Diffusion Geometries, Diffusion Wavelets and Harmonic Analysis of large data sets.

Size: px
Start display at page:

Download "Diffusion Geometries, Diffusion Wavelets and Harmonic Analysis of large data sets."

Transcription

1 Diffusion Geometries, Diffusion Wavelets and Harmonic Analysis of large data sets. R.R. Coifman, S. Lafon, MM Mathematics Department Program of Applied Mathematics. Yale University

2 Motivations The main problem is to analyse lots of data in high dimensions. Paradigm: we have a large number of documents (e.g.: web pages, gene array data, (hyper)spectral data, molecular dynamics data etc...) and a way of measuring similarity between pairs. Model: a graph (G,E,W) In some cases: vertices are points in high-dimensional Euclidean space, weights are a function of Euclidean distance. Problems Understand data sets in high-dimensions, and classes of functions on them Approximation and learning of such functions Parametrize low dimensional data sets embedded in high-dimension Fast algorithms

3 Biotech data (Gene arrays, proteomic data) Customer databases: companies collect and process information on (potential) customers Financial data High dimensional data: examples Web searching Satellite imagery however... In many situations constraints force the data to lie on sets which a very small intrinsic dimensionality compared to that of the ambient space. In the case of graphs, or arbitrary metric spaces, there are notions of intrinsic complexity, or of embeddability in low dimensional Hilbert spaces.

4 Curse of dimensionality The high dimension is an obstacle to the processing of the data: Approximation of functions: to represent C 1 functions on a grid with accuracy, one needs -n grid points Density estimation difficult: one needs a lot of data points, otherwise most bins are empty Computational cost of many algorithms grows exponentially with the dimension (e.g. Nearest neighbor search, Fast Multipole Method)

5 Diffusion Geometries RR Coifman & S. Lafon Geodesic distance ---> Diffusion distance Diffusion distance is more stable, uses a preponderance of evidence

6 On the graph of documents with similarities there is a natural random walk: we get a Markov chain represented by a matrix P(x,y). If P is symmetric and positive semidefinite, we can define the diffusion distance by D 2 m ( x, y) p m ( x, x) p m ( y, y) 2 p m ( x, y) m m p ( x,.) p ( y,.) 2 m j ( ( x) ( y)) j Geometric Diffusion map j j 2 x X(x) { i i ( x)} l 2. Embeds the graph in Euclidean space, up to precision, via the eigenfunctions, mapping diffusion distance into Euclidean distance. For a set of points in Euclidean space, sampled from a Riemannian manifold, one can build a discretized Laplace-Beltrami operator (associated to the canonical Brownian motion constrained on the manifold) and map the manifold with diffusion distance isometrically in Euclidean space.

7

8 Original points Embeddings

9

10 Phi1 Phi2 Phi3

11

12 Diffusion Wavelets RR Coifman & MM Eigenfunctions are like global Fourier Analysis on the data set, they live in different frequency bands but are not localized. We would like to have elements localized both in frequency and space (compatibly with Heisenberg principles), and critically sampled at the rate corresponding to the frequency band. Where are the frequencies? (T2 ).4 (T4 ).3 (T8 ).2 (T16 ) V V V V 3 2 1

13 Multiresolution diffusion wavelet construction of orthonormal diffusion scaling functions.

14 All this can be done in n log(n), n cardinality of the space!

15 Fast multipole method for generalized potentials

16

17

18

19

20 ( 16 (x), 16,2 16,3 (x))

21

22

23 Comments, Applications, etc... This is wavelet analysis on manifolds (and more, e.g. fractals), graphs, markov chains, while Laplacian eigenfunctions do Fourier Analysis on manifolds (and fractals, etc...). We are compressing powers of the operator, functions of the operators, subspaces of the function subspaces on which its powers act (Heisenberg principle...), and the space itself (sampling theorems, quadrature formulas...) We are constructing a biorthogonal version of the transform (better adapted to studying Markov chains) and wavelet packets: this will allow efficient denoising, compression, discrimination on all the spaces mentioned above. The multiscale spaces are a natural scale of complexity spaces for learning empirical functions on the data set. Diffusion wavelets extend outside the set, in a natural multiscale fashion. To be tied with measure-geometric considerations used to embed metric spaces in Euclidean spaces with small distortion. Study and compression of dynamical systems.

