Spectral Algorithms II

Size: px
Start display at page:

Download "Spectral Algorithms II"

Transcription

1 Spectral Algorithms II Applications Slides based on Spectral Mesh Processing Siggraph 2010 course

2 Applications Shape retrieval Parameterization i 1D 2D Quad meshing

3 Shape Retrieval 3D Repository Query Matches

4 Descriptor based shape retrieval 3D Repository descriptors Query descriptor Closest matches th

5 Pose Invariant Shape Descriptor Similar descriptors for shape in different poses Cat Same cat Still the same cat

6 Spectral Shape Descriptors Use pose invariant operators Matrix of geodesic distances Laplace Beltrami operator Heat kernel Derive descriptors from eigen structure Eigenvalues Distance based descriptors on spectral embedding Heat kernel signature

7 Geodesic Distances Matrix Operator: Matrixof Gaussian filtered pair wise geodesic distances A ij = e p i p 2 σ j 2 2 Only take k << n samples Descriptor: eigenvalues of matrix [Jian and Zhang 06]

8 Geodesic Distances Matrix LFD: Light field descriptor [Chen et al. 03] SHD: Spherical Harmonics descriptor [Kazhdan et al. 03] LFD S: LFD on spectral embedding SHD S: SHD on spectral embedding LFD LFD S SHD SHD S EVD Retrieval on McGill Articulated Shape Database

9 Limitations Geodesic distances sensitive to shortcuts = small topological holes Short circuit

10 Global Point Signatures [Rustamov 07] Given a point p on the surface, define φ i (p) value of the eigenfunction φ i at the point p λ i s are the Laplace Beltrami eigenvalues Euclidean distance in GPS space = commute time distance on the surface

11 GPS-based shape retrieval Use histogram of distances in the GPS embeddings Invariance properties reflected in GPS embeddings Less sensitive to topology changes by using only low frequency eigenfunctions Short circuit

12 MDS on GPS 2D embedding that almost reproduces GPS distances

13 Use for shape matching? Nope. Embedding sensitive to eigenvector switching Eigenvectors are not unique Only defined up to sign If repeating eigenvalues any vector in subspace is eigenvector

14 Heat Equation on a Manifold Heat kernel : amount of heat transferred from to in time.

15 Heat Kernel Or Eigenvalues of L Eigenvectors of L 15

16 Heat Kernel K t = Fundamental solution to heat diffusion equation Prob. of reaching y from x after t random steps Heat Kernel Signature [Sun et al. 09] 16

17 Heat Kernel Signature HKS(p) p = : amount of heat left at p at time t. Signature of a point is a function of one variable. Invariant to isometric deformations. Moreover complete: Any continuous map between shapes that preserves HKS must preserve all distances. A Concise and Provably Informative, Sun et al., SGP 2009

18 Heat Kernel Column 18

19 Heat Kernel Signature 19

20 Diffusion wavelets [Coifman and Maggioni 06] Segmentation [degoes et al. 08] Heat kernel signature [Sun et al. 09] Heat kernel matching [Ovsjanikov et al. 10] Heat Kernel Applied 20

21 Applications Shape retrieval Parameterization i 1D 2D Quad meshing

22 1D surface parameterization Graph Laplacian a i,j = w i,j > 0 if (i,j) is an edge a Σ i,i = Σ a i,j (1,1 1) is an eigenvector assoc. with 0 The second eigenvector is interresting [Fiedler 73, 75]

23 1D surface parameterization Fiedler vector FEM matrix, Reorder with ih Non zero entries Fiedler vector

24 1D surface parameterization Fiedler vector Streaming meshes [Isenburg & Lindstrom]

25 1D surface parameterization Fiedler vector Streaming meshes [Isenburg & Lindstrom]

26 1D surface parameterization Fiedler vector F(u) = Σ w ij (u i -u j ) 2 Minimize F(u) = ½ u t A u

27 1D surface parameterization Fiedler vector F(u) = Σ w ij (u i -u j ) 2 Minimize F(u) = ½ u t A u How to avoid trivial solution? Constrained vertices?

28 1D surface parameterization Fiedler vector F(u) = Σ w ij (u i -u j ) 2 Σ u i = 0 Minimize F(u) = ½ u t A u subject to Global constraints are more elegant!

29 1D surface parameterization Fiedler vector F(u) = Σ w ij (u i -u j ) 2 Σ u i = 0 F(u) = ½ u t A u subject to Σ Minimize Global constraints are more elegant! We need also to constrain the second mementum ½ Σ u i2 = 1

30 1D surface parameterization Fiedler vector F(u) = Σ w ij (u i -u j ) 2 Σ u i = 0 F(u) = ½ u t A u subject to Σ Minimize L(u) = ½ u t A u - λ 1 u t 1 - λ 2 ½ (u t u - 1) ½ Σ u i2 = 1 u L = A u - λ λ 2 u λ1 L = u t 1 λ2 L = ½(u t u 1) u = eigenvector of A λ 1 = 0 λ 2 = eigenvalue

31 1D surface parameterization Fiedler vector Rem: Fiedler vector is also a minimizer of the Rayleigh quotient R(A,x) = x t A x x t x The other eigenvectors x i are the solutions of : minimize R(A,x i ) subject to x it x j = 0 for j < i

32 Surface parameterization Minimize Σ T v x v y - - u y u x 2 Discrete conformal mapping: [L, Petitjean, Ray, Maillot 2002] [Desbrun, Alliez 2002]

33 Surface parameterization Minimize Σ T v x v y - - u y u x 2 Discrete conformal mapping: [L, Petitjean, Ray, Maillot 2002] [Desbrun, Alliez 2002] Uses pinned points.

