Experimental measurement of parameters governing flow rates and partial saturation in paper-based microfluidic devices

Size: px
Start display at page:

Download "Experimental measurement of parameters governing flow rates and partial saturation in paper-based microfluidic devices"

Transcription

1 Experimental measurement of parameters governing flow rates and partial saturation in paper-based microfluidic devices Dharitri Rath 1, Sathishkumar N 1, Bhushan J. Toley 1* 1 Department of Chemical Engineering Indian Institute of Science Bengaluru, Karnataka India Number of pages: 11; Number of figures: 9; Number of tables: 1 * Correspondence to: Bhushan J. Toley Department of Chemical Engineering Indian Institute of Science C V Raman Avenue Bengaluru, Karnataka Phone: bhushan@iisc.ac.in S1

2 Electronic Supporting Information S1. Determination of permeability as a function of saturation Figure S1. Calculation of permeability as a function of saturation. A. Cross section of the porous material shown as set of parallel tubes/capillaries. B. A single tube of radius, r, shown in isolation. C. Two parallel tubes are equivalent to two parallel fluidic resistors. D. When the material is partially saturated, the smallest pores are filled with fluid (orange colour). E,F. Representations of experimentally obtained variation of capillary pressure, ψ, as a function of normalized saturation, Se (E) and of effective pore radius, r pore, as a function of Se (F). Plot in (F) represents the cumulative pore size distribution. pore A theoretical method was developed to obtain the variation of permeability, κ, with saturation, Se (note that experiments only provided κ s, i.e. permeability at Se = 1). For this purpose, the porous material is assumed to be composed of a set of parallel tubes (pores) of fixed length, L, but varying diameters (Fig. S1A). Let us now consider one tube of radius, r pore, from this set (Fig. S1B). Assuming that the pressure drop across this tube is p (Fig. 2B), the following two correlations may be written: 4 π r pore Q= p (S1) 8µ L S2

3 according to Hagen-Poiseuille law, and p Q= according to Darcy s law (equation 2; µ L κ A main text). Comparing equations (S1) and (2) and substituting for the area of the tube, 2 A πr pore =, yields κ = C r 2 pore (S2) where C is a constant of proportionality. This shows that permeability scales as the square of pore radius. In addition, the term µ L in equation (2; main text) represents additive fluidic κ A resistance, as described previously by Fu et al 1. Thus, for a fluid flowing through two parallel tubes of equal length, L, but different cross-sectional areas, A 1 and A 2, an equivalent fluidic resistance, R eq, can be calculated by using the rule of parallel electrical resistances as: κ A κ A κ A R µ L µ L µ L 1 eq eq = = + (S3) eq or, κ A = κ A + κ A (S4) eq eq Where κ eq and Aeq are effective permeability and cross-sectional area, respectively, of the two tubes placed in parallel (Fig. S1C). Substituting for κ from equation (S2) and for = π yields: 2 A r pore κ eq = C 2( 4 4 r1 r2 ) + (S5) where C 2 is a proportionality constant and r 1 and r 2 and the radii of the two pores. The variation of the permeability of the porous material as a function of saturation may then be derived by considering the material to be composed of a set of parallel tubes such that the number of parallel tubes increases with increasing saturation. For example, when the S3

4 membrane is partially saturated, say Se= 0.3, only the smallest 30% of the pores in the material are filled with fluid because they exert the maximum capillary pressure (Fig. S1D). The effective permeability of these 30% pores is calculated by first converting experimentally obtained data for ψ vs Se (Fig. S1E) to rpore vs Se (Fig. S1F) by using the Young-Laplace equation for capillary force generated by a thin tube: 2γ cosα r pore= (S6) ψ where γ is the liquid-air surface tension and α is the contact angle. For these calculations, the contact angle was assumed to be zero. This is a reasonable assumption because several commercial diagnostic membranes are treated using proprietary methods to render them hydrophilic. This is based both on our personal communication with membrane manufacturers and as published by Linnes et al (Discussion section) 2. The relationship between r pore and Serepresents the cumulative pore size distribution of the membrane (Fig. S1F). This graph was divided into ten equal intervals: Se = 0 0.1, up to (Fig. S1F). Now, consider the case of Se= 0.3; here the membrane is assumed to be composed of three parallel tubes of effective radii measured at the centres of the three intervals: Se = 0 0.1, , and , i.e at r m1, r m2, and r m3 respectively (Fig. S1F). The permeability of the membrane was then calculated using equation (S5) as: κ ( Se = 0.3) = C 2( rm 1 rm 2 rm 3) + + (S7) or in general 4 κ = = C 2 r ( Se N /10) N i= 1 mi (S8) S4

5 where N is a natural number (1 N 10 ). The proportionality constant, C 2 was obtained by equating the permeability at Se= 1 obtained using equation (S8) to the experimentally obtained permeability at Se= 1, i.e. permeability vs saturation (κ vs Se) relation for the material. κ s. Equation (S8) was then used to generate the S2. Modelling protocol in COMSOL Figure S2. Boundary conditions for COMSOL modelling (A) 3D representation of a paper strip with length L. (B) 2D domain of the paper strip used for modelling with the relevant boundary conditions. Fig. S2A represents the schematic of a paper strip in 3D which has a variation of material properties along its length. Thus the 2D modelling domain is presented in Fig. S2B with the pertinent boundary conditions. Richard s equation in COMSOL is defined as follows: t ( ρε p).( ρu) + = Q m Where the first term represents the volume fraction of pores occupied by water (where ρε p θ C ρε p = SeS+ t t ρg t = ), and further defined as, ( ) m p, in which the first term on the right hand side describes the rate of change of storage of water content in the sample. This includes a term S, the storage coefficient, which describes the changes in the fluid storage in the porous matrix volume due to compression and expansion of pore spaces and the water when it is fully saturated. For the paper materials, this term is assumed to be zero. The S5