Diffusion Wavelets and Applications

Diffusion Wavelets and Applications Diffusion Wavelets and Applications J.C. Bremer, R.R. Coifman, P.W. Jones, S. Lafon, M. Mohlenkamp, MM, R. Schul, A.D. Szlam Demos, web pages and preprints available at: S.Lafon: www.math.yale.edu/~sl349

More information

Diffusion Geometries, Global and Multiscale

Diffusion Geometries, Global and Multiscale Diffusion Geometries, Global and Multiscale R.R. Coifman, S. Lafon, MM, J.C. Bremer Jr., A.D. Szlam, P.W. Jones, R.Schul Papers, talks, other materials available at: www.math.yale.edu/~mmm82 Data and functions

More information

Contribution from: Springer Verlag Berlin Heidelberg 2005 ISBN

Contribution from: Springer Verlag Berlin Heidelberg 2005 ISBN Contribution from: Mathematical Physics Studies Vol. 7 Perspectives in Analysis Essays in Honor of Lennart Carleson s 75th Birthday Michael Benedicks, Peter W. Jones, Stanislav Smirnov (Eds.) Springer

More information

Diffusion/Inference geometries of data features, situational awareness and visualization. Ronald R Coifman Mathematics Yale University

Diffusion/Inference geometries of data features, situational awareness and visualization. Ronald R Coifman Mathematics Yale University Diffusion/Inference geometries of data features, situational awareness and visualization Ronald R Coifman Mathematics Yale University Digital data is generally converted to point clouds in high dimensional

More information

Diffusion Wavelets for multiscale analysis on manifolds and graphs: constructions and applications

Diffusion Wavelets for multiscale analysis on manifolds and graphs: constructions and applications Diffusion Wavelets for multiscale analysis on manifolds and graphs: constructions and applications Mauro Maggioni EPFL, Lausanne Dec. 19th, 5 EPFL Multiscale Analysis and Diffusion Wavelets - Mauro Maggioni,

More information

March 13, Paper: R.R. Coifman, S. Lafon, Diffusion maps ([Coifman06]) Seminar: Learning with Graphs, Prof. Hein, Saarland University

March 13, Paper: R.R. Coifman, S. Lafon, Diffusion maps ([Coifman06]) Seminar: Learning with Graphs, Prof. Hein, Saarland University Kernels March 13, 2008 Paper: R.R. Coifman, S. Lafon, maps ([Coifman06]) Seminar: Learning with Graphs, Prof. Hein, Saarland University Kernels Figure: Example Application from [LafonWWW] meaningful geometric

More information

Data-dependent representations: Laplacian Eigenmaps

Data-dependent representations: Laplacian Eigenmaps Data-dependent representations: Laplacian Eigenmaps November 4, 2015 Data Organization and Manifold Learning There are many techniques for Data Organization and Manifold Learning, e.g., Principal Component

More information

Multiscale analysis on graphs

Multiscale analysis on graphs Mathematics and Computer Science Duke University I.P.A.M. 11/17/08 In collaboration with R.R. Coifman, P.W. Jones, Y-M. Jung, R. Schul, A.D. Szlam & J.C. Bremer Jr. Funding: NSF/DHS-FODAVA, DMS, IIS, CCF;

More information

Justin Solomon MIT, Spring 2017

Justin Solomon MIT, Spring 2017 Justin Solomon MIT, Spring 2017 http://pngimg.com/upload/hammer_png3886.png You can learn a lot about a shape by hitting it (lightly) with a hammer! What can you learn about its shape from vibration frequencies

More information

IFT LAPLACIAN APPLICATIONS. Mikhail Bessmeltsev

IFT LAPLACIAN APPLICATIONS.   Mikhail Bessmeltsev IFT 6112 09 LAPLACIAN APPLICATIONS http://www-labs.iro.umontreal.ca/~bmpix/teaching/6112/2018/ Mikhail Bessmeltsev Rough Intuition http://pngimg.com/upload/hammer_png3886.png You can learn a lot about

More information

A Multiscale Framework for Markov Decision Processes using Diffusion Wavelets

A Multiscale Framework for Markov Decision Processes using Diffusion Wavelets A Multiscale Framework for Markov Decision Processes using Diffusion Wavelets Mauro Maggioni Program in Applied Mathematics Department of Mathematics Yale University New Haven, CT 6 mauro.maggioni@yale.edu