34 Sensitive to Pinned Vertices

35 Surface parameterization [Muellen, Tong, Alliez, Desbrun 2008] Use Fiedler vector, i.e. the minimizer of R(A,x) = x t A x / x t x that is orthogonal to the trivialconstant solution Implementation: (1) assemble the matrix of the discrete conformal parameterization (2) compute its eigenvector associated with the first non zero eigenvalue See Graphite tutorials Manifold Harmonics

36 Applications Shape retrieval Parameterization i 1D 2D Quad meshing

37 Chladni Patterns Nodal sets of eigenfunctions of Laplacian

38 Chladni Patterns

39 Quad Remeshing Nodal sets are sets of curves intersecting at constant angles The N-th eigenfunction has at most N eigendomains

40 Surface quadrangulation Oneeigenfunction eigenfunction Morsecomplex Filtered morsecomplex [Dong and Garland 2006]

41 Surface quadrangulation Reparameterization of the quads

42 Surface quadrangulation Improvement in [Huang, Zhang, Ma, Liu, Kobbelt and Bao 2008], takes a guidance vector field into account.

Justin Solomon MIT, Spring 2017

Justin Solomon MIT, Spring 2017 Justin Solomon MIT, Spring 2017 http://pngimg.com/upload/hammer_png3886.png You can learn a lot about a shape by hitting it (lightly) with a hammer! What can you learn about its shape from vibration frequencies

More information

IFT LAPLACIAN APPLICATIONS. Mikhail Bessmeltsev

IFT LAPLACIAN APPLICATIONS.   Mikhail Bessmeltsev IFT 6112 09 LAPLACIAN APPLICATIONS http://www-labs.iro.umontreal.ca/~bmpix/teaching/6112/2018/ Mikhail Bessmeltsev Rough Intuition http://pngimg.com/upload/hammer_png3886.png You can learn a lot about

More information

Spectral Processing. Misha Kazhdan

Spectral Processing. Misha Kazhdan Spectral Processing Misha Kazhdan [Taubin, 1995] A Signal Processing Approach to Fair Surface Design [Desbrun, et al., 1999] Implicit Fairing of Arbitrary Meshes [Vallet and Levy, 2008] Spectral Geometry

More information

Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation

Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation Author: Raif M. Rustamov Presenter: Dan Abretske Johns Hopkins 2007 Outline Motivation and Background Laplace-Beltrami Operator

More information

Heat Kernel Signature: A Concise Signature Based on Heat Diffusion. Leo Guibas, Jian Sun, Maks Ovsjanikov

Heat Kernel Signature: A Concise Signature Based on Heat Diffusion. Leo Guibas, Jian Sun, Maks Ovsjanikov Heat Kernel Signature: A Concise Signature Based on Heat Diffusion i Leo Guibas, Jian Sun, Maks Ovsjanikov This talk is based on: Jian Sun, Maks Ovsjanikov, Leonidas Guibas 1 A Concise and Provably Informative

More information

Spectral Algorithms I. Slides based on Spectral Mesh Processing Siggraph 2010 course

Spectral Algorithms I. Slides based on Spectral Mesh Processing Siggraph 2010 course Spectral Algorithms I Slides based on Spectral Mesh Processing Siggraph 2010 course Why Spectral? A different way to look at functions on a domain Why Spectral? Better representations lead to simpler solutions

More information

CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher

CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher http://graphics.stanford.edu/projects/lgl/papers/nbwyg-oaicsm-11/nbwyg-oaicsm-11.pdf Need to understand

More information

6/9/2010. Feature-based methods and shape retrieval problems. Structure. Combining local and global structures. Photometric stress

6/9/2010. Feature-based methods and shape retrieval problems. Structure. Combining local and global structures. Photometric stress 1 2 Structure Feature-based methods and shape retrieval problems Global Metric Local Feature descriptors Alexander & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book 048921

More information

EE Technion, Spring then. can be isometrically embedded into can be realized as a Gram matrix of rank, Properties:

EE Technion, Spring then. can be isometrically embedded into can be realized as a Gram matrix of rank, Properties: 5/25/200 2 A mathematical exercise Assume points with the metric are isometrically embeddable into Then, there exists a canonical form such that for all Spectral methods We can also write Alexander & Michael

