonomous Sampling Systems M. Young, Y.- L. Han, E. P. Muntz, G. Shiflett University of Southern California A. Green, S. Jones, Jet Propulsion Laboratory 4 th Harsh-Environment Mass Spectrometry Workshop St. Petersburg Beach, FL Oct. 7-10, 2003

2 Overview Requirement for Micro-scale Gas Roughing Pumps Introduction to Thermal Transpiration The Knudsen Compressor Knudsen Compressor Performance Models Radiantly Driven Knudsen Compressors Knudsen Compressor Cascade Experiments Perforated Aerogel Transpiration Membrane Experiments Optimization Results Sample Compressor Sizing Summary

3 Micro/Meso-Scale Gas Roughing Pumps Micro/meso-scale gas sensors are being developed that require gas pumping. Both roughing pumps and high vacuum pumps are required. Two possible development strategies: shrink down existing technology or develop new technology. Problems with shrinking down existing technology: Moving parts, required manufacturing tolerances, oil. Worth considering new pump technology for micro/meso-scales. A pump based on thermal transpiration is one promising technology for micro/meso-scale gas roughing pumps: No moving parts, no oil or supplementary fluids, scalable, similar technology applicable to high-pressure gas compressors, variety of powering options including: radiative, solar, resistive, waste heat, combustion.

4 Thermal Transpiration (Thermal Effusion and Creep) Rarefied gas phenomena (free-molecular or transitional flow driven by surface temperature gradient) Thermal Effusion Through Orifice T 1 <T 2 Thermal Creep along surfaces P 1,T 1 P 2,T 2 p 1 = p 2 T T 1 2 Longitudinal Wall temperature gradient drives creep flow, counterbalanced by pressure driven return flow (Poiseuille flow) One of the driving mechanisms in Crooke s radiometer Net effect is; for P 2 = P 1 a Maximum flow from cold to hot, for P2 > P1 Reduced Flow Reaching Zero for Maximum P 2 /P 1

5 Using Thermal Transpiration Flow in a Knudsen Compressor is the difference bet ween thermal creep and pressure driven return flows P TMPD = T P T TMPD FM = ½ TMPD Cont = 0 Rarefied flow in the capillary section (i-1)th Stage Capillary radius Lr,i T Tavg TL,i Lx,i Capillary Section Continuum flow in the connector section ith Stage LX,i x Connector Section (i+1)th Stage Ti/2 Ti/2 LR,i P (pi-1)eff pi κi pmax,i pc,i (pi)eff

6 Knudsen Compressor Membrane (Aerogel) Models Aerogel Gas Flow and Thermal Transpiration Model Aerogel Thermal Model ρ ρ a t Important Parameters π = 6 A pores 3 L L Π = 1 r r d d a a = Π ρ ρ por S s (m 2 /g) t A 3

7 Qp C LT Knudsen Compressor Flow Model Flow properties are dominated by transpiration membrane properties Gas Conductance k T C = V & P avg P C ST 1 = C 1 b avg 2L r = A Qp = + ( 2 Kn C ) r a Cma Ci Cma m Lx Qp,Sone Qp,cf Qt,Sone Qt,cf + 1.E-02 1.E+00 1.E+02 1.E+04 1.E+06 Kn Qt C i = A k b C T m (Including short tube effects) ma avg = p A LT + 2γ γ 1 1 C a 1 ( γ ) X γ 1 γ p X p p k b T avg 2πm 1/ 2

8 Knudsen Compressor Membrane Thermal Model Radiantly heated transpiration membrane. Optical energy is absorbed throughout the body. I x = I o e ( k +σ ) ρx λx v v = I o e I L 1 T + k λl o λx λl ( x) = x L + { e e } Tc x = 0 x = L Energy is lost through conduction through the material, radiation outward and free convection outward. = k ( T T ) amb n φ fc C fc Ra ( ) h ambient 4 4 φ = εσ T T L Thermal energy conducted through the porous material is the sum of the radiation, solid conduction, and gas conduction. k = k + k + t s g k r, si rad k s = c si ρ αa por h k g c I x φ fc φ rad k g, c = 1 + 4βKn r 16σT k r = 3λ k t 3 rad

9 Knudsen Compressor Membrane Transpiration Model Calculate Pressure Difference and Throughput for Membrane T QT p = pavg κ m T Q T M = ( κ ) Tavg Q & Ctm Pavg 1 P ktavg Tavg QP 1E+17 Ndot (#/s) 9E+16 8E+16 7E+16 6E+16 5E+16 4E+16 3E+16 2E+16 1E+16 κ = 0 N dot,max = 7.80E16 #/s P max = Torr κ = P (Torr) Same Analysis Works for the Connector Section, but is Neglected in the Current Work

10 Single Stage Knudsen Compressor (MEMS) Radiant Heating Used to Simplify Manufacturing Transpiration Membranes Aligned to Simplify Heating Pyrex Cover Silicon Thermal Guard Aerogel (in red) (8mm x 10mm x 1mm) Pyrex Bonding Window Kovar Inlet/Outlet Parts Anodically Bonded Design Optimizations Can Be Tested With Conventionally Machined Version

11 Conventionally Machined Knudsen Compressors Much Cheaper to Fabricate Than MEMS Version Very Similar Geometry O-Ring Seals Allow Multiple Transpiration Membranes to be Tested in Same Device Single Stage Cascade of 5 Single Stages 15 Stage Cascade

12 P Sensor Experimental Cascade Setup Separating Valve P c Sensor Knudsen Compressor Cascade Pump filled with pure gas Light Source turned on Separating valve closed Pressure rise vs. time measured

13 Experimental Process and Analysis P (Torr) Pc (Torr) Ph (Torr) DP (Torr) P (Torr) time (s) Ndot (#/s) 1E+17 9E+16 8E+16 7E+16 6E+16 5E+16 4E+16 3E+16 2E+16 1E+16 0 Pump Down y = -1.53E+16x E+16 y = -1.50E+16x E+16 Run 1 Run 2 Linear (Run 1) Linear (Run 2) P max,1 = 5.86 P max,2 = 5.75 N dot_max,1 = 8.97E16 N dot_max,2 = 8.63E P (Torr) Ndot/n (m 3 /s) 4.0E E E E E E E E E+00 Vent Up y = 4.63E-07x E-10 y = 4.67E-07x E-10 C = 4.65E-7 m 3 /s Run 1 Run 2 Linear (Run 1) Linear (Run 2) P/P avg