6 second term on the right-hand side includes C m = θ H P, the specific moisture capacity, which describes the change in the moisture content in the sample with the pressure head. Also, the capillary pressure and pressure heads are related by p= ψ = ρgh. Please note that the capillary pressure in COMSOL interface is the dependent variable denoted by p. Now p the linear velocity term in COMSOL is written as (Darcy s law), K u= p, where K is ρ g Κ κ the hydraulic conductivity which is related to permeability as =. Although, the ρ g µ equations in COMSOL does not show the saturation, θ, this is related to the capillary pressure and permeability through Van Genutchen correlations (Equations 6-7 in the main text), hence the user can obtain the spatiotemporal variation of ψ andθ after solving the equations. The input parameters used to solve the rate of imbibition for a NC FF120 paper strip are presented in Table S1. Table S1: Parameters for solving the flow problem for NC FF120 Variable Value Description Source ρ 1000 [kg/m 3 ] Density of fluid Common knowledge θ 0.75 Porosity of the membrane Experimentally measured s θ 0 Residual saturation Assumption r κ 9.5x10-7 [m/s] Hydraulic conductivity at s 100% saturation Experimentally measured S 0 Storage coefficient Assumption α 1 Van Genutchen parameter Calculated from experimental data n 2.66 Van Genutchen parameter Calculated from experimental data l Van Genutchen parameter Calculated from experimental data S6

7 After entering the input parameters, the boundary conditions are specified at four edges as mentioned in the main text (also mentioned in Fig S2B). Meshing for the domain can be set to physics controlled mesh with extra fine setting, however since a rectangular domain is used in this case, and a mapped mesh is preferred. Further, the boundary layers were refined at the edges. The final mesh consisted of ~11000 elements with DOFs (degrees of freedom). S3. Pore Size Distribution Figure S3. Data points (black dots) representing pore size distribution as a function of r pore for (A) Nitrocellulose FF120HP (B) Glass fibre (GFDVA) and (C) Whatmann filter paper grade-1 with their corresponding curves fitted with guide to eye distribution (red lines). S7

8 After calculating the cumulative pore size distribution ( r pore vs Se; Fig. S1F), the fraction of pores in each size range can be calculated as f = Se( r ) Se( r ) r 1 r2 2 1 where f is the fraction of pores having a pore size in between r 1 and r 2, given r < 1 r 2. r 1 r2 Plots of pore size distribution curves obtained using this method are shown in Fig. S3, which shows that the distribution for NC FF 120 (Fig. S3A) is narrower as compared to the other two materials (Fig. S3B and C). This data is useful to get a rough estimation of the distribution of pores inside the various commercially available materials. S4. Data fitting to obtain Van Genutchen parameter Plots showing fits to experimental data for all three materials are shown below in Fig. S4-S5. Figure S4. Curve fitting to obtain Van Genutchen parameters. Experimental data points (black dots) and best fits (red lines) for capillary pressure as a function of saturation for (A) Nitrocellulose FF120HP (B) Glass fibre (GF/DVA) and (C) Whatman filter paper grade-1. The fits were obtained using MATLAB curve fitting tool using the nonlinear regression analysis where R 2 ~ S8

9 Figure S5. Curve fitting to obtain Van Genutchen parameters. Experimental data points (black dots) and best fits (red lines) for the relative permeability as a function of saturation for (A) Nitrocellulose FF120HP (B) Glass fibre (GFDVA) and (C) Whatmann filter paper grade-1. The fits were obtained using MATLAB curve fitting tool using the nonlinear regression analysis where R 2 ~ S5. Modelling and experimental measurement of imbibition and saturation COMSOL simulations were run using Van Genutchen parameters corresponding to GF/DVA and Whatman filter paper Grade 1 (Table 3). For both materials, the simulated results matched experimental data very well (Fig. S6 for GF/DVA and Fig. S7 for filter paper Grade 1). Figure S6. Spatiotemporal variation of saturation for GF/DVA: Comparison of experimental data (black markers) and COMSOL simulations (red line). S9

10 Figure S7. Spatiotemporal variation of saturation for Whatman filter paper 1: Comparison of experimental data (black markers) and COMSOL simulations (red line). S6. Flow imaging setup Figure S8. Flow imaging setup. Image showing the in-house constructed humidity chamber (flow chamber), humidity meter, and the webcam mounted on a stand. S10

11 Flow through paper membranes was visualized using the setup show in Figure S8. The approximate size of the humidity chamber was 20 cm (L) x 13 cm (W) x 4 cm (H). It was made from 5 rectangular pieces of acrylic bonded at the edges using dichloromethane; the base was left open. A humidity meter was introduced into the chamber through a hole in one of the side walls. The wall opposite to the one in which the humidity meter was introduced contained two rectangular windows that were cut out and covered with adhesive-backed silicone. Humidity in the chamber was maintained by placing wet paper towels within the chamber (not shown). After a relative humidity of 80% was reached, fluid was introduced into a small reservoir connected to one end of the paper strip by a syringe needle inserted through the silicone window. This ensured that humidity did not decrease during fluid introduction. S7. Estimation of pore size from SEM images Figure S9. Pores considered for determining pore radius of nitrocellulose. A. SEM image of NC FF120 (reproduced from main text). B. Pores marked for measuring size. Scale bar represents 10 µm. An SEM image of the surface of NC FF120 was used to estimate pore sizes. Bright regions in the image (Fig. S9A) were considered to be composed of nitrocellulose and the darker S11

12 regions were considered as pores. Ten different pores (Fig. S9B) were marked as regions of interest using ImageJ and their areas were calculated. Pore radii for each pore were calculated assuming the pores to be circular. The average pore size for these pores was 16 µm with a standard deviation of 10 µm. While this is a crude method of estimating pore size, the average size (16 µm) is very close to the average pore size estimated in Fig. S3A. This, to a certain extent, supports the assumption of zero contact angle made in equation S6. References 1. E. Fu, S. A. Ramsey, P. Kauffman, B. Lutz and P. Yager, Microfluid. Nanofluidics, 2011, 10, J. C. Linnes, Biomed. Microdevices, 2016, S12