More information

Laplace Operator and Heat Kernel for Shape Analysis

Laplace Operator and Heat Kernel for Shape Analysis Laplace Operator and Heat Kernel for Shape Analysis Jian Sun Mathematical Sciences Center, Tsinghua University R kf := 2 f x 2 1 Laplace Operator on R k, the standard Laplace operator: R kf := div f +

More information

Functional Maps ( ) Dr. Emanuele Rodolà Room , Informatik IX

Functional Maps ( ) Dr. Emanuele Rodolà Room , Informatik IX Functional Maps (12.06.2014) Dr. Emanuele Rodolà rodola@in.tum.de Room 02.09.058, Informatik IX Seminar «LP relaxation for elastic shape matching» Fabian Stark Wednesday, June 18th 14:00 Room 02.09.023

More information

Matching shapes by eigendecomposition of the Laplace-Beltrami operator

Matching shapes by eigendecomposition of the Laplace-Beltrami operator Matching shapes by eigendecomposition of the Laplace-Beltrami operator Anastasia Dubrovina Technion - Israel Institute of Technology nastyad@tx.technion.ac.il Ron Kimmel Technion - Israel Institute of

More information

Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs

Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs Data Analysis and Manifold Learning Lecture 9: Diffusion on Manifolds and on Graphs Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline of Lecture

More information

APPROXIMATELY ISOMETRIC SHAPE CORRESPONDENCE BY MATCHING POINTWISE SPECTRAL FEATURES AND GLOBAL GEODESIC STRUCTURES

APPROXIMATELY ISOMETRIC SHAPE CORRESPONDENCE BY MATCHING POINTWISE SPECTRAL FEATURES AND GLOBAL GEODESIC STRUCTURES Advances in Adaptive Data Analysis Vol. 3, Nos. 1 & 2 (2011) 203 228 c World Scientific Publishing Company DOI: 10.1142/S1793536911000829 APPROXIMATELY ISOMETRIC SHAPE CORRESPONDENCE BY MATCHING POINTWISE

More information

Spectral Geometry Processing with Manifold Harmonics. Bruno Vallet Bruno Lévy

Spectral Geometry Processing with Manifold Harmonics. Bruno Vallet Bruno Lévy Spectral Geometry Processing with Manifold Harmonics Bruno Vallet Bruno Lévy Introduction Introduction II. Harmonics III. DEC formulation IV. Filtering V. Numerics Results and conclusion Introduction Extend

More information

March 13, Paper: R.R. Coifman, S. Lafon, Diffusion maps ([Coifman06]) Seminar: Learning with Graphs, Prof. Hein, Saarland University

March 13, Paper: R.R. Coifman, S. Lafon, Diffusion maps ([Coifman06]) Seminar: Learning with Graphs, Prof. Hein, Saarland University Kernels March 13, 2008 Paper: R.R. Coifman, S. Lafon, maps ([Coifman06]) Seminar: Learning with Graphs, Prof. Hein, Saarland University Kernels Figure: Example Application from [LafonWWW] meaningful geometric

More information

Stable Spectral Mesh Filtering

Stable Spectral Mesh Filtering Stable Spectral Mesh Filtering Artiom Kovnatsky, Michael M. Bronstein, and Alexander M. Bronstein 2 Institute of Computational Science, Faculty of Informatics, Università della Svizzera Italiana, Lugano,

More information

Diffusion Geometries, Diffusion Wavelets and Harmonic Analysis of large data sets.

Diffusion Geometries, Diffusion Wavelets and Harmonic Analysis of large data sets. Diffusion Geometries, Diffusion Wavelets and Harmonic Analysis of large data sets. R.R. Coifman, S. Lafon, MM Mathematics Department Program of Applied Mathematics. Yale University Motivations The main

More information

An Introduction to Laplacian Spectral Distances and Kernels: Theory, Computation, and Applications. Giuseppe Patané, CNR-IMATI - Italy

An Introduction to Laplacian Spectral Distances and Kernels: Theory, Computation, and Applications. Giuseppe Patané, CNR-IMATI - Italy i An Introduction to Laplacian Spectral Distances and Kernels: Theory, Computation, and Applications Giuseppe Patané, CNR-IMATI - Italy ii Contents List of Figures...1 List of Tables...7 1 Introduction...9

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 23 1 / 27 Overview

More information

Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation

Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation Eurographics ymposium on Geometry Processing (2007) Alexander Belyaev, Michael Garland (Editors) Laplace-Beltrami Eigenfunctions for Deformation Invariant hape Representation Raif M. Rustamov Purdue University,

More information

Non-linear Dimensionality Reduction

Non-linear Dimensionality Reduction Non-linear Dimensionality Reduction CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Laplacian Eigenmaps Locally Linear Embedding (LLE)

More information

The Laplacian ( ) Matthias Vestner Dr. Emanuele Rodolà Room , Informatik IX

The Laplacian ( ) Matthias Vestner Dr. Emanuele Rodolà Room , Informatik IX The Laplacian (26.05.2014) Matthias Vestner Dr. Emanuele Rodolà {vestner,rodola}@in.tum.de Room 02.09.058, Informatik IX Seminar «The metric approach to shape matching» Alfonso Ros Wednesday, May 28th