14 Experimental Results Single Stage T h (Torr) Membrane Temperature P (Torr) He produces a smaller P due to a smaller T from increased k g and φ fc φ= 45 mw/cm 2 P (Torr) N Th (C) Th,an (C) DP-He (Torr) DP-N2 (Torr) DP-N2,covered (Torr) Consistent underprediction of T h due to overprediction of φ r 1 Stage Steady-State P φ = 45 mw/cm P h (Torr)

15 P (Torr) Experimental Results 5 Stage Cascade 5 Stage Steady-State P φ = 15 mw/cm P c (Torr) 1.4E+17 Difference in throughput also depends on gas conduction He has the highest throughput, but lowest P Ndot,max 1.2E E E E E E E+00 He N2 Ar Difference in P due primarily to differences in cooling and T 5 Stage Maximum Throughput φ = 15 mw/cm P c (Torr) He N2 Ar

16 Experimental Results Summary 1,2,5 Stages P (Torr) DPmax,1 DPmax,2 DPmax,5 Ndot,max,1 (#/s) Ndot,max,2 (#/s) Ndot,max,5 (#/s) P c (Torr) 1.E+17 9.E+16 8.E+16 7.E+16 6.E+16 5.E+16 4.E+16 3.E+16 2.E+16 1.E+16 0.E+00 For these conditions throughput is relatively constant for various numbers of stages (dependence is due to manufacturing differences between the different stages) For these conditions the pressure difference scales with the number of stages N dot (#/s)

17 Experimental Results 15 Stage Cascade Ndot (#/s) 6E+16 5E+16 4E+16 3E+16 2E+16 Steady Heating Transient Heating Linear (Steady Heating) Linear (Transient Heating) φ = 15mw/cm 2 1E P (Torr) Approximately the same throughput as for 1,2,5 stages P of 8 Torr per stage same as for 1,2,5 stages

18 Perforated Aerogel Low Pressures Optimal operation requires Kn ~ 1 Array (9x11) of 380 µm holes drilled through aerogel transpiration membrane. Silica Aerogel Transpiration Membrane (80mg/cc, 8% carbon) Torr Seal Epoxy Aluminum Thermal Guard P max Still Underpredicted by ~ 15-20%. Proof of Concept Shown. P (mtorr) φ = 121 mw/cm 2 L r = 380µm Testing Conventionally Drilled Holes to L r = 250µm. Testing Laser Drilled Holes for L r = 250 µm to 25 µm. Experimental Analytical Poly. (Analytical) Poly. (Experimental) P (Torr)

19 ℵ = Future Optimization Cascade Operation Minimize energy consumption per unit throughput and pressure ratio Q& P N& P avg 1.E+06 φl = T T 1 2L Q 8km Pavg 1 ( ) κ κ ℵ x p 2 2 r Qt avg 2 nd Bracketed Term (Normalized) 1.E+05 1.E+04 1.E+03 1.E+02 1.E+01 1.E mtorr 100 mtorr 1 Torr 1.E-01 1.E-03 1.E-01 1.E+01 1.E+03 1.E+05 1.E+07 Kn Conclusion: Operate with Kn ~ 1 to minimize energy consumption

20 1 st Bracketed Term Optimization Cascade Operation II f = 50mw /cm2 f = 100mw /cm2 f = 200mw /cm2 f = 500mw /cm2 f = 1000mw /cm L (mm) φl = T T 1 2L Q 8km Pavg Conclusion: Operate at L x ~ 0.5mm, φ = 1000 mw/cm 2 1 ( ) κ κ ℵ x p 2 2 r Qt avg Conclusion: Operate with k = 1/2 to minimize energy consumption 1/(κ-κ 2 ) κ

21 System Sizing Matched to Creare s Turbopump Design Meso-Scale Gas Pumping System Operating on Air from 1E-5 Torr to 1 atm. High Vacuum Size Power Flow Rate Backing Pressure Lifetime φ = 5cm 1 W 5 1E-5 Torr 200 mtorr 1 Year Continuous Operation Roughing Pump Based on Radiantly Driven Knudsen Compressor Design Based on Optimization Analysis Calculation Made Using Experimentally Validated Knudsen Compressor Performance Model P = 200mTorr to 1 atm. N & = 1.7E15 mol/sec (5 1E-5 Torr) φ = 1000mw/cm 2, L x = 0.5mm, ρ = 80mg/cc, 8% carbon doped Cascade Characteristics STAGES = 258 POWER = 300 mw VOLUME = few cm 3 Stated power does not include conversion and distribution inefficiencies.

22 Experimentally Demonstrated: Cascades of up to 15 stages. Current Status Cascades operating on N 2, He, Ar, Air from P = 250 mtorr to 1 atm. Radiant Driving at φ = 15mw/cm 2 to 125 mw/cm 2 (including direct solar illumination). Knudsen Compressor Performance Code Validated Over Experimental Conditions. Required MEMS meso-scale manufacturing processes shown.

23 Required Future Work Proof of Concept Demonstration Continue demonstration of perforated aerogel transpiration membranes. Demonstrate high flux (1000 mw/cm 2 ) operation. Manufacturing Processes Stage miniaturization (1cm 2 < 1mm 2 ) Aerogel bonding process Aerogel sealing process Packaging and feedthroughs Make practical comparisons of different candidate heating techniques

24 Summary Micro/meso-scale Gas Roughing Pumps Based on Thermal Transpiration Can Efficiently Operate to a Pressure of 10 mtorr. Knudsen Compressor Performance Model Has Been Built and Experimentally Validated and Used in Optimizing Knudsen Compressor Designs. Cascades of Up to 15 Conventionally Machined Stages Have Been Designed, Built, and Tested. Experimental Results for the Gas Throughput, Pressure Difference, and Temperature Difference Agree with Model Results to Within 15%. Optimized Knudsen Compressor Designs for a Gas Roughing Pump Appear Viable. Initial Experimental Results with Etched Aerogel Transpiration Membrane Agree with Expectations.