Supplementary Information for Engineering and Analysis of Surface Interactions in a Microfluidic Herringbone Micromixer

Supplementary Information for Engineering and Analysis of Surface Interactions in a Microfluidic Herringbone Micromixer Supplementary Information for Engineering and Analysis of Surface Interactions in a Microfluidic Herringbone Micromixer Thomas P. Forbes and Jason G. Kralj National Institute of Standards and Technology,

More information

Unsaturated Flow (brief lecture)

Unsaturated Flow (brief lecture) Physical Hydrogeology Unsaturated Flow (brief lecture) Why study the unsaturated zone? Evapotranspiration Infiltration Toxic Waste Leak Irrigation UNSATURATAED ZONE Aquifer Important to: Agriculture (most

More information

Microfluidics 1 Basics, Laminar flow, shear and flow profiles

Microfluidics 1 Basics, Laminar flow, shear and flow profiles MT-0.6081 Microfluidics and BioMEMS Microfluidics 1 Basics, Laminar flow, shear and flow profiles 11.1.2017 Ville Jokinen Outline of the next 3 weeks: Today: Microfluidics 1: Laminar flow, flow profiles,

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

Interface Location of Capillary Driven Flow in Circular Micro Channel Using by COMSOL

Interface Location of Capillary Driven Flow in Circular Micro Channel Using by COMSOL Interface Location of Capillary Driven Flow in Circular Micro Channel Using by COMSOL ARSHYA BAMSHAD 1, MOHAMMAD H. SABOUR 2, ALIREZA NIKFARJAM 3 Faculty of New Sciences & Technologies University of Tehran

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/8/eaat1659/dc1 Supplementary Materials for Acoustophoretic printing Daniele Foresti*, Katharina T. Kroll, Robert Amissah, Francesco Sillani, Kimberly A. Homan,

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

PHYSICS OF FLUID SPREADING ON ROUGH SURFACES

PHYSICS OF FLUID SPREADING ON ROUGH SURFACES INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 5, Supp, Pages 85 92 c 2008 Institute for Scientific Computing and Information PHYSICS OF FLUID SPREADING ON ROUGH SURFACES K. M. HAY AND

More information

Simulating Fluid-Fluid Interfacial Area

Simulating Fluid-Fluid Interfacial Area Simulating Fluid-Fluid Interfacial Area revealed by a pore-network model V. Joekar-Niasar S. M. Hassanizadeh Utrecht University, The Netherlands July 22, 2009 Outline 1 What s a Porous medium 2 Intro to

More information

2nd International Conference Mechanics of Unsaturated Soils 7 th 9 th March 2007

2nd International Conference Mechanics of Unsaturated Soils 7 th 9 th March 2007 2nd International Conference Determination of the Soil Water Retention Curve and the Unsaturated Hydraulic Conductivity from the Particle Size Distribution Alexander Scheuermann & Andreas Bieberstein Motivation

More information

Darcy s Law, Richards Equation, and Green-Ampt Equation

Darcy s Law, Richards Equation, and Green-Ampt Equation Darcy s Law, Richards Equation, and Green-Ampt Equation 1. Darcy s Law Fluid potential: in classic hydraulics, the fluid potential M is stated in terms of Bernoulli Equation (1.1) P, pressure, [F L!2 ]

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

R09. d water surface. Prove that the depth of pressure is equal to p +.

R09. d water surface. Prove that the depth of pressure is equal to p +. Code No:A109210105 R09 SET-1 B.Tech II Year - I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal

More information

Reaction at the Interfaces

Reaction at the Interfaces Reaction at the Interfaces Lecture 1 On the course Physics and Chemistry of Interfaces by HansJürgen Butt, Karlheinz Graf, and Michael Kappl Wiley VCH; 2nd edition (2006) http://homes.nano.aau.dk/lg/surface2009.htm

More information

Supporting Information. Technique for real-time measurements of endothelial permeability in a

Supporting Information. Technique for real-time measurements of endothelial permeability in a Supporting Information Technique for real-time measurements of endothelial permeability in a microfluidic membrane chip using laser-induced fluorescence detection Edmond W.K. Young a,b,, Michael W.L. Watson

More information

2. Modeling of shrinkage during first drying period

2. Modeling of shrinkage during first drying period 2. Modeling of shrinkage during first drying period In this chapter we propose and develop a mathematical model of to describe nonuniform shrinkage of porous medium during drying starting with several

More information

CHAPTER 2. SOIL-WATER POTENTIAL: CONCEPTS AND MEASUREMENT

CHAPTER 2. SOIL-WATER POTENTIAL: CONCEPTS AND MEASUREMENT SSC107 Fall 2000 Chapter 2, Page - 1 - CHAPTER 2. SOIL-WATER POTENTIAL: CONCEPTS AND MEASUREMENT Contents: Transport mechanisms Water properties Definition of soil-water potential Measurement of soil-water

More information

COMPARISON OF WETTABILITY AND CAPILLARY EFFECT EVALUATED BY DIFFERENT CHARACTERIZING METHODS

COMPARISON OF WETTABILITY AND CAPILLARY EFFECT EVALUATED BY DIFFERENT CHARACTERIZING METHODS 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS COMPARISON OF WETTABILITY AND CAPILLARY EFFECT EVALUATED BY DIFFERENT CHARACTERIZING METHODS S.K. Wang*, M. Li*, Y.Z. Gu, Y.X. Li and Z.G. Zhang Key

More information

Physics 202 Exam 1. May 1, 2013

Physics 202 Exam 1. May 1, 2013 Name: Physics 202 Exam 1 May 1, 2013 Word Problems Show all your work and circle your final answer. (Ten points each.) 1. If 2.4 m 3 of a gas initially at STP is compressed to 1.6 m 3 and its temperature