More information

Diffusion Wavelets on Graphs and Manifolds

Diffusion Wavelets on Graphs and Manifolds Diffusion Wavelets on Graphs and Manifolds R.R. Coifman, MM, J.C. Bremer Jr., A.D. Szlam Other collaborators on related projects: P.W. Jones, S. Lafon, R. Schul www.math.yale.edu/~mmm82 Outline of the

More information

Representation Policy Iteration

Representation Policy Iteration Representation Policy Iteration Sridhar Mahadevan Department of Computer Science University of Massachusetts 14 Governor s Drive Amherst, MA 13 mahadeva@cs.umass.edu Abstract This paper addresses a fundamental

More information

Clustering in kernel embedding spaces and organization of documents

Clustering in kernel embedding spaces and organization of documents Clustering in kernel embedding spaces and organization of documents Stéphane Lafon Collaborators: Raphy Coifman (Yale), Yosi Keller (Yale), Ioannis G. Kevrekidis (Princeton), Ann B. Lee (CMU), Boaz Nadler

More information

Value Function Approximation with Diffusion Wavelets and Laplacian Eigenfunctions

Value Function Approximation with Diffusion Wavelets and Laplacian Eigenfunctions Value Function Approximation with Diffusion Wavelets and Laplacian Eigenfunctions Sridhar Mahadevan Department of Computer Science University of Massachusetts Amherst, MA 13 mahadeva@cs.umass.edu Mauro

More information

Fast Direct Policy Evaluation using Multiscale Analysis of Markov Diffusion Processes

Fast Direct Policy Evaluation using Multiscale Analysis of Markov Diffusion Processes Fast Direct Policy Evaluation using Multiscale Analysis of Markov Diffusion Processes Mauro Maggioni mauro.maggioni@yale.edu Department of Mathematics, Yale University, P.O. Box 88, New Haven, CT,, U.S.A.

More information

Proto-value Functions: A Laplacian Framework for Learning Representation and Control in Markov Decision Processes

Proto-value Functions: A Laplacian Framework for Learning Representation and Control in Markov Decision Processes Proto-value Functions: A Laplacian Framework for Learning Representation and Control in Markov Decision Processes Sridhar Mahadevan Department of Computer Science University of Massachusetts Amherst, MA

More information

Advances in Manifold Learning Presented by: Naku Nak l Verm r a June 10, 2008

Advances in Manifold Learning Presented by: Naku Nak l Verm r a June 10, 2008 Advances in Manifold Learning Presented by: Nakul Verma June 10, 008 Outline Motivation Manifolds Manifold Learning Random projection of manifolds for dimension reduction Introduction to random projections

More information

Heat Kernel Signature: A Concise Signature Based on Heat Diffusion. Leo Guibas, Jian Sun, Maks Ovsjanikov

Heat Kernel Signature: A Concise Signature Based on Heat Diffusion. Leo Guibas, Jian Sun, Maks Ovsjanikov Heat Kernel Signature: A Concise Signature Based on Heat Diffusion i Leo Guibas, Jian Sun, Maks Ovsjanikov This talk is based on: Jian Sun, Maks Ovsjanikov, Leonidas Guibas 1 A Concise and Provably Informative

More information

Data dependent operators for the spatial-spectral fusion problem

Data dependent operators for the spatial-spectral fusion problem Data dependent operators for the spatial-spectral fusion problem Wien, December 3, 2012 Joint work with: University of Maryland: J. J. Benedetto, J. A. Dobrosotskaya, T. Doster, K. W. Duke, M. Ehler, A.

More information

Filtering via a Reference Set. A.Haddad, D. Kushnir, R.R. Coifman Technical Report YALEU/DCS/TR-1441 February 21, 2011

Filtering via a Reference Set. A.Haddad, D. Kushnir, R.R. Coifman Technical Report YALEU/DCS/TR-1441 February 21, 2011 Patch-based de-noising algorithms and patch manifold smoothing have emerged as efficient de-noising methods. This paper provides a new insight on these methods, such as the Non Local Means or the image

More information

Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian

Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian Beyond Scalar Affinities for Network Analysis or Vector Diffusion Maps and the Connection Laplacian Amit Singer Princeton University Department of Mathematics and Program in Applied and Computational Mathematics