THE KNUDSEN COMPRESSOR AS AN ENERGY EFFICIENT MICRO-SCALE VACUUM PUMP

THE KNUDSEN COMPRESSOR AS AN ENERGY EFFICIENT MICRO-SCALE VACUUM PUMP THE KNUDSEN COMPRESSOR AS AN ENERGY EFFICIENT MICRO-SCALE VACUUM PUMP M. Young, E.P. Muntz,, and G. Shiflett University of Southern California Los Angeles, CA 90089-1191 Amanda Green Jet Propulsion Laboratory

More information

Characterization and Optimization of a Radiantly Driven Multi-Stage Knudsen Compressor

Characterization and Optimization of a Radiantly Driven Multi-Stage Knudsen Compressor Characterization and Optimization of a Radiantly Driven Multi-Stage Knudsen Compressor M. Young, Y.L. Han, E.P. Muntz, G. Shiflett University of Southern California, Dept. of Aerospace and Mechanical Engineering,

More information

Gas Microfluidics using MEMS Micro-pumps. By Ryan Silva (University of California Davis) Dr. Shamus McNamara (University of Louisville)

Gas Microfluidics using MEMS Micro-pumps. By Ryan Silva (University of California Davis) Dr. Shamus McNamara (University of Louisville) Gas Microfluidics using MEMS Micro-pumps By Ryan Silva (University of California Davis) Dr. Shamus McNamara (University of Louisville) What is Gas Microfluidics and Thermal Transpiration? Gas Microfluidics:

More information

Experimental Analysis of Wire Sandwiched Micro Heat Pipes

Experimental Analysis of Wire Sandwiched Micro Heat Pipes Experimental Analysis of Wire Sandwiched Micro Heat Pipes Rag, R. L. Department of Mechanical Engineering, John Cox Memorial CSI Institute of Technology, Thiruvananthapuram 695 011, India Abstract Micro

More information

1 One-Dimensional, Steady-State Conduction

1 One-Dimensional, Steady-State Conduction 1 One-Dimensional, Steady-State Conduction 1.1 Conduction Heat Transfer 1.1.1 Introduction Thermodynamics defines heat as a transfer of energy across the boundary of a system as a result of a temperature

More information

Lecture 18: Microfluidic MEMS, Applications

Lecture 18: Microfluidic MEMS, Applications MECH 466 Microelectromechanical Systems University of Victoria Dept. of Mechanical Engineering Lecture 18: Microfluidic MEMS, Applications 1 Overview Microfluidic Electrokinetic Flow Basic Microfluidic

More information

Thermal Coatings for In-vacuum Radiation Cooling LIGO-T C R. Abbott, S. Waldman, Caltech 12 March, 2007

Thermal Coatings for In-vacuum Radiation Cooling LIGO-T C R. Abbott, S. Waldman, Caltech 12 March, 2007 Thermal Coatings for In-vacuum Radiation Cooling LIGO-T070054-00-C R. Abbott, S. Waldman, Caltech 12 March, 2007 1. Overview and Background 1.1. There are instances in LIGO where the use of electronics

More information

Lecture 4. Ultrahigh Vacuum Science and Technology

Lecture 4. Ultrahigh Vacuum Science and Technology Lecture 4 Ultrahigh Vacuum Science and Technology Why do we need UHV? 1 Atmosphere = 760 torr; 1 torr = 133 Pa; N ~ 2.5 10 19 molecules/cm 3 Hertz-Knudsen equation p ZW 1/ 2 ( 2mk T) At p = 10-6 Torr it

More information

Integrated measuring system for MEMS

Integrated measuring system for MEMS Integrated measuring system for MEMS Thermal characterization of gas flows under slip-flow regime Alice Vittoriosi May 16, 2011 I NSTITUTE FOR M ICRO P ROCESS E NGINEERING - T HERMAL P ROCESS E NGINEERING

More information

Heriot-Watt University

Heriot-Watt University Heriot-Watt University Distinctly Global www.hw.ac.uk Thermodynamics By Peter Cumber Prerequisites Interest in thermodynamics Some ability in calculus (multiple integrals) Good understanding of conduction

More information

Diffusion and Adsorption in porous media. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Diffusion and Adsorption in porous media. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Diffusion and Adsorption in porous media Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Introduction Devices used to Measure Diffusion in Porous Solids Modes of transport in

More information

Vacuum Pumps. Two general classes exist: Gas transfer physical removal of matter. Mechanical, diffusion, turbomolecular

Vacuum Pumps. Two general classes exist: Gas transfer physical removal of matter. Mechanical, diffusion, turbomolecular Vacuum Technology Vacuum Pumps Two general classes exist: Gas transfer physical removal of matter Mechanical, diffusion, turbomolecular Adsorption entrapment of matter Cryo, sublimation, ion Mechanical

More information

Chapter 3: Fundamentals of Mechanics and Heat. 1/11/00 Electromechanical Dynamics 1

Chapter 3: Fundamentals of Mechanics and Heat. 1/11/00 Electromechanical Dynamics 1 Chapter 3: Fundamentals of Mechanics and Heat 1/11/00 Electromechanical Dynamics 1 Force Linear acceleration of an object is proportional to the applied force: F = m a x(t) F = force acting on an object

More information

Supplemental Information. Storage and Recycling of Interfacial. Solar Steam Enthalpy

Supplemental Information. Storage and Recycling of Interfacial. Solar Steam Enthalpy JOUL, Volume 2 Supplemental Information Storage and Recycling of Interfacial Solar Steam Enthalpy Xiuqiang Li, Xinzhe Min, Jinlei Li, Ning Xu, Pengchen Zhu, Bin Zhu, Shining Zhu, and Jia Zhu Supplemental

More information

Experimental and Theoretical Evaluation of the Overall Heat Loss Coefficient of a Vacuum Tube Solar Collector

Experimental and Theoretical Evaluation of the Overall Heat Loss Coefficient of a Vacuum Tube Solar Collector Experimental and Theoretical Evaluation of the Overall Heat Loss Coefficient of a Vacuum Tube Solar Collector Abdul Waheed Badar *, Reiner Buchholz, and Felix Ziegler Institut für Energietechnik, KT, FG

More information

Analysis of A Thermal Transpiration Flow:

Analysis of A Thermal Transpiration Flow: 1 / 28 Analysis of A Thermal Transpiration Flow: A Circular Cross Section Micro-tube Submitted to a Temperature Gradient Along its Axis Marcos Rojas, Pierre Perrier, Irina Graur and J. Gilbert Meolans

More information

Vacuum Technology and film growth. Diffusion Resistor

Vacuum Technology and film growth. Diffusion Resistor Vacuum Technology and film growth Poly Gate pmos Polycrystaline Silicon Source Gate p-channel Metal-Oxide-Semiconductor (MOSFET) Drain polysilicon n-si ion-implanted Diffusion Resistor Poly Si Resistor

More information

Thermal Sensors and Actuators

Thermal Sensors and Actuators Thermal Sensors and Actuators Part I Fundamentals of heat transfer Heat transfer occurs where there is a temperature gradient until an equilibrium is reached. Four major mechanism Thermal conduction Natural

More information

A MEMS Knudsen pump for high gas flow applications.