More information

Contribution from: Springer Verlag Berlin Heidelberg 2005 ISBN

Contribution from: Springer Verlag Berlin Heidelberg 2005 ISBN Contribution from: Mathematical Physics Studies Vol. 7 Perspectives in Analysis Essays in Honor of Lennart Carleson s 75th Birthday Michael Benedicks, Peter W. Jones, Stanislav Smirnov (Eds.) Springer

More information

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline

More information

LECTURE NOTE #11 PROF. ALAN YUILLE

LECTURE NOTE #11 PROF. ALAN YUILLE LECTURE NOTE #11 PROF. ALAN YUILLE 1. NonLinear Dimension Reduction Spectral Methods. The basic idea is to assume that the data lies on a manifold/surface in D-dimensional space, see figure (1) Perform

More information

Dimension Reduction and Low-dimensional Embedding

Dimension Reduction and Low-dimensional Embedding Dimension Reduction and Low-dimensional Embedding Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1/26 Dimension

More information

Graphs, Geometry and Semi-supervised Learning

Graphs, Geometry and Semi-supervised Learning Graphs, Geometry and Semi-supervised Learning Mikhail Belkin The Ohio State University, Dept of Computer Science and Engineering and Dept of Statistics Collaborators: Partha Niyogi, Vikas Sindhwani In

More information

On the optimality of shape and data representation in the spectral domain

On the optimality of shape and data representation in the spectral domain On the optimality of shape and data representation in the spectral domain Yonathan Aflalo Haim Brezis Ron Kimmel arxiv:1409.4349v1 [cs.cv] 15 Sep 014 October 11, 018 Abstract A proof of the optimality

More information

Visualization of Two-Dimensional Symmetric Positive Definite Tensor Fields Using the Heat Kernel Signature

Visualization of Two-Dimensional Symmetric Positive Definite Tensor Fields Using the Heat Kernel Signature Visualization of Two-Dimensional Symmetric Positive Definite Tensor Fields sing the Heat Kernel Signature Valentin Zobel, Jan Reininghaus, and Ingrid Hotz Abstract We propose a method for visualizing two-dimensional

More information

Modal Shape Analysis beyond Laplacian

Modal Shape Analysis beyond Laplacian Modal Shape Analysis beyond Laplacian Klaus Hildebrandt, Christian Schulz, Christoph von Tycowicz, Konrad Polthier Abstract In recent years, substantial progress in shape analysis has been achieved through

More information

Data Analysis and Manifold Learning Lecture 7: Spectral Clustering

Data Analysis and Manifold Learning Lecture 7: Spectral Clustering Data Analysis and Manifold Learning Lecture 7: Spectral Clustering Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline of Lecture 7 What is spectral

More information

Hierarchical Shape Segmentation and Registration via Topological Features of Laplace-Beltrami Eigenfunctions

Hierarchical Shape Segmentation and Registration via Topological Features of Laplace-Beltrami Eigenfunctions Hierarchical Shape Segmentation and Registration via Topological Features of Laplace-Beltrami Eigenfunctions The MIT Faculty has made this article openly available. Please share how this access benefits

More information

Diffusion/Inference geometries of data features, situational awareness and visualization. Ronald R Coifman Mathematics Yale University

Diffusion/Inference geometries of data features, situational awareness and visualization. Ronald R Coifman Mathematics Yale University Diffusion/Inference geometries of data features, situational awareness and visualization Ronald R Coifman Mathematics Yale University Digital data is generally converted to point clouds in high dimensional

More information

Data-dependent representations: Laplacian Eigenmaps

Data-dependent representations: Laplacian Eigenmaps Data-dependent representations: Laplacian Eigenmaps November 4, 2015 Data Organization and Manifold Learning There are many techniques for Data Organization and Manifold Learning, e.g., Principal Component

More information

Spectral Graph Theory and its Applications. Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity

Spectral Graph Theory and its Applications. Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity Spectral Graph Theory and its Applications Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity Outline Adjacency matrix and Laplacian Intuition, spectral graph drawing

More information

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Yoshua Bengio Pascal Vincent Jean-François Paiement University of Montreal April 2, Snowbird Learning 2003 Learning Modal Structures

More information

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Overview Introduction Linear Methods for Dimensionality Reduction Nonlinear Methods and Manifold

More information

Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis

Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis Alvina Goh Vision Reading Group 13 October 2005 Connection of Local Linear Embedding, ISOMAP, and Kernel Principal

More information

Laplacian Mesh Processing

Laplacian Mesh Processing Sorkine et al. Laplacian Mesh Processing (includes material from Olga Sorkine, Yaron Lipman, Marc Pauly, Adrien Treuille, Marc Alexa and Daniel Cohen-Or) Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Nonlinear Dimensionality Reduction Piyush Rai CS5350/6350: Machine Learning October 25, 2011 Recap: Linear Dimensionality Reduction Linear Dimensionality Reduction: Based on a linear projection of the