More information

Graph Metrics and Dimension Reduction

Graph Metrics and Dimension Reduction Graph Metrics and Dimension Reduction Minh Tang 1 Michael Trosset 2 1 Applied Mathematics and Statistics The Johns Hopkins University 2 Department of Statistics Indiana University, Bloomington November

More information

Graphs, Geometry and Semi-supervised Learning

Graphs, Geometry and Semi-supervised Learning Graphs, Geometry and Semi-supervised Learning Mikhail Belkin The Ohio State University, Dept of Computer Science and Engineering and Dept of Statistics Collaborators: Partha Niyogi, Vikas Sindhwani In

More information

Towards Multiscale Harmonic Analysis of Graphs and Document Corpora

Towards Multiscale Harmonic Analysis of Graphs and Document Corpora Towards Multiscale Harmonic Analysis of Graphs and Document Corpora Mauro Maggioni Diffusion geometry group at Yale: R.R. Coifman, P. Jones, A.D. Szlam, J. Bremer, A. Singer, F. Warner, S.W. Zucker Jan.

More information

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Overview Introduction Linear Methods for Dimensionality Reduction Nonlinear Methods and Manifold

More information

The crucial role of statistics in manifold learning

The crucial role of statistics in manifold learning The crucial role of statistics in manifold learning Tyrus Berry Postdoc, Dept. of Mathematical Sciences, GMU Statistics Seminar GMU Feb., 26 Postdoctoral position supported by NSF ANALYSIS OF POINT CLOUDS

More information

Spectral Processing. Misha Kazhdan

Spectral Processing. Misha Kazhdan Spectral Processing Misha Kazhdan [Taubin, 1995] A Signal Processing Approach to Fair Surface Design [Desbrun, et al., 1999] Implicit Fairing of Arbitrary Meshes [Vallet and Levy, 2008] Spectral Geometry

More information

Non-linear Dimensionality Reduction

Non-linear Dimensionality Reduction Non-linear Dimensionality Reduction CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Introduction Laplacian Eigenmaps Locally Linear Embedding (LLE)

More information

Laplacian Agent Learning: Representation Policy Iteration

Laplacian Agent Learning: Representation Policy Iteration Laplacian Agent Learning: Representation Policy Iteration Sridhar Mahadevan Example of a Markov Decision Process a1: $0 Heaven $1 Earth What should the agent do? a2: $100 Hell $-1 V a1 ( Earth ) = f(0,1,1,1,1,...)

More information

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA

Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Learning Eigenfunctions: Links with Spectral Clustering and Kernel PCA Yoshua Bengio Pascal Vincent Jean-François Paiement University of Montreal April 2, Snowbird Learning 2003 Learning Modal Structures

More information

Spectral Algorithms II

Spectral Algorithms II Spectral Algorithms II Applications Slides based on Spectral Mesh Processing Siggraph 2010 course Applications Shape retrieval Parameterization i 1D 2D Quad meshing Shape Retrieval 3D Repository Query

More information

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations.

Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations. Previously Focus was on solving matrix inversion problems Now we look at other properties of matrices Useful when A represents a transformations y = Ax Or A simply represents data Notion of eigenvectors,

More information

Multiscale Wavelets on Trees, Graphs and High Dimensional Data

Multiscale Wavelets on Trees, Graphs and High Dimensional Data Multiscale Wavelets on Trees, Graphs and High Dimensional Data ICML 2010, Haifa Matan Gavish (Weizmann/Stanford) Boaz Nadler (Weizmann) Ronald Coifman (Yale) Boaz Nadler Ronald Coifman Motto... the relationships

More information

6/9/2010. Feature-based methods and shape retrieval problems. Structure. Combining local and global structures. Photometric stress

6/9/2010. Feature-based methods and shape retrieval problems. Structure. Combining local and global structures. Photometric stress 1 2 Structure Feature-based methods and shape retrieval problems Global Metric Local Feature descriptors Alexander & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book 048921

More information

Diffusion Wavelets. Ronald R. Coifman, Mauro Maggioni

Diffusion Wavelets. Ronald R. Coifman, Mauro Maggioni Diffusion Wavelets Ronald R. Coifman, Mauro Maggioni Program in Applied Mathematics Department of Mathematics Yale University New Haven,CT,65 U.S.A. Abstract We present a multiresolution construction for