A MEMS Knudsen pump for high gas flow applications. University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 4-2008 A MEMS Knudsen pump for high gas flow applications. Davor Copic University

More information

True Room Temperature Bonding a novel process for the creation of health tech consumables ATB. ir. Richard Bijlard Technogation - Invenios

True Room Temperature Bonding a novel process for the creation of health tech consumables ATB. ir. Richard Bijlard Technogation - Invenios True Room Temperature Bonding a novel process for the creation of health tech consumables ATB ir. Richard Bijlard Technogation - Invenios Technogation Invenios Dec 2014 Presentation Overview Invenios Group

More information

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE Proceedings of the Asian Conference on Thermal Sciences 2017, 1st ACTS March 26-30, 2017, Jeju Island, Korea ACTS-P00786 NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A

More information

MICROMECHANICAL TEMPERATURE SENSOR

MICROMECHANICAL TEMPERATURE SENSOR MICROMECHANICAL TEMPERATURE SENSOR Ralitza Simeonova Gjosheva 2, Krassimir Hristov Denishev 1 1 Department of Microelectronics, Technical University - Sofia, 8 Kliment Ohridski Blvd., bl. 1, 1797-Sofia,

More information

MICROMACHINED gas pumps have a variety of potential

MICROMACHINED gas pumps have a variety of potential JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 14, NO. 4, AUGUST 2005 741 On-Chip Vacuum Generated by a Micromachined Knudsen Pump Shamus McNamara, Member, IEEE, and Yogesh B. Gianchandani, Senior Member,

More information

INTEGRATED COOLING CHANNELS IN POSITION-SENSITIVE SILICON DETECTORS

INTEGRATED COOLING CHANNELS IN POSITION-SENSITIVE SILICON DETECTORS 20TH INTERNATIONAL WORKSHOP ON DEPFET DETECTORS AND APPLICATIONS INTEGRATED COOLING CHANNELS IN POSITION-SENSITIVE SILICON DETECTORS L. ANDRICEK, M. BORONAT, J. FUSTER, I. GARCÍA, P. GOMIS, C. MARIÑAS,

More information

Law of Heat Transfer

Law of Heat Transfer Law of Heat Transfer The Fundamental Laws which are used in broad area of applications are: 1. The law of conversion of mass 2. Newton s second law of motion 3. First and second laws of thermodynamics

More information

CRYOGENIC SYSTEMS FOR INERTIAL FUSION ENERGY. CEA-Grenoble France DSM/DRFMC/SBT

CRYOGENIC SYSTEMS FOR INERTIAL FUSION ENERGY. CEA-Grenoble France DSM/DRFMC/SBT CRYOGENIC SYSTEMS FOR INERTIAL FUSION ENERGY CEA-Grenoble France DSM/DRFMC/SBT D.Chatain JP. Périn, P.Bonnay, E.Bouleau, M.Chichoux, D.Communal, J.Manzagol, F.Viargues, D.Brisset, G. Paquignon, V.Lamaison.

More information

Vacuum techniques (down to 1 K)

Vacuum techniques (down to 1 K) Vacuum techniques (down to 1 K) For isolation (deep Knudsen regime) liquid helium dewar / inner vacuum jacket Leak testing at level 10-11 Pa m3/s (10-10 mbar l/s) liquid helium dewar & transfer syphon

More information

MODELING, DESIGN AND EXPERIMENTAL CARACHTERIZATION OF MICRO-ELECTRO ELECTRO-MECHANICAL- SYSTEMS FOR GAS- CHROMATOGRAPHIC APPLICATIONS

MODELING, DESIGN AND EXPERIMENTAL CARACHTERIZATION OF MICRO-ELECTRO ELECTRO-MECHANICAL- SYSTEMS FOR GAS- CHROMATOGRAPHIC APPLICATIONS MODELING, DESIGN AND EXPERIMENTAL CARACHTERIZATION OF MICRO-ELECTRO ELECTRO-MECHANICAL- SYSTEMS FOR GAS- CHROMATOGRAPHIC APPLICATIONS ENRICO COZZANI DEIS DOCTORATE CYCLE XXIII 18/01/2011 Enrico Cozzani

More information

Introduction to Heat and Mass Transfer. Week 5

Introduction to Heat and Mass Transfer. Week 5 Introduction to Heat and Mass Transfer Week 5 Critical Resistance Thermal resistances due to conduction and convection in radial systems behave differently Depending on application, we want to either maximize

More information

Impact of Separation Distance on Multi-Vane Radiometer Configurations

Impact of Separation Distance on Multi-Vane Radiometer Configurations Impact of Separation Distance on Multi-Vane Radiometer Configurations B. M. Cornella a, A. D. Ketsdever a, N. E. Gimelshein b, and S. F. Gimelshein b a University of Colorado at Colorado Springs, Department

More information

Nanoholes for leak metrology

Nanoholes for leak metrology Vacuum Metrology for Industry Nanoholes for leak metrology Università Degli Studi di Genova, Italy OUTLINE INTRODUCTION FABRICATION OF NANOHOLES GEOMETRICAL CHARACTERIZATION LEAK DEVICES RESULTS: PTB INRIM

More information

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Introduction to Heat Transfer What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Thermal Resistance Thermal Capacitance Thermal

More information

Omid Ejtehadi Ehsan Roohi, Javad Abolfazli Esfahani. Department of Mechanical Engineering Ferdowsi university of Mashhad, Iran

Omid Ejtehadi Ehsan Roohi, Javad Abolfazli Esfahani. Department of Mechanical Engineering Ferdowsi university of Mashhad, Iran Omid Ejtehadi Ehsan Roohi, Javad Abolfazli Esfahani Department of Mechanical Engineering Ferdowsi university of Mashhad, Iran Overview Micro/Nano Couette Flow DSMC Algorithm Code Validation Entropy and