More information

Dynamic Contact Angles and Wetting Front Instability

Dynamic Contact Angles and Wetting Front Instability Dynamic Contact Angles and Wetting Front Instability Christine E. Baver 1, J. Yves Parlange 1, Cathelijne R. Stoof 1, David A. DiCarlo, Rony Wallach, and Tammo S. Steenhuis 1* 1 1 1 1 1 Department of Biological

More information

Chapter 10. Solids and Fluids

Chapter 10. Solids and Fluids Chapter 10 Solids and Fluids Surface Tension Net force on molecule A is zero Pulled equally in all directions Net force on B is not zero No molecules above to act on it Pulled toward the center of the

More information

This section develops numerically and analytically the geometric optimisation of

This section develops numerically and analytically the geometric optimisation of 7 CHAPTER 7: MATHEMATICAL OPTIMISATION OF LAMINAR-FORCED CONVECTION HEAT TRANSFER THROUGH A VASCULARISED SOLID WITH COOLING CHANNELS 5 7.1. INTRODUCTION This section develops numerically and analytically

More information

MECHANICAL PROPERTIES OF FLUIDS:

MECHANICAL PROPERTIES OF FLUIDS: Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is

More information

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE

NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A CAPILLARY TUBE Proceedings of the Asian Conference on Thermal Sciences 2017, 1st ACTS March 26-30, 2017, Jeju Island, Korea ACTS-P00786 NUMERICAL INVESTIGATION OF THERMOCAPILLARY INDUCED MOTION OF A LIQUID SLUG IN A

More information

Microfluidics 2 Surface tension, contact angle, capillary flow

Microfluidics 2 Surface tension, contact angle, capillary flow MT-0.6081 Microfluidics and BioMEMS Microfluidics 2 Surface tension, contact angle, capillary flow 28.1.2017 Ville Jokinen Surface tension & Surface energy Work required to create new surface = surface

More information

MEASUREMENT OF CAPILLARY PRESSURE BY DIRECT VISUALIZATION OF A CENTRIFUGE EXPERIMENT

MEASUREMENT OF CAPILLARY PRESSURE BY DIRECT VISUALIZATION OF A CENTRIFUGE EXPERIMENT MEASUREMENT OF CAPILLARY PRESSURE BY DIRECT VISUALIZATION OF A CENTRIFUGE EXPERIMENT Osamah A. Al-Omair and Richard L. Christiansen Petroleum Engineering Department, Colorado School of Mines ABSTRACT A

More information

Impacts of Electroosmosis Forces on Surface-Tension- Driven Micro-Pumps

Impacts of Electroosmosis Forces on Surface-Tension- Driven Micro-Pumps Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering (MCM 2015) Barcelona, Spain July 20-21, 2015 Paper No. 290 Impacts of Electroosmosis Forces on Surface-Tension- Driven

More information

Interfaces and interfacial energy

Interfaces and interfacial energy Interfaces and interfacial energy 1/14 kinds: l/g }{{ l/l } mobile s/g s/l s/s Example. Estimate the percetage of water molecules on the surface of a fog droplet of diameter (i) 0.1 mm (naked eye visibility

More information

I. Borsi. EMS SCHOOL ON INDUSTRIAL MATHEMATICS Bedlewo, October 11 18, 2010

I. Borsi. EMS SCHOOL ON INDUSTRIAL MATHEMATICS Bedlewo, October 11 18, 2010 : an : an (Joint work with A. Fasano) Dipartimento di Matematica U. Dini, Università di Firenze (Italy) borsi@math.unifi.it http://web.math.unifi.it/users/borsi porous EMS SCHOOL ON INDUSTRIAL MATHEMATICS

More information

INSTRUCTIONS FOR LABORATORY EXPERIMENT IN FLUID MECHANICS

INSTRUCTIONS FOR LABORATORY EXPERIMENT IN FLUID MECHANICS INSTRUCTIONS FOR LABORATORY EXPERIMENT IN FLUID MECHANICS VT2010 Pipe Flow: General Information: Attendance at the laboratory experiment is required for completion of the course. The experiments will be

More information

Optimization of DPF Structures with a 3D-Unit Cell Model

Optimization of DPF Structures with a 3D-Unit Cell Model Optimization of DPF Structures with a 3D-Unit Cell Model Wieland Beckert, Marcel Dannowski, Lisabeth Wagner, Jörg Adler, Lars Mammitzsch Fraunhofer IKTS, Dresden, Germany *Corresponding author: FhG IKTS,

More information

An Introduction to COMSOL Multiphysics v4.3b & Subsurface Flow Simulation. Ahsan Munir, PhD Tom Spirka, PhD

An Introduction to COMSOL Multiphysics v4.3b & Subsurface Flow Simulation. Ahsan Munir, PhD Tom Spirka, PhD An Introduction to COMSOL Multiphysics v4.3b & Subsurface Flow Simulation Ahsan Munir, PhD Tom Spirka, PhD Agenda Provide an overview of COMSOL 4.3b Our products, solutions and applications Subsurface

More information

Millikan Oil Drop Experiment

Millikan Oil Drop Experiment Millikan Oil Drop Experiment Introduction The electronic charge, or electrical charge carried by an electron, is a fundamental constant in physics. During the years 1909 to 1913, R.A. Millikan used the

More information

Supplementary information Full range physiological mass transport control in 3D tissue cultures

Supplementary information Full range physiological mass transport control in 3D tissue cultures Supplementary information Full range physiological mass transport control in 3D tissue cultures Yu-Hsiang Hsu a,f, Monica L. Moya a,f, Parinaz Abiri a, Christopher C.W. Hughes a,b,f, Steven C. George a,c,d,f,

More information

pifreeze A Freeze / Thaw Plug-in for FEFLOW User Guide

pifreeze A Freeze / Thaw Plug-in for FEFLOW User Guide pifreeze A Freeze / Thaw Plug-in for FEFLOW User Guide MIKE 2016 DHI headquarters Agern Allé 5 DK-2970 Hørsholm Denmark +45 4516 9200 Telephone +45 4516 9333 Support +45 4516 9292 Telefax mike@dhigroup.com