More information

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Neural Computation, June 2003; 15 (6):1373-1396 Presentation for CSE291 sp07 M. Belkin 1 P. Niyogi 2 1 University of Chicago, Department

More information

Discrete Euclidean Curvature Flows

Discrete Euclidean Curvature Flows Discrete Euclidean Curvature Flows 1 1 Department of Computer Science SUNY at Stony Brook Tsinghua University 2010 Isothermal Coordinates Relation between conformal structure and Riemannian metric Isothermal

More information

arxiv: v1 [cs.dm] 14 Feb 2013

arxiv: v1 [cs.dm] 14 Feb 2013 Eigenfunctions of the Edge-Based Laplacian on a Graph arxiv:1302.3433v1 [cs.dm] 14 Feb 2013 Richard C. Wilson, Furqan Aziz, Edwin R. Hancock Dept. of Computer Science University of York, York, UK March

More information

Learning on Graphs and Manifolds. CMPSCI 689 Sridhar Mahadevan U.Mass Amherst

Learning on Graphs and Manifolds. CMPSCI 689 Sridhar Mahadevan U.Mass Amherst Learning on Graphs and Manifolds CMPSCI 689 Sridhar Mahadevan U.Mass Amherst Outline Manifold learning is a relatively new area of machine learning (2000-now). Main idea Model the underlying geometry of

More information

Directional Field. Xiao-Ming Fu

Directional Field. Xiao-Ming Fu Directional Field Xiao-Ming Fu Outlines Introduction Discretization Representation Objectives and Constraints Outlines Introduction Discretization Representation Objectives and Constraints Definition Spatially-varying

More information

Deformable Shape Retrieval by Learning Diffusion Kernels

Deformable Shape Retrieval by Learning Diffusion Kernels Deformable Shape Retrieval by Learning Diffusion Kernels Yonathan Aflalo 1, Alexander M. Bronstein 2, Michael M. Bronstein 3, and Ron Kimmel 1 1 Technion, Israel Institute of Technology, Haifa, Israel

More information

The Laplace-Beltrami operator: a ubiquitous tool for image and shape processing

The Laplace-Beltrami operator: a ubiquitous tool for image and shape processing The Laplace-Beltrami operator: a ubiquitous tool for image and shape processing Aaron Wetzler, Yonathan Aflalo, Anastasia Dubrovina, and Ron Kimmel Technion - Israel Institute of Technology, Haifa, Israel

More information

Data dependent operators for the spatial-spectral fusion problem

Data dependent operators for the spatial-spectral fusion problem Data dependent operators for the spatial-spectral fusion problem Wien, December 3, 2012 Joint work with: University of Maryland: J. J. Benedetto, J. A. Dobrosotskaya, T. Doster, K. W. Duke, M. Ehler, A.

More information

Regularized Principal Component Analysis

Regularized Principal Component Analysis Chin. Ann. Math. 38B(1), 2017, 1 12 DOI: 10.1007/s11401-016-1061-6 Chinese Annals of Mathematics, Series B c The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2017 Regularized rincipal

More information

Nonlinear Dimensionality Reduction. Jose A. Costa

Nonlinear Dimensionality Reduction. Jose A. Costa Nonlinear Dimensionality Reduction Jose A. Costa Mathematics of Information Seminar, Dec. Motivation Many useful of signals such as: Image databases; Gene expression microarrays; Internet traffic time

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

Spherical Harmonics on S 2

Spherical Harmonics on S 2 7 August 00 1 Spherical Harmonics on 1 The Laplace-Beltrami Operator In what follows, we describe points on using the parametrization x = cos ϕ sin θ, y = sin ϕ sin θ, z = cos θ, where θ is the colatitude

More information

CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher

CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher http://igl.ethz.ch/projects/arap/arap_web.pdf CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher Homework 4: June 5 Project: June 6 Scribe notes: One week

More information

Manifold Learning: Theory and Applications to HRI

Manifold Learning: Theory and Applications to HRI Manifold Learning: Theory and Applications to HRI Seungjin Choi Department of Computer Science Pohang University of Science and Technology, Korea seungjin@postech.ac.kr August 19, 2008 1 / 46 Greek Philosopher

More information

Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian

Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian Amit Singer Princeton University Department of Mathematics and Program in Applied and Computational Mathematics

More information

IFT CONTINUOUS LAPLACIAN Mikhail Bessmeltsev

IFT CONTINUOUS LAPLACIAN   Mikhail Bessmeltsev IFT 6112 07 CONTINUOUS LAPLACIAN http://www-labs.iro.umontreal.ca/~bmpix/teaching/6112/2018/ Mikhail Bessmeltsev Famous Motivation An Experiment Unreasonable to Ask? Length of string http://www.takamine.com/templates/default/images/gclassical.png

More information

Symmetry Factored Embedding And Distance

Symmetry Factored Embedding And Distance Symmetry Factored Embedding And Distance Yaron Lipman Xiaobai Chen Ingrid Daubechies Thomas Funkhouser Princeton University Abstract We introduce the Symmetry Factored Embedding (SFE) and the Symmetry

More information

Discrete Differential Geometry. Peter Schröder with help from Eitan Grinspun, Mathieu Desbrun and the rest of the DDG crew.