More information

From graph to manifold Laplacian: The convergence rate

From graph to manifold Laplacian: The convergence rate Appl. Comput. Harmon. Anal. 2 (2006) 28 34 www.elsevier.com/locate/acha Letter to the Editor From graph to manifold Laplacian: The convergence rate A. Singer Department of athematics, Yale University,

More information

EE Technion, Spring then. can be isometrically embedded into can be realized as a Gram matrix of rank, Properties:

EE Technion, Spring then. can be isometrically embedded into can be realized as a Gram matrix of rank, Properties: 5/25/200 2 A mathematical exercise Assume points with the metric are isometrically embeddable into Then, there exists a canonical form such that for all Spectral methods We can also write Alexander & Michael

More information

Multiscale Analysis and Diffusion Semigroups With Applications

Multiscale Analysis and Diffusion Semigroups With Applications Multiscale Analysis and Diffusion Semigroups With Applications Karamatou Yacoubou Djima Advisor: Wojciech Czaja Norbert Wiener Center Department of Mathematics University of Maryland, College Park http://www.norbertwiener.umd.edu

More information

Introduction to Spectral Geometry

Introduction to Spectral Geometry Chapter 1 Introduction to Spectral Geometry From P.-S. Laplace to E. Beltrami The Laplace operator was first introduced by P.-S. Laplace (1749 1827) for describing celestial mechanics (the notation is

More information

Manifold Learning and it s application

Manifold Learning and it s application Manifold Learning and it s application Nandan Dubey SE367 Outline 1 Introduction Manifold Examples image as vector Importance Dimension Reduction Techniques 2 Linear Methods PCA Example MDS Perception

More information

Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation

Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation Author: Raif M. Rustamov Presenter: Dan Abretske Johns Hopkins 2007 Outline Motivation and Background Laplace-Beltrami Operator

More information

Doubling metric spaces and embeddings. Assaf Naor

Doubling metric spaces and embeddings. Assaf Naor Doubling metric spaces and embeddings Assaf Naor Our approach to general metric spaces bears the undeniable imprint of early exposure to Euclidean geometry. We just love spaces sharing a common feature

More information

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings

Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Data Analysis and Manifold Learning Lecture 3: Graphs, Graph Matrices, and Graph Embeddings Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline

More information

Introduction to Spectral Theory

Introduction to Spectral Theory P.D. Hislop I.M. Sigal Introduction to Spectral Theory With Applications to Schrodinger Operators Springer Introduction and Overview 1 1 The Spectrum of Linear Operators and Hilbert Spaces 9 1.1 TheSpectrum

More information

Is Manifold Learning for Toy Data only?

Is Manifold Learning for Toy Data only? s Manifold Learning for Toy Data only? Marina Meilă University of Washington mmp@stat.washington.edu MMDS Workshop 2016 Outline What is non-linear dimension reduction? Metric Manifold Learning Estimating

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 23 1 / 27 Overview

More information

Regression on Manifolds Using Kernel Dimension Reduction

Regression on Manifolds Using Kernel Dimension Reduction Jens Nilsson JENSN@MATHS.LTH.SE Centre for Mathematical Sciences, Lund University, Box 118, SE-221 00 Lund, Sweden Fei Sha FEISHA@CS.BERKELEY.EDU Computer Science Division, University of California, Berkeley,

More information

Laplacian Mesh Processing

Laplacian Mesh Processing Sorkine et al. Laplacian Mesh Processing (includes material from Olga Sorkine, Yaron Lipman, Marc Pauly, Adrien Treuille, Marc Alexa and Daniel Cohen-Or) Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749

More information

Geometric Constraints II

Geometric Constraints II Geometric Constraints II Realizability, Rigidity and Related theorems. Embeddability of Metric Spaces Section 1 Given the matrix D d i,j 1 i,j n corresponding to a metric space, give conditions under which

More information

Global vs. Multiscale Approaches

Global vs. Multiscale Approaches Harmonic Analysis on Graphs Global vs. Multiscale Approaches Weizmann Institute of Science, Rehovot, Israel July 2011 Joint work with Matan Gavish (WIS/Stanford), Ronald Coifman (Yale), ICML 10' Challenge:

More information

Lecture: Some Practical Considerations (3 of 4)

Lecture: Some Practical Considerations (3 of 4) Stat260/CS294: Spectral Graph Methods Lecture 14-03/10/2015 Lecture: Some Practical Considerations (3 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough.