More information

In-Plane Liquid Distribution In Nonwoven Fabrics: Part 2 Simulation

In-Plane Liquid Distribution In Nonwoven Fabrics: Part 2 Simulation ORIGINAL PAPER/PEER-REVIEWED In-Plane Liquid Distribution In Nonwoven Fabrics: Part 2 Simulation By H. S. Kim, Department of Textile Engineering, Pusan National University, Pusan 609-735, South Korea;

More information

A microfluidic-based hydrodynamic trap: Design and implementation

A microfluidic-based hydrodynamic trap: Design and implementation SUPPLEMENTARY MATERIAL A microfluidic-based hydrodynamic trap: Design and implementation Melikhan Tanyeri, a Mikhil Ranka, a Natawan Sittipolkul a and Charles M. Schroeder* a,b a Department of Chemical

More information

Physics 3 Summer 1990 Lab 7 - Hydrodynamics

Physics 3 Summer 1990 Lab 7 - Hydrodynamics Physics 3 Summer 1990 Lab 7 - Hydrodynamics Theory Consider an ideal liquid, one which is incompressible and which has no internal friction, flowing through pipe of varying cross section as shown in figure

More information

dynamics of f luids in porous media

dynamics of f luids in porous media dynamics of f luids in porous media Jacob Bear Department of Civil Engineering Technion Israel Institute of Technology, Haifa DOVER PUBLICATIONS, INC. New York Contents Preface xvii CHAPTER 1 Introduction

More information

Supporting Information. Three-Dimensional Super-Resolution Imaging of Single Nanoparticle Delivered by Pipettes

Supporting Information. Three-Dimensional Super-Resolution Imaging of Single Nanoparticle Delivered by Pipettes Supporting Information Three-Dimensional Super-Resolution Imaging of Single Nanoparticle Delivered by Pipettes Yun Yu,, Vignesh Sundaresan,, Sabyasachi Bandyopadhyay, Yulun Zhang, Martin A. Edwards, Kim

More information

Chapter Seven. For ideal gases, the ideal gas law provides a precise relationship between density and pressure:

Chapter Seven. For ideal gases, the ideal gas law provides a precise relationship between density and pressure: Chapter Seven Horizontal, steady-state flow of an ideal gas This case is presented for compressible gases, and their properties, especially density, vary appreciably with pressure. The conditions of the

More information

Figure 1 Answer: = m

Figure 1 Answer: = m Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel

More information

16 Rainfall on a Slope

16 Rainfall on a Slope Rainfall on a Slope 16-1 16 Rainfall on a Slope 16.1 Problem Statement In this example, the stability of a generic slope is analyzed for two successive rainfall events of increasing intensity and decreasing

More information

Fluid Statics. Pressure. Pressure

Fluid Statics. Pressure. Pressure Pressure Fluid Statics Variation of Pressure with Position in a Fluid Measurement of Pressure Hydrostatic Thrusts on Submerged Surfaces Plane Surfaces Curved Surfaces ddendum First and Second Moment of

More information

Table 17 1 Some general field equation terms. Heat Power. Current Source. 0 0 Boundary Current Porous Media Flow. Flow Source

Table 17 1 Some general field equation terms. Heat Power. Current Source. 0 0 Boundary Current Porous Media Flow. Flow Source 17 Related Analogies 17.1 Basic Concepts The differential equation used in a finite element study in one discipline often appears in a different discipline, but with a different physical meaning for the

More information

Effect of CO 2 phase states and flow rate on salt precipitation in shale caprocks a microfluidic study

Effect of CO 2 phase states and flow rate on salt precipitation in shale caprocks a microfluidic study Supporting Information Effect of CO 2 phase states and flow rate on salt precipitation in shale caprocks a microfluidic study Mohammad Nooraiepour a, *, Hossein Fazeli a, Rohaldin Miri a, Helge Hellevang

More information

Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2

Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law = F 1 = F 2 2 = F 2 A 2 Lecture 24: Archimedes Principle and Bernoulli s Law 1 Chapter 15: Fluid Mechanics Dynamics Using Pascal s Law Example 15.1 The hydraulic lift A hydraulic lift consists of a small diameter piston of radius

More information

1.060 Engineering Mechanics II Spring Problem Set 1

1.060 Engineering Mechanics II Spring Problem Set 1 1.060 Engineering Mechanics II Spring 2006 Due on Tuesday, February 21st Problem Set 1 Important note: Please start a new sheet of paper for each problem in the problem set. Write the names of the group

More information

PHYSICS 111 SPRING FINAL EXAM: May 2, 2017; 2:15pm - 4:15pm

PHYSICS 111 SPRING FINAL EXAM: May 2, 2017; 2:15pm - 4:15pm PHYSICS 111 SPRING 2017 FINAL EXAM: May 2, 2017; 2:15pm - 4:15pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 30 multiple-choice question, each worth 3 points, for

More information

2D Simulations and Electro-Thermal Analysis of Micro-Heater Designs Using COMSOL TM for Gas Sensor Applications

2D Simulations and Electro-Thermal Analysis of Micro-Heater Designs Using COMSOL TM for Gas Sensor Applications Presented at the COMSOL Conference 2010 India 2D Simulations and Electro-Thermal Analysis of Micro-Heater Designs Using COMSOL TM for Gas Sensor Applications Presented By Velmathi.G, Ramshanker.N and Mohan.S

More information

Fluidic low pass filter for hydrodynamic flow stabilization in microfluidic environments

Fluidic low pass filter for hydrodynamic flow stabilization in microfluidic environments his journal is he Royal Society of Chemistry 2012 Electronic Supplementary Material (ESI) for Lab on a Chip his journal is he Royal Society of Chemistry 2011 Supplementary Information Fluidic low pass