Discrete Differential Geometry. Peter Schröder with help from Eitan Grinspun, Mathieu Desbrun and the rest of the DDG crew. Discrete Differential Geometry Peter Schröder with help from Eitan Grinspun, Mathieu Desbrun and the rest of the DDG crew ps@cs.caltech.edu A Bit of History Geometry is the key! studied for centuries Hermann

More information

A Statistical Look at Spectral Graph Analysis. Deep Mukhopadhyay

A Statistical Look at Spectral Graph Analysis. Deep Mukhopadhyay A Statistical Look at Spectral Graph Analysis Deep Mukhopadhyay Department of Statistics, Temple University Office: Speakman 335 deep@temple.edu http://sites.temple.edu/deepstat/ Graph Signal Processing

More information

Spectral Clustering. by HU Pili. June 16, 2013

Spectral Clustering. by HU Pili. June 16, 2013 Spectral Clustering by HU Pili June 16, 2013 Outline Clustering Problem Spectral Clustering Demo Preliminaries Clustering: K-means Algorithm Dimensionality Reduction: PCA, KPCA. Spectral Clustering Framework

More information

Curvatures, Invariants and How to Get Them Without (M)Any Derivatives

Curvatures, Invariants and How to Get Them Without (M)Any Derivatives Curvatures, Invariants and How to Get Them Without (M)Any Derivatives Mathieu Desbrun & Peter Schröder 1 Classical Notions Curves arclength parameterization center of osculating ( kissing ) circle (also

More information

Advances in Manifold Learning Presented by: Naku Nak l Verm r a June 10, 2008

Advances in Manifold Learning Presented by: Naku Nak l Verm r a June 10, 2008 Advances in Manifold Learning Presented by: Nakul Verma June 10, 008 Outline Motivation Manifolds Manifold Learning Random projection of manifolds for dimension reduction Introduction to random projections

More information

Fast and Accurate HARDI and its Application to Neurological Diagnosis

Fast and Accurate HARDI and its Application to Neurological Diagnosis Fast and Accurate HARDI and its Application to Neurological Diagnosis Dr. Oleg Michailovich Department of Electrical and Computer Engineering University of Waterloo June 21, 2011 Outline 1 Diffusion imaging

More information

Nonlinear Methods. Data often lies on or near a nonlinear low-dimensional curve aka manifold.

Nonlinear Methods. Data often lies on or near a nonlinear low-dimensional curve aka manifold. Nonlinear Methods Data often lies on or near a nonlinear low-dimensional curve aka manifold. 27 Laplacian Eigenmaps Linear methods Lower-dimensional linear projection that preserves distances between all

More information

Markov Chains and Spectral Clustering

Markov Chains and Spectral Clustering Markov Chains and Spectral Clustering Ning Liu 1,2 and William J. Stewart 1,3 1 Department of Computer Science North Carolina State University, Raleigh, NC 27695-8206, USA. 2 nliu@ncsu.edu, 3 billy@ncsu.edu

More information

Learning gradients: prescriptive models

Learning gradients: prescriptive models Department of Statistical Science Institute for Genome Sciences & Policy Department of Computer Science Duke University May 11, 2007 Relevant papers Learning Coordinate Covariances via Gradients. Sayan

More information

arxiv: v1 [cs.cv] 28 Sep 2012

arxiv: v1 [cs.cv] 28 Sep 2012 Coupled quasi-harmonic bases arxiv:1210.0026v1 [cs.cv] 28 Sep 2012 A. Kovnatsky 1, M. M. Bronstein 1, A. M. Bronstein 2, K. Glashoff 3, and R. Kimmel 4 1 Faculty of Informatics, Università della Svizzera

More information

Spectral Clustering. Spectral Clustering? Two Moons Data. Spectral Clustering Algorithm: Bipartioning. Spectral methods

Spectral Clustering. Spectral Clustering? Two Moons Data. Spectral Clustering Algorithm: Bipartioning. Spectral methods Spectral Clustering Seungjin Choi Department of Computer Science POSTECH, Korea seungjin@postech.ac.kr 1 Spectral methods Spectral Clustering? Methods using eigenvectors of some matrices Involve eigen-decomposition

More information

L26: Advanced dimensionality reduction

L26: Advanced dimensionality reduction L26: Advanced dimensionality reduction The snapshot CA approach Oriented rincipal Components Analysis Non-linear dimensionality reduction (manifold learning) ISOMA Locally Linear Embedding CSCE 666 attern

More information

Gromov-Hausdorff stable signatures for shapes using persistence

Gromov-Hausdorff stable signatures for shapes using persistence Gromov-Hausdorff stable signatures for shapes using persistence joint with F. Chazal, D. Cohen-Steiner, L. Guibas and S. Oudot Facundo Mémoli memoli@math.stanford.edu l 1 Goal Shape discrimination is a