More information

PROBLEM Node 5: ( ) ( ) ( ) ( )

PROBLEM Node 5: ( ) ( ) ( ) ( ) PROBLEM 4.78 KNOWN: Nodal network and boundary conditions for a water-cooled cold plate. FIND: (a) Steady-state temperature distribution for prescribed conditions, (b) Means by which operation may be extended

More information

Micro Cooling of SQUID Sensor

Micro Cooling of SQUID Sensor Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Micro Cooling of SQUID Sensor B.Ottosson *,1, Y. Jouahri 2, C. Rusu 1 and P. Enoksson 3 1 Imego AB, SE-400 14 Gothenburg, Sweden, 2 Mechanical

More information

HiPace 1200, with TC 1200, DN 200 CF-F

HiPace 1200, with TC 1200, DN 200 CF-F HiPace 1200, with TC 1200, DN 200 CF-F HiPace 1200, with TC 1200, DN 200 CF-F Similar Image Powerful turbopump with a pumping speed of up to 1250 l/s for N 2 DN 200 CF-F flange for demanding UHV applications

More information

Compressible Flow Through Porous Media with Application to Injection

Compressible Flow Through Porous Media with Application to Injection Compressible Flow Through Porous Media with Application to Injection B. E. Schmidt Internal Report for Caltech Hypersonics Group FM 014.001 California Institute of Technology, 100 E California Blvd, Pasadena,

More information

Relationship to Thermodynamics. Chapter One Section 1.3

Relationship to Thermodynamics. Chapter One Section 1.3 Relationship to Thermodynamics Chapter One Section 1.3 Alternative Formulations Alternative Formulations Time Basis: CONSERVATION OF ENERGY (FIRST LAW OF THERMODYNAMICS) An important tool in heat transfer

More information

Physical Vapor Deposition

Physical Vapor Deposition Physical Vapor Deposition EVAPORATION SPUTTERING Typically used for metallization of semiconductors. Both Evaporation & Sputtering are done in vacuum environments. Typically: y Evaporation Pressures are

More information

EVALUATION OF THE THERMAL AND HYDRAULIC PERFORMANCES OF A VERY THIN SINTERED COPPER FLAT HEAT PIPE FOR 3D MICROSYSTEM PACKAGES

EVALUATION OF THE THERMAL AND HYDRAULIC PERFORMANCES OF A VERY THIN SINTERED COPPER FLAT HEAT PIPE FOR 3D MICROSYSTEM PACKAGES Stresa, Italy, 25-27 April 2007 EVALUATION OF THE THERMAL AND HYDRAULIC PERFORMANCES OF A VERY THIN SINTERED COPPER FLAT HEAT PIPE FOR 3D MICROSYSTEM PACKAGES Slavka Tzanova 1, Lora Kamenova 2, Yvan Avenas

More information

AN EXPERIMENTAL INVESTIGATION OF BOILING HEAT CONVECTION WITH RADIAL FLOW IN A FRACTURE

AN EXPERIMENTAL INVESTIGATION OF BOILING HEAT CONVECTION WITH RADIAL FLOW IN A FRACTURE PROCEEDINGS, Twenty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 25-27, 1999 SGP-TR-162 AN EXPERIMENTAL INVESTIGATION OF BOILING HEAT CONVECTION

More information

Nanoelectronic Thermoelectric Energy Generation

Nanoelectronic Thermoelectric Energy Generation Nanoelectronic Thermoelectric Energy Generation Lourdes Ferre Llin l.ferre-llin.1@research.gla.ac.uk 1 Overview: Brief introduction on Thermoelectric generators. Goal of the project. Fabrication and Measurements

More information

ELECTROCHROMIC RADIATORS FOR MICROSPACECRAFT THERMAL CONTROL

ELECTROCHROMIC RADIATORS FOR MICROSPACECRAFT THERMAL CONTROL ELECTROCHROMIC RADIATORS FOR MICROSPACECRAFT THERMAL CONTROL Anthony Paris Kevin Anderson Jet Propulsion Laboratory Prasanna Chandrasekhar, Brian Zay, Terrance McQueeney Ashwin-Ushas Corporation, Inc.,

More information

SUPER-INSULATED LONG-TERM HOT WATER STORAGE

SUPER-INSULATED LONG-TERM HOT WATER STORAGE SUPER-INSULATED LONG-TERM HOT WATER STORAGE Dr. rer. nat. T. Beikircher, Dr.-Ing. F. Buttinger, M. Demharter ZAE Bayern, Dept. 1 Walther Meißner Str. 6, 85748 Garching Phone: +49/89/329442-49 beikircher@muc.zae-bayern.de

More information

External Forced Convection :

External Forced Convection : External Forced Convection : Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets Chapter 7 Sections 7.4 through 7.8 7.4 The Cylinder in Cross Flow Conditions depend on special

More information

PHYA5/2C. (JUN15PHYA52C01) WMP/Jun15/PHYA5/2C/E5. General Certificate of Education Advanced Level Examination June Section B PMT TOTAL

PHYA5/2C. (JUN15PHYA52C01) WMP/Jun15/PHYA5/2C/E5. General Certificate of Education Advanced Level Examination June Section B PMT TOTAL Centre Number Candidate Number For Examiner s Use Surname Other Names Candidate Signature Examiner s Initials General Certificate of Education Advanced Level Examination June 2015 Question 1 2 Mark Physics

More information

PROBLEM 1.3. dt T1 T dx L 0.30 m

PROBLEM 1.3. dt T1 T dx L 0.30 m PROBLEM 1.3 KNOWN: Inner surface temperature and thermal conductivity of a concrete wall. FIND: Heat loss by conduction through the wall as a function of outer surface temperatures ranging from -15 to

More information

( ) PROBLEM C 10 C 1 L m 1 50 C m K W. , the inner surface temperature is. 30 W m K

( ) PROBLEM C 10 C 1 L m 1 50 C m K W. , the inner surface temperature is. 30 W m K PROBLEM 3. KNOWN: Temperatures and convection coefficients associated with air at the inner and outer surfaces of a rear window. FIND: (a) Inner and outer window surface temperatures, T s,i and T s,o,

More information

2D Simulations and Electro-Thermal Analysis of Micro-Heater Designs Using COMSOL TM for Gas Sensor Applications