More information

Simulation of a Pressure Driven Droplet Generator

Simulation of a Pressure Driven Droplet Generator Simulation of a Pressure Driven Droplet Generator V. Mamet* 1, P. Namy 2, N. Berri 1, L. Tatoulian 1, P. Ehouarn 1, V. Briday 1, P. Clémenceau 1 and B. Dupont 1 1 DBV Technologies, 2 SIMTEC *84 rue des

More information

3D simulations of an injection test done into an unsaturated porous and fractured limestone

3D simulations of an injection test done into an unsaturated porous and fractured limestone 3D simulations of an injection test done into an unsaturated porous and fractured limestone A. Thoraval *, Y. Guglielmi, F. Cappa INERIS, Ecole des Mines de Nancy, FRANCE *Corresponding author: Ecole des

More information

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0 UNIT III FLOW THROUGH PIPES 1. List the types of fluid flow. Steady and unsteady flow Uniform and non-uniform flow Laminar and Turbulent flow Compressible and incompressible flow Rotational and ir-rotational

More information

2. Determine the surface tension of water with the capillary-rise method.

2. Determine the surface tension of water with the capillary-rise method. Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum M19e Surface Tension Tasks 1. Determine the surface tension σ of an organic liquid using the anchor-ring method. Use three different

More information

RELATIONSHIP BETWEEN CAPILLARY PRESSURE AND RESISTIVITY INDEX

RELATIONSHIP BETWEEN CAPILLARY PRESSURE AND RESISTIVITY INDEX SCA2005-4 /2 ELATIONSHIP BETWEEN CAPILLAY PESSUE AND ESISTIVITY INDEX Kewen Li *, Stanford University and Yangtz University and Wade Williams, Core Lab, Inc. * Corresponding author This paper was prepared

More information

Supplementary Information for A Magnetic Wormhole

Supplementary Information for A Magnetic Wormhole Supplementary Information for A Magnetic Wormhole Jordi Prat-Camps, Carles Navau, and Alvaro Sanchez Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

More information

Optimization of the Gas Flow in a GEM Tracker with COMSOL and TENDIGEM Development. Presented at the 2011 COMSOL Conference

Optimization of the Gas Flow in a GEM Tracker with COMSOL and TENDIGEM Development. Presented at the 2011 COMSOL Conference Optimization of the Gas Flow in a GEM Tracker with COMSOL and TENDIGEM Development Francesco Noto Presented at the 2011 COMSOL Conference V. Bellini, E. Cisbani, V. De Smet, F. Librizzi, F. Mammoliti,

More information

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic

More information

Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru

Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru Government of Karnataka Department of Technical Education Board of Technical Examinations, Bengaluru Title :APPLIED SCIENCE LAB Code : 15SC04P Semester : I / II Group : Core Teaching Scheme in Hrs (L:T:P)

More information

Interfacial Instabilities in a Microfluidic Hele-Shaw Cell: Supplemental

Interfacial Instabilities in a Microfluidic Hele-Shaw Cell: Supplemental Supplementary Material (ESI) for Soft Matter This journal is The Royal Society of Chemistry 2008 Interfacial Instabilities in a Microfluidic Hele-Shaw Cell: Supplemental Michinao Hashimoto 1, Piotr Garstecki

More information

ψ ae is equal to the height of the capillary rise in the soil. Ranges from about 10mm for gravel to 1.5m for silt to several meters for clay.

ψ ae is equal to the height of the capillary rise in the soil. Ranges from about 10mm for gravel to 1.5m for silt to several meters for clay. Contents 1 Infiltration 1 1a Hydrologic soil horizons...................... 1 1b Infiltration Process......................... 2 1c Measurement............................ 2 1d Richard s Equation.........................

More information

4 Undrained Cylindrical Cavity Expansion in a Cam-Clay Medium

4 Undrained Cylindrical Cavity Expansion in a Cam-Clay Medium Undrained Cylindrical Cavity Expansion in a Cam-Clay Medium 4-1 4 Undrained Cylindrical Cavity Expansion in a Cam-Clay Medium 4.1 Problem Statement The stress and pore pressure changes due to the expansion

More information

USING MULTI-WALL CARBON NANOTUBE (MWCNT) BASED NANOFLUID IN THE HEAT PIPE TO GET BETTER THERMAL PERFORMANCE *

USING MULTI-WALL CARBON NANOTUBE (MWCNT) BASED NANOFLUID IN THE HEAT PIPE TO GET BETTER THERMAL PERFORMANCE * IJST, Transactions of Mechanical Engineering, Vol. 39, No. M2, pp 325-335 Printed in The Islamic Republic of Iran, 2015 Shiraz University USING MULTI-WALL CARBON NANOTUBE (MWCNT) BASED NANOFLUID IN THE

More information

CHAPTER 1 Fluids and their Properties

CHAPTER 1 Fluids and their Properties FLUID MECHANICS Gaza CHAPTER 1 Fluids and their Properties Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Define the nature of a fluid. Show where fluid mechanics concepts are common with those

More information

A Simple Method for Thermal Characterization of Low-Melting Temperature Phase Change Materials (PCMs)

A Simple Method for Thermal Characterization of Low-Melting Temperature Phase Change Materials (PCMs) A Simple Method for hermal Characterization of Low-Melting emperature Phase Change Materials (PCMs) L. Salvador *, J. Hastanin, F. Novello, A. Orléans 3 and F. Sente 3 Centre Spatial de Liège, Belgium,

More information

Chapter 14 Molecular Model of Matter

Chapter 14 Molecular Model of Matter Chapter 14 Molecular Model of Matter GOALS When you have mastered the contents of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms, and use

More information

Most substances can be in three states: solid, liquid, and gas.

Most substances can be in three states: solid, liquid, and gas. States of Matter Most substances can be in three states: solid, liquid, and gas. Solid Particles Have Fixed Positions The particles in a solid are very close together and have an orderly, fixed arrangement.