More information

Introduction to Spectral Geometry

Introduction to Spectral Geometry Chapter 1 Introduction to Spectral Geometry From P.-S. Laplace to E. Beltrami The Laplace operator was first introduced by P.-S. Laplace (1749 1827) for describing celestial mechanics (the notation is

More information

Homework 2. Solutions T =

Homework 2. Solutions T = Homework. s Let {e x, e y, e z } be an orthonormal basis in E. Consider the following ordered triples: a) {e x, e x + e y, 5e z }, b) {e y, e x, 5e z }, c) {e y, e x, e z }, d) {e y, e x, 5e z }, e) {

More information

Robust Laplacian Eigenmaps Using Global Information

Robust Laplacian Eigenmaps Using Global Information Manifold Learning and its Applications: Papers from the AAAI Fall Symposium (FS-9-) Robust Laplacian Eigenmaps Using Global Information Shounak Roychowdhury ECE University of Texas at Austin, Austin, TX

More information

Geometry on Probability Spaces

Geometry on Probability Spaces Geometry on Probability Spaces Steve Smale Toyota Technological Institute at Chicago 427 East 60th Street, Chicago, IL 60637, USA E-mail: smale@math.berkeley.edu Ding-Xuan Zhou Department of Mathematics,

More information

Computing and Processing Correspondences with Functional Maps

Computing and Processing Correspondences with Functional Maps Computing and Processing Correspondences with Functional Maps Maks Ovsjanikov 1 Etienne Corman 2 Michael Bronstein 3,4,5 Emanuele Rodolà 3 Mirela Ben-Chen 6 Leonidas Guibas 7 Frédéric Chazal 8 Alexander

More information

Is Manifold Learning for Toy Data only?

Is Manifold Learning for Toy Data only? s Manifold Learning for Toy Data only? Marina Meilă University of Washington mmp@stat.washington.edu MMDS Workshop 2016 Outline What is non-linear dimension reduction? Metric Manifold Learning Estimating

More information

Cortical Shape Analysis using the Anisotropic Global Point Signature

Cortical Shape Analysis using the Anisotropic Global Point Signature Cortical Shape Analysis using the Anisotropic Global Point Signature Anand A Joshi 1,3, Syed Ashrafulla 1, David W Shattuck 2, Hanna Damasio 3 and Richard M Leahy 1 1 Signal and Image Processing Institute,

More information

II. DIFFERENTIABLE MANIFOLDS. Washington Mio CENTER FOR APPLIED VISION AND IMAGING SCIENCES

II. DIFFERENTIABLE MANIFOLDS. Washington Mio CENTER FOR APPLIED VISION AND IMAGING SCIENCES II. DIFFERENTIABLE MANIFOLDS Washington Mio Anuj Srivastava and Xiuwen Liu (Illustrations by D. Badlyans) CENTER FOR APPLIED VISION AND IMAGING SCIENCES Florida State University WHY MANIFOLDS? Non-linearity

More information

Apprentissage non supervisée

Apprentissage non supervisée Apprentissage non supervisée Cours 3 Higher dimensions Jairo Cugliari Master ECD 2015-2016 From low to high dimension Density estimation Histograms and KDE Calibration can be done automacally But! Let

More information

Locality Preserving Projections

Locality Preserving Projections Locality Preserving Projections Xiaofei He Department of Computer Science The University of Chicago Chicago, IL 60637 xiaofei@cs.uchicago.edu Partha Niyogi Department of Computer Science The University

More information

15 Singular Value Decomposition

15 Singular Value Decomposition 15 Singular Value Decomposition For any high-dimensional data analysis, one s first thought should often be: can I use an SVD? The singular value decomposition is an invaluable analysis tool for dealing

More information

Eigenvalue (mis)behavior on manifolds

Eigenvalue (mis)behavior on manifolds Bucknell University Lehigh University October 20, 2010 Outline 1 Isoperimetric inequalities 2 3 4 A little history Rayleigh quotients The Original Isoperimetric Inequality The Problem of Queen Dido: maximize

More information

Background Mathematics (2/2) 1. David Barber

Background Mathematics (2/2) 1. David Barber Background Mathematics (2/2) 1 David Barber University College London Modified by Samson Cheung (sccheung@ieee.org) 1 These slides accompany the book Bayesian Reasoning and Machine Learning. The book and

More information

Lecture 3: Function Spaces I Finite Elements Modeling. Bruno Lévy

Lecture 3: Function Spaces I Finite Elements Modeling. Bruno Lévy Lecture 3: Function Spaces I Finite Elements Modeling Bruno Lévy Overview 1. Motivations 2. Function Spaces 3. Discretizing a PDE 4. Example: Discretizing the Laplacian 5. Eigenfunctions Spectral Mesh