2D Simulations and Electro-Thermal Analysis of Micro-Heater Designs Using COMSOL TM for Gas Sensor Applications Presented at the COMSOL Conference 2010 India 2D Simulations and Electro-Thermal Analysis of Micro-Heater Designs Using COMSOL TM for Gas Sensor Applications Presented By Velmathi.G, Ramshanker.N and Mohan.S

More information

Transmissive Final Optic for Laser IFE

Transmissive Final Optic for Laser IFE Transmissive Final Optic for Laser IFE S. A. Payne, J. F. Latkowski, A. Kubota, M. J. Caturla, S. N. Dixit, and J. A. Speth Lawrence Livermore National Laboratory April 4, 2002 HAPL Program Workshop General

More information

Shear Force in Radiometric Flows

Shear Force in Radiometric Flows Shear Force in Radiometric Flows Natalia E. Gimelshein, Sergey F. Gimelshein, Andrew D. Ketsdever and Nathaniel P. Selden ERC, Inc, Edwards AFB, CA 93524 University of Colorado at Colorado Springs, Colorado

More information

Thermal Interface Material Performance Measurement

Thermal Interface Material Performance Measurement Thermal Interface Material Performance Measurement Long Win Science & Technology Co., Ltd. www.longwin.com longwin@longwin.com 886-3-4643221 886-3-4986875 2007/07/16 Contents 1. Introduction Heat Transfer

More information

Chapter 3 Engineering Science for Microsystems Design and Fabrication

Chapter 3 Engineering Science for Microsystems Design and Fabrication Lectures on MEMS and MICROSYSTEMS DESIGN and MANUFACTURE Chapter 3 Engineering Science for Microsystems Design and Fabrication In this Chapter, we will present overviews of the principles of physical and

More information

Design Guidelines for SFT Chipsets Assembly

Design Guidelines for SFT Chipsets Assembly Design Guidelines for SFT Chipsets Assembly SFT-10 SFT-16 SFT-20 Table of Contents 1. Design Guidelines 2 1.1 Electrical Insulation 2 1.2 Thermal Management 3 2. Available Reference Designs for Thermal

More information

ARIES-AT Blanket and Divertor Design (The Final Stretch)

ARIES-AT Blanket and Divertor Design (The Final Stretch) ARIES-AT Blanket and Divertor Design (The Final Stretch) The ARIES Team Presented by A. René Raffray and Xueren Wang ARIES Project Meeting University of Wisconsin, Madison June 19-21, 2000 Presentation

More information

HiPace 300 with TC 110 and power supply pack OPS 100, DN 100 CF-F

HiPace 300 with TC 110 and power supply pack OPS 100, DN 100 CF-F HiPace 300 with TC 110 and power supply pack OPS 100, DN 100 CF-F HiPace 300 with TC 110 and power supply pack OPS 100, DN 100 CF-F Similar Image Rugged, powerful turbopump with a pumping speed of up to

More information

Heat Exchangers for Condensation and Evaporation Applications Operating in a Low Pressure Atmosphere

Heat Exchangers for Condensation and Evaporation Applications Operating in a Low Pressure Atmosphere Acta Polytechnica Vol. 52 No. 3/202 Heat Exchangers for Condensation and Evaporation Applications Operating in a Low Pressure Atmosphere Petr Kracík,JiříPospíšil, Ladislav Šnajdárek Brno University of

More information

Chapter 1 INTRODUCTION AND BASIC CONCEPTS

Chapter 1 INTRODUCTION AND BASIC CONCEPTS Heat and Mass Transfer: Fundamentals & Applications 5th Edition in SI Units Yunus A. Çengel, Afshin J. Ghajar McGraw-Hill, 2015 Chapter 1 INTRODUCTION AND BASIC CONCEPTS Mehmet Kanoglu University of Gaziantep

More information

Hydrodynamics of Diamond-Shaped Gradient Nanopillar Arrays for Effective. DNA Translocation into Nanochannels. (Supplementary information)

Hydrodynamics of Diamond-Shaped Gradient Nanopillar Arrays for Effective. DNA Translocation into Nanochannels. (Supplementary information) Hydrodynamics of Diamond-Shaped Gradient Nanopillar Arrays for Effective DNA Translocation into Nanochannels (Supplementary information) Chao Wang 1, Robert L. Bruce, Elizabeth A. Duch, Jyotica V. Patel,

More information

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic

More information

Enhanced Boiling Heat Transfer by using micropin-finned surfaces for Electronic Cooling

Enhanced Boiling Heat Transfer by using micropin-finned surfaces for Electronic Cooling Enhanced Boiling Heat Transfer by using micropin-finned surfaces for Electronic Cooling JinJia Wei State Key Laboratory of Multiphase Flow in Power Engineering Xi an Jiaotong University Contents 1. Background

More information

Fluid Dynamics and Balance Equations for Reacting Flows

Fluid Dynamics and Balance Equations for Reacting Flows Fluid Dynamics and Balance Equations for Reacting Flows Combustion Summer School 2018 Prof. Dr.-Ing. Heinz Pitsch Balance Equations Basics: equations of continuum mechanics balance equations for mass and

More information

Chip-Scale Mass Spectrometers for Portable Gas Analyzers Luis Fernando Velásquez-García. A. I. Akinwande, K. Cheung, and L.-Y Chen.

Chip-Scale Mass Spectrometers for Portable Gas Analyzers Luis Fernando Velásquez-García. A. I. Akinwande, K. Cheung, and L.-Y Chen. Chip-Scale Mass Spectrometers for Portable Gas Analyzers Luis Fernando Velásquez-García. A. I. Akinwande, K. Cheung, and L.-Y Chen. Microsystems Technology Laboratories (MTL) lfvelasq@mit.edu November

More information

Infrared Energy to Deep Space

Infrared Energy to Deep Space Infrared Energy to Deep Space The Nighttime Solar Cell R.J. Parise,, Ph.D. Parise Research Tech. Suffield, Connecticut G.F. Jones, Ph.D. Villanova University Villanova, Penn. Workshop: Infrared Radiation,

More information

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell

e - Galvanic Cell 1. Voltage Sources 1.1 Polymer Electrolyte Membrane (PEM) Fuel Cell Galvanic cells convert different forms of energy (chemical fuel, sunlight, mechanical pressure, etc.) into electrical energy and heat. In this lecture, we are interested in some examples of galvanic cells.