More information

An Experimental Investigation of EOR Mechanisms for Nanoparticles Fluid in Glass Micromodel

An Experimental Investigation of EOR Mechanisms for Nanoparticles Fluid in Glass Micromodel 1 / 12 An Experimental Investigation of EOR Mechanisms for Nanoparticles Fluid in Glass Micromodel Shidong Li and Ole Torsæter, Norwegian University of Science and Technology (NTNU) This paper was prepared

More information

Estimating Permeability from Acoustic Velocity and Formation Resistivity Factor

Estimating Permeability from Acoustic Velocity and Formation Resistivity Factor 5th Conference & Exposition on Petroleum Geophysics, Hyderabad-2004, India PP 582-587 and Formation Resistivity Factor Majid Nabi-Bidhendi Institute of Geophysics, University of Tehran, P.O. Box 14155-6466,

More information

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior

More information

Head loss coefficient through sharp-edged orifices

Head loss coefficient through sharp-edged orifices Head loss coefficient through sharp-edged orifices Nicolas J. Adam, Giovanni De Cesare and Anton J. Schleiss Laboratory of Hydraulic Constructions, Ecole Polytechnique fédérale de Lausanne, Lausanne, Switzerland

More information

EVALUATION OF THE THERMAL AND HYDRAULIC PERFORMANCES OF A VERY THIN SINTERED COPPER FLAT HEAT PIPE FOR 3D MICROSYSTEM PACKAGES

EVALUATION OF THE THERMAL AND HYDRAULIC PERFORMANCES OF A VERY THIN SINTERED COPPER FLAT HEAT PIPE FOR 3D MICROSYSTEM PACKAGES Stresa, Italy, 25-27 April 2007 EVALUATION OF THE THERMAL AND HYDRAULIC PERFORMANCES OF A VERY THIN SINTERED COPPER FLAT HEAT PIPE FOR 3D MICROSYSTEM PACKAGES Slavka Tzanova 1, Lora Kamenova 2, Yvan Avenas

More information

CYDAR User Manual Two-phase flow module with chemical EOR

CYDAR User Manual Two-phase flow module with chemical EOR CYDAR User Manual Two-phase flow module with chemical EOR 1 CYDAR - Two-phase flow module with chemical EOR CYDAR USER MANUAL TWO-PHASE FLOW MODULE WITH CHEMICAL EOR... 1 CYDAR - TWO-PHASE FLOW MODULE

More information

Chapter 5. Vibration Analysis. Workbench - Mechanical Introduction ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved.

Chapter 5. Vibration Analysis. Workbench - Mechanical Introduction ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved. Workbench - Mechanical Introduction 12.0 Chapter 5 Vibration Analysis 5-1 Chapter Overview In this chapter, performing free vibration analyses in Simulation will be covered. In Simulation, performing a

More information

Improving signal-to-noise performance for DNA translocation in solid-state nanopores at MHz bandwidths

Improving signal-to-noise performance for DNA translocation in solid-state nanopores at MHz bandwidths Supporting Information Improving signal-to-noise performance for DNA translocation in solid-state nanopores at MHz bandwidths Adrian Balan *1, Bartholomeus Machielse *1, David Niedzwiecki 1, Jianxun Lin

More information

LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE

LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference AJTEC2011 March 13-17, 2011, Honolulu, Hawaii, USA AJTEC2011-44190 LIQUID FILM THICKNESS OF OSCILLATING FLOW IN A MICRO TUBE Youngbae

More information

s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I

s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I Fundamentals of Engineering (FE) Exam General Section Steven Burian Civil & Environmental Engineering October 26, 2010 s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum

More information

Supplementary Methods

Supplementary Methods Supplementary Methods Modeling of magnetic field In this study, the magnetic field was generated with N52 grade nickel-plated neodymium block magnets (K&J Magnetics). The residual flux density of the magnets

More information

! =!"#$% exerted by a fluid (liquid or gas) !"#$ =!"# FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME

! =!#$% exerted by a fluid (liquid or gas) !#$ =!# FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME FUNDAMENTAL AND MEASURABLE INTENSIVE PROPERTIES PRESSURE, TEMPERATURE AND SPECIFIC VOLUME PRESSURE, P! =!"#$%!"#! exerted by a fluid (liquid or gas) Thermodynamic importance of pressure One of two independent

More information

SlipChip, LLC, 129 N. Hill Ave., Pasadena, CA 91106

SlipChip, LLC, 129 N. Hill Ave., Pasadena, CA 91106 Supplementary Material for A Microfluidic Device for Dry Sample Preservation in Remote Settings Stefano Begolo, Feng Shen, and Rustem F. Ismagilov * Division of Chemistry and Chemical Engineering, California

More information

SEM-2017(03HI MECHANICAL ENGINEERING. Paper II. Please read each of the following instructions carefully before attempting questions.

SEM-2017(03HI MECHANICAL ENGINEERING. Paper II. Please read each of the following instructions carefully before attempting questions. We RoU No. 700095 Candidate should write his/her Roll No. here. Total No. of Questions : 7 No. of Printed Pages : 7 SEM-2017(03HI MECHANICAL ENGINEERING Paper II Time ; 3 Hours ] [ Total Marks : 0 Instructions

More information

Multiphase Flow and Heat Transfer

Multiphase Flow and Heat Transfer Multiphase Flow and Heat Transfer ME546 -Sudheer Siddapureddy sudheer@iitp.ac.in Surface Tension The free surface between air and water at a molecular scale Molecules sitting at a free liquid surface against

More information

DESIGN OF MICRO-FLUIDIC BIO-REACTORS USING TOPOLOGY OPTIMIZATION

DESIGN OF MICRO-FLUIDIC BIO-REACTORS USING TOPOLOGY OPTIMIZATION European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006 P. Wesseling, E. Oñate and J. Périaux (Eds) c TU Delft, The Netherlands, 2006 DESIGN OF MICRO-FLUIDIC BIO-REACTORS USING TOPOLOGY OPTIMIZATION

More information

Comparison of pool boiling heat transfer for different tunnel-pore surfaces

Comparison of pool boiling heat transfer for different tunnel-pore surfaces EPJ Web of Conferences, 9 () DOI:./ epjconf/9 C Owned by the authors, published by EDP Sciences, Comparison of pool boiling heat transfer for different nel-pore surfaces Robert Pastuszko,a Kielce University

More information

The Effects of Different Surcharge Pressures on 3-D Consolidation of Soil

The Effects of Different Surcharge Pressures on 3-D Consolidation of Soil The Effects of Different Surcharge Pressures on 3-D Consolidation of Soil Arpan Laskar *1 and Sujit Kumar Pal 2 *1 Department of Civil Engineering, National Institute of Technology Agartala, Tripura, India.