More information

Symmetry Transforms 1

Symmetry Transforms 1 Symmetry Transforms 1 Motivation Symmetry is everywhere 2 Motivation Symmetry is everywhere Perfect Symmetry [Blum 64, 67] [Wolter 85] [Minovic 97] [Martinet 05] 3 Motivation Symmetry is everywhere Local

More information

CSE 291. Assignment Spectral clustering versus k-means. Out: Wed May 23 Due: Wed Jun 13

CSE 291. Assignment Spectral clustering versus k-means. Out: Wed May 23 Due: Wed Jun 13 CSE 291. Assignment 3 Out: Wed May 23 Due: Wed Jun 13 3.1 Spectral clustering versus k-means Download the rings data set for this problem from the course web site. The data is stored in MATLAB format as

More information

Filtering via a Reference Set. A.Haddad, D. Kushnir, R.R. Coifman Technical Report YALEU/DCS/TR-1441 February 21, 2011

Filtering via a Reference Set. A.Haddad, D. Kushnir, R.R. Coifman Technical Report YALEU/DCS/TR-1441 February 21, 2011 Patch-based de-noising algorithms and patch manifold smoothing have emerged as efficient de-noising methods. This paper provides a new insight on these methods, such as the Non Local Means or the image

More information

Digital Image Processing Chapter 11 Representation and Description

Digital Image Processing Chapter 11 Representation and Description Digital Image Processing Chapter 11 Representation and Description Last Updated: July 20, 2003 Preview 11.1 Representation 11.1.1 Chain Codes Chain codes are used to represent a boundary by a connected

More information

Affine invariant non-rigid shape analysis

Affine invariant non-rigid shape analysis Affine invariant non-rigid shape analysis Dan Raviv Dept. of Computer Science Technion, Israel darav@cs.technion.ac.il Ron Kimmel Dept. of Computer Science Technion, Israel ron@cs.technion.ac.il Figure

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information

A Faber-Krahn type inequality for regular trees

A Faber-Krahn type inequality for regular trees A Faber-Krahn type inequality for regular trees Josef Leydold leydold@statistikwu-wienacat Institut für Statistik, WU Wien Leydold 2003/02/13 A Faber-Krahn type inequality for regular trees p0/36 The Faber-Krahn

More information

Spectral Hashing. Antonio Torralba 1 1 CSAIL, MIT, 32 Vassar St., Cambridge, MA Abstract

Spectral Hashing. Antonio Torralba 1 1 CSAIL, MIT, 32 Vassar St., Cambridge, MA Abstract Spectral Hashing Yair Weiss,3 3 School of Computer Science, Hebrew University, 9904, Jerusalem, Israel yweiss@cs.huji.ac.il Antonio Torralba CSAIL, MIT, 32 Vassar St., Cambridge, MA 0239 torralba@csail.mit.edu

More information

THE HIDDEN CONVEXITY OF SPECTRAL CLUSTERING

THE HIDDEN CONVEXITY OF SPECTRAL CLUSTERING THE HIDDEN CONVEXITY OF SPECTRAL CLUSTERING Luis Rademacher, Ohio State University, Computer Science and Engineering. Joint work with Mikhail Belkin and James Voss This talk A new approach to multi-way

More information

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu Dimension Reduction Techniques Presented by Jie (Jerry) Yu Outline Problem Modeling Review of PCA and MDS Isomap Local Linear Embedding (LLE) Charting Background Advances in data collection and storage

More information

Applied and Computational Harmonic Analysis

Applied and Computational Harmonic Analysis Appl. Comput. Harmon. Anal. 30 2011) 363 401 Contents lists available at ScienceDirect Applied and Computational Harmonic Analysis www.elsevier.com/locate/acha A spectral notion of Gromov Wasserstein distance

More information

Diffusion Wavelets and Applications

Diffusion Wavelets and Applications Diffusion Wavelets and Applications J.C. Bremer, R.R. Coifman, P.W. Jones, S. Lafon, M. Mohlenkamp, MM, R. Schul, A.D. Szlam Demos, web pages and preprints available at: S.Lafon: www.math.yale.edu/~sl349

More information

Mostow Rigidity. W. Dison June 17, (a) semi-simple Lie groups with trivial centre and no compact factors and

Mostow Rigidity. W. Dison June 17, (a) semi-simple Lie groups with trivial centre and no compact factors and Mostow Rigidity W. Dison June 17, 2005 0 Introduction Lie Groups and Symmetric Spaces We will be concerned with (a) semi-simple Lie groups with trivial centre and no compact factors and (b) simply connected,

More information

Multiscale Manifold Learning

Multiscale Manifold Learning Multiscale Manifold Learning Chang Wang IBM T J Watson Research Lab Kitchawan Rd Yorktown Heights, New York 598 wangchan@usibmcom Sridhar Mahadevan Computer Science Department University of Massachusetts

More information

Manifold Regularization

Manifold Regularization 9.520: Statistical Learning Theory and Applications arch 3rd, 200 anifold Regularization Lecturer: Lorenzo Rosasco Scribe: Hooyoung Chung Introduction In this lecture we introduce a class of learning algorithms,

More information