More information

Optimization of Microchannel

Optimization of Microchannel Optimization of Microchannel Heat Exchangers It s no secret that power densities in electronics have continued to rise, and researchers have been forced to explore new thermal management technologies to

More information

The Hermes Recoil Silicon Detector

The Hermes Recoil Silicon Detector The Hermes Recoil Silicon Detector Introduction Detector design considerations Silicon detector overview TIGRE microstrip sensors Readout electronics Test beam results Vertex 2002 J. Stewart DESY Zeuthen

More information

Supplementary Information for On-chip cooling by superlattice based thin-film thermoelectrics

Supplementary Information for On-chip cooling by superlattice based thin-film thermoelectrics Supplementary Information for On-chip cooling by superlattice based thin-film thermoelectrics Table S1 Comparison of cooling performance of various thermoelectric (TE) materials and device architectures

More information

Nicholas J. Giordano. Chapter 10 Fluids

Nicholas J. Giordano.  Chapter 10 Fluids Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 10 Fluids Fluids A fluid may be either a liquid or a gas Some characteristics of a fluid Flows from one place to another Shape varies according

More information

Problem set: solar irradiance and solar wind

Problem set: solar irradiance and solar wind Problem set: solar irradiance and solar wind Karel Schrijver July 3, 203 Stratification of a static atmosphere within a force-free magnetic field Problem: Write down the general MHD force-balance equation

More information

Heat Transfer: Physical Origins and Rate Equations. Chapter One Sections 1.1 and 1.2

Heat Transfer: Physical Origins and Rate Equations. Chapter One Sections 1.1 and 1.2 Heat Transfer: Physical Origins and Rate Equations Chapter One Sections 1.1 and 1. Heat Transfer and Thermal Energy What is heat transfer? Heat transfer is thermal energy in transit due to a temperature

More information

Carrier Recombination

Carrier Recombination Notes for ECE-606: Spring 013 Carrier Recombination Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA lundstro@purdue.edu /19/13 1 carrier recombination-generation

More information

Outline. Stock Flow and temperature. Earth as a black body. Equation models for earth s temperature. Balancing earth s energy flows.

Outline. Stock Flow and temperature. Earth as a black body. Equation models for earth s temperature. Balancing earth s energy flows. Outline Stock Flow and temperature Earth as a black body Equation models for earth s temperature { { Albedo effect Greenhouse effect Balancing earth s energy flows Exam questions How does earth maintain

More information

Time-of-Flight Flow Microsensor using Free-Standing Microfilaments

Time-of-Flight Flow Microsensor using Free-Standing Microfilaments 07-Rodrigues-V4 N2-AF 19.08.09 19:41 Page 84 Time-of-Flight Flow Microsensor using Free-Standing Microfilaments Roberto Jacobe Rodrigues 1,2, and Rogério Furlan 3 1 Center of Engineering and Social Sciences,

More information

Développement de micro-préconcentrateurs pour l'analyse de traces de gaz et explosifs.

Développement de micro-préconcentrateurs pour l'analyse de traces de gaz et explosifs. Développement de micro-préconcentrateurs pour l'analyse de traces de gaz et explosifs. JP Viricelle a, P. Breuil a, C. Pijolat a, F James a, M. Camara b, D. Briand b a Ecole Nationale des Mines, SPIN-EMSE,

More information

Overall Heat Transfer Coefficient

Overall Heat Transfer Coefficient Overall Heat Transfer Coefficient A heat exchanger typically involves two flowing fluids separated by a solid wall. Heat is first transferred from the hot fluid to the wall by convection, through the wall

More information

Thermodynamics Fundamentals for Energy Conversion Systems Renewable Energy Applications

Thermodynamics Fundamentals for Energy Conversion Systems Renewable Energy Applications Thermodynamics Fundamentals for Energy Conversion Systems Renewable Energy Applications The study of the laws that govern the conversion of energy from one form to the other Energy Conversion Concerned

More information

Thermal measurements using Scanning Thermal Microscopy (SThM) Micro and Nanoscale measurements

Thermal measurements using Scanning Thermal Microscopy (SThM) Micro and Nanoscale measurements Lecture 2: Measurements with contact in heat transfer: principles, implementation and pitfalls PART 2 Thermal measurements using Scanning Thermal Microscopy (SThM) Micro and Nanoscale measurements Séverine

More information

Cooling of Electronics Lecture 2

Cooling of Electronics Lecture 2 Cooling of Electronics Lecture 2 Hans Jonsson Agenda Lecture 2 Introduction to Cooling of Electronics Cooling at different levels Cooling demand calculations Introduction to Cooling of Electronics Both

More information

Statistical Physics. Problem Set 4: Kinetic Theory

Statistical Physics. Problem Set 4: Kinetic Theory Statistical Physics xford hysics Second year physics course Dr A. A. Schekochihin and Prof. A. Boothroyd (with thanks to Prof. S. J. Blundell) Problem Set 4: Kinetic Theory PROBLEM SET 4: Collisions and

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 10 August 2005

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 10 August 2005 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 0 August 2005 Final Examination R. Culham & M. Bahrami This is a 2 - /2 hour, closed-book examination. You are permitted to use one 8.5 in. in. crib

More information

Thrust Measurement of a CW Laser Thruster in Vacuum

Thrust Measurement of a CW Laser Thruster in Vacuum Thrust Measurement of a CW Laser Thruster in Vacuum Kazuhiro Toyoda Kyushu Institute of Technology Komurasaki Kimiya and Yoshihiro Arakawa University of Tokyo IEPC-01-207 This paper reports results of

More information

EE 6313 Homework Assignments

EE 6313 Homework Assignments EE 6313 Homework Assignments 1. Homework I: Chapter 1: 1.2, 1.5, 1.7, 1.10, 1.12 [Lattice constant only] (Due Sept. 1, 2009). 2. Homework II: Chapter 1, 2: 1.17, 2.1 (a, c) (k = π/a at zone edge), 2.3

More information

PROBLEM 1.2 ( ) 25 C 15 C dx L 0.30 m Ambient air temperature, T2 (C)

PROBLEM 1.2 ( ) 25 C 15 C dx L 0.30 m Ambient air temperature, T2 (C) PROBLEM 1.2 KNOWN: Inner surface temperature and thermal conductivity of a concrete wall. FIND: Heat loss by conduction through the wall as a function of ambient air temperatures ranging from -15 to 38