More information

Supporting information for. Microfluidic Impedance Cytometer with Inertial Focusing and. Liquid Electrodes for High-Throughput Cell Counting and

Supporting information for. Microfluidic Impedance Cytometer with Inertial Focusing and. Liquid Electrodes for High-Throughput Cell Counting and Supporting information for Microfluidic Impedance Cytometer with Inertial Focusing and Liquid Electrodes for High-Throughput Cell Counting and Discrimination Wenlai Tang, Dezhi Tang, Zhonghua Ni, Nan Xiang*

More information

MEMBREX. Ready-to-use Syringe Filters < 1 up to 100 ml. Minimizes Loss of Sample. Minimale Holdup-Volume. Low Adsorption.

MEMBREX. Ready-to-use Syringe Filters < 1 up to 100 ml. Minimizes Loss of Sample. Minimale Holdup-Volume. Low Adsorption. MEMBREX < Ready-to-use Syringe Filters < 1 up to 100 ml Minimizes Loss of Sample Minimale Holdup-Volume Low Adsorption Optimized Shape MEMBREX Syringe filters Offering syringe filters in various shapes

More information

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle Lecture 6 Fluids TOPICS Density Pressure Variation of Pressure with Depth Pressure Measurements Buoyant Forces-Archimedes Principle Surface Tension ( External source ) Viscosity ( External source ) Equation

More information

INTRODUCTION AND BASIC CONCEPTS. Chapter 1. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A.

INTRODUCTION AND BASIC CONCEPTS. Chapter 1. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 1 INTRODUCTION AND BASIC CONCEPTS Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc.

More information

Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment:

Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: 7 STEADY FLOW IN PIPES 7.1 Reynolds Number Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: Laminar flow Turbulent flow Reynolds apparatus

More information

Ultrasonic particle and cell separation and size sorting

Ultrasonic particle and cell separation and size sorting SMR.1670-25 INTRODUCTION TO MICROFLUIDICS 8-26 August 2005 Ultrasonic Particle and Cell Separation and Size Sorting in Micro-channels V. Steinberg Weizmann Institute of Science, Israel Ultrasonic particle

More information

Thermal and hydraulic modelling of road tunnel joints

Thermal and hydraulic modelling of road tunnel joints Thermal and hydraulic modelling of road tunnel joints Cédric Hounyevou Klotoé 1, François Duhaime 1, Lotfi Guizani 1 1 Département de génie de la construction, École de technologie supérieure, Montréal,

More information

MOCK cet paper II 2012 (PHYSICS)

MOCK cet paper II 2012 (PHYSICS) MOCK cet paper II 2012 (PHYSICS) 1. The equations of two sound waves are given by Y 1 = 3 sin 100πt and Y 2 = 4 Sin 150 πt. The ratio of the intensities of sound produced in the medium is 1)1:2 2) 1:4

More information

emulsions, and foams March 21 22, 2009

emulsions, and foams March 21 22, 2009 Wetting and adhesion Dispersions in liquids: suspensions, emulsions, and foams ACS National Meeting March 21 22, 2009 Salt Lake City Ian Morrison 2009 Ian Morrison 2009 Lecure 2 - Wetting and adhesion

More information

Introduction to Micro/Nanofluidics. Date: 2015/03/13. Dr. Yi-Chung Tung. Outline

Introduction to Micro/Nanofluidics. Date: 2015/03/13. Dr. Yi-Chung Tung. Outline Introduction to Micro/Nanofluidics Date: 2015/03/13 Dr. Yi-Chung Tung Outline Introduction to Microfluidics Basic Fluid Mechanics Concepts Equivalent Fluidic Circuit Model Conclusion What is Microfluidics

More information

Physics 202 Quiz 1. Apr 8, 2013

Physics 202 Quiz 1. Apr 8, 2013 Name: Physics 202 Quiz 1 Apr 8, 2013 Word Problems Show all your work and circle your final answer. (Ten points each.) 1. One end of a piano wire is wrapped around a cylindrical tuning peg and the other

More information

Figure 1.1: Flaccid (a) and swollen (b) red blood cells being drawn into a micropipette. The scale bars represent 5 µm. Figure adapted from [2].

Figure 1.1: Flaccid (a) and swollen (b) red blood cells being drawn into a micropipette. The scale bars represent 5 µm. Figure adapted from [2]. 1 Biomembranes 1.1 Micropipette aspiration 1.1.1 Experimental setup Figure 1.1: Flaccid (a) and swollen (b) red blood cells being drawn into a micropipette. The scale bars represent 5 µm. Figure adapted

More information

UNIT I FLUID PROPERTIES AND STATICS

UNIT I FLUID PROPERTIES AND STATICS SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: II-B.Tech & I-Sem Course & Branch:

More information

Diffusion and Adsorption in porous media. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad

Diffusion and Adsorption in porous media. Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Diffusion and Adsorption in porous media Ali Ahmadpour Chemical Eng. Dept. Ferdowsi University of Mashhad Contents Introduction Devices used to Measure Diffusion in Porous Solids Modes of transport in

More information