More information

Outline. Chemical Microsystems Applications. Microfluidic Component Examples Chemical Microsystems for Analysis Chemical Microsystems for Synthesis

Outline. Chemical Microsystems Applications. Microfluidic Component Examples Chemical Microsystems for Analysis Chemical Microsystems for Synthesis Outline Chemical Microsystems Applications Microfluidic Component Examples Chemical Microsystems for Analysis Chemical Microsystems for Synthesis Fundamentals of Micromachining Dr. Bruce Gale With Special

More information

Experimental measurement of parameters governing flow rates and partial saturation in paper-based microfluidic devices

Experimental measurement of parameters governing flow rates and partial saturation in paper-based microfluidic devices Experimental measurement of parameters governing flow rates and partial saturation in paper-based microfluidic devices Dharitri Rath 1, Sathishkumar N 1, Bhushan J. Toley 1* 1 Department of Chemical Engineering

More information

Thermal creep flow by Thomas Hällqvist Veronica Eliasson

Thermal creep flow by Thomas Hällqvist Veronica Eliasson Thermal creep flow by Thomas Hällqvist Veronica Eliasson Introduction Thermal creep It is possible to start rarefied gas flows with tangential temperature gradients along the channel walls, where the fluid

More information

Device 3D. 3D Device Simulator. Nano Scale Devices. Fin FET

Device 3D. 3D Device Simulator. Nano Scale Devices. Fin FET Device 3D 3D Device Simulator Device 3D is a physics based 3D device simulator for any device type and includes material properties for the commonly used semiconductor materials in use today. The physical

More information

This section develops numerically and analytically the geometric optimisation of

This section develops numerically and analytically the geometric optimisation of 7 CHAPTER 7: MATHEMATICAL OPTIMISATION OF LAMINAR-FORCED CONVECTION HEAT TRANSFER THROUGH A VASCULARISED SOLID WITH COOLING CHANNELS 5 7.1. INTRODUCTION This section develops numerically and analytically

More information

Thermo-Mechanical Analysis of a Multi-Layer MEMS Membrane

Thermo-Mechanical Analysis of a Multi-Layer MEMS Membrane Thermo-Mechanical Analysis of a Multi-Layer MEMS Membrane Heiko Fettig, PhD James Wylde, PhD Nortel Networks - Optical Components Ottawa ON K2H 8E9 Canada Abstract This paper examines the modelling of

More information

MPC-D403 MPC-D404. Ultra-small Peltier Coolers. High impedance Low control current High power efficiency

MPC-D403 MPC-D404. Ultra-small Peltier Coolers. High impedance Low control current High power efficiency MPC-D MPC-D Ultra-small Peltier Coolers High impedance Low control current High power efficiency MPC-D / D. Introduction. General description The MPC- / D micro chip-sized thermoelectric coolers (TEC)

More information

CORM Exploring optical radiation pressure as a convenient measure of high-power. laser emission

CORM Exploring optical radiation pressure as a convenient measure of high-power. laser emission CORM 2015 Exploring optical radiation pressure as a convenient measure of high-power Paul A. Williams Joshua A. Hadler Brian Simonds Gordon A. Shaw Nathan A. Tomlin Ari Feldman Amanda Higley Marla L. Dowell

More information

Chapter 9 NATURAL CONVECTION

Chapter 9 NATURAL CONVECTION Heat and Mass Transfer: Fundamentals & Applications Fourth Edition in SI Units Yunus A. Cengel, Afshin J. Ghajar McGraw-Hill, 2011 Chapter 9 NATURAL CONVECTION PM Dr Mazlan Abdul Wahid Universiti Teknologi

More information

Title Process of Ethanol in Activated Car. Citation Physics Procedia (2015), 69:

Title Process of Ethanol in Activated Car. Citation Physics Procedia (2015), 69: Title Visualization and Measurement of Ad Process of Ethanol in Activated Car Author(s) Asano, Hitoshi; Murata, Kenta; Take Yasushi Citation Physics Procedia (2015), 69: 503-50 Issue Date 2015 URL http://hdl.handle.net/2433/216137

More information

HiPace 300 with TC 400, DN 100 CF-F

HiPace 300 with TC 400, DN 100 CF-F HiPace 300 with TC 400, DN 100 CF-F HiPace 300 with TC 400, DN 100 CF-F Similar Image Rugged, powerful turbopump with a pumping speed of up to 260 l/s for N 2 Integrated TC 400 drive electronics Ideal

More information

The Thermal Sieve: a diffractive baffle that provides thermal isolation of a cryogenic optical system from an ambient temperature collimator

The Thermal Sieve: a diffractive baffle that provides thermal isolation of a cryogenic optical system from an ambient temperature collimator The Thermal Sieve: a diffractive baffle that provides thermal isolation of a cryogenic optical system from an ambient temperature collimator James H. Burge * and Dae Wook Kim College of Optical Sciences

More information

Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR. 5.1 Thermal Model of Solar Collector System

Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR. 5.1 Thermal Model of Solar Collector System Chapter 5 MATHEMATICAL MODELING OF THE EVACATED SOLAR COLLECTOR This chapter deals with analytical method of finding out the collector outlet working fluid temperature. A dynamic model of the solar collector

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Lecture slides by Dr. Fawzi Elfghi

More information

Single-Phase Modeling in Microchannel with Piranha Pin Fin

Single-Phase Modeling in Microchannel with Piranha Pin Fin Single-Phase Modeling in Microchannel with Piranha Pin Fin Xiangfei YU *1, Corey Woodcock 1, Yoav Peles 2, Joel Plawsky 1 1. Rensselaer Polytechnic Institute, Mechanical, Aerospace, and Nuclear Engineering,

More information

CORRELATION BETWEEN HOT PLATE EMISSIVITY AND WAFER TEMPERATURE AT LOW TEMPERATURES

CORRELATION BETWEEN HOT PLATE EMISSIVITY AND WAFER TEMPERATURE AT LOW TEMPERATURES CORRELATION BETWEEN HOT PLATE EMISSIVITY AND WAFER TEMPERATURE AT LOW TEMPERATURES Tomomi Murakami 1*, Takashi Fukada 1 and Woo Sik Yoo 2 1 WaferMasters Service Factory, 2020-3 Oaza Tabaru, Mashiki, Kamimashiki,

More information