More information

Multiscale Manifold Learning

Multiscale Manifold Learning Multiscale Manifold Learning Chang Wang IBM T J Watson Research Lab Kitchawan Rd Yorktown Heights, New York 598 wangchan@usibmcom Sridhar Mahadevan Computer Science Department University of Massachusetts

More information

Nonlinear Dimensionality Reduction. Jose A. Costa

Nonlinear Dimensionality Reduction. Jose A. Costa Nonlinear Dimensionality Reduction Jose A. Costa Mathematics of Information Seminar, Dec. Motivation Many useful of signals such as: Image databases; Gene expression microarrays; Internet traffic time

More information

Laplace Operator and Heat Kernel for Shape Analysis

Laplace Operator and Heat Kernel for Shape Analysis Laplace Operator and Heat Kernel for Shape Analysis Jian Sun Mathematical Sciences Center, Tsinghua University R kf := 2 f x 2 1 Laplace Operator on R k, the standard Laplace operator: R kf := div f +

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Nonlinear Dimensionality Reduction Piyush Rai CS5350/6350: Machine Learning October 25, 2011 Recap: Linear Dimensionality Reduction Linear Dimensionality Reduction: Based on a linear projection of the

More information

ON THE REGULARITY OF SAMPLE PATHS OF SUB-ELLIPTIC DIFFUSIONS ON MANIFOLDS

ON THE REGULARITY OF SAMPLE PATHS OF SUB-ELLIPTIC DIFFUSIONS ON MANIFOLDS Bendikov, A. and Saloff-Coste, L. Osaka J. Math. 4 (5), 677 7 ON THE REGULARITY OF SAMPLE PATHS OF SUB-ELLIPTIC DIFFUSIONS ON MANIFOLDS ALEXANDER BENDIKOV and LAURENT SALOFF-COSTE (Received March 4, 4)

More information

Locality Preserving Projections

Locality Preserving Projections Locality Preserving Projections Xiaofei He Department of Computer Science The University of Chicago Chicago, IL 60637 xiaofei@cs.uchicago.edu Partha Niyogi Department of Computer Science The University

More information

PARAMETERIZATION OF NON-LINEAR MANIFOLDS

PARAMETERIZATION OF NON-LINEAR MANIFOLDS PARAMETERIZATION OF NON-LINEAR MANIFOLDS C. W. GEAR DEPARTMENT OF CHEMICAL AND BIOLOGICAL ENGINEERING PRINCETON UNIVERSITY, PRINCETON, NJ E-MAIL:WGEAR@PRINCETON.EDU Abstract. In this report we consider

More information

Conference in Honor of Aline Bonami Orleans, June 2014

Conference in Honor of Aline Bonami Orleans, June 2014 Conference in Honor of Aline Bonami Orleans, June 2014 Harmonic Analysis and functional duality, as a tool for organization of information, and learning. R. Coifman Department of Mathematics, program of

More information

High-Dimensional Pattern Recognition using Low-Dimensional Embedding and Earth Mover s Distance

High-Dimensional Pattern Recognition using Low-Dimensional Embedding and Earth Mover s Distance High-Dimensional Pattern Recognition using Low-Dimensional Embedding and Earth Mover s Distance Linh Lieu,a, Naoki Saito a a Department of Mathematics, University of California, Davis, CA 95616, USA Abstract

More information

Diffusion Maps, Spectral Clustering and Eigenfunctions of Fokker-Planck Operators

Diffusion Maps, Spectral Clustering and Eigenfunctions of Fokker-Planck Operators Diffusion Maps, Spectral Clustering and Eigenfunctions of Fokker-Planck Operators Boaz Nadler Stéphane Lafon Ronald R. Coifman Department of Mathematics, Yale University, New Haven, CT 652. {boaz.nadler,stephane.lafon,ronald.coifman}@yale.edu

More information

Exploiting Sparse Non-Linear Structure in Astronomical Data

Exploiting Sparse Non-Linear Structure in Astronomical Data Exploiting Sparse Non-Linear Structure in Astronomical Data Ann B. Lee Department of Statistics and Department of Machine Learning, Carnegie Mellon University Joint work with P. Freeman, C. Schafer, and

More information

Metric Learning on Manifolds

Metric Learning on Manifolds Journal of Machine Learning Research 0 (2011) 0-00 Submitted 0/00; Published 00/00 Metric Learning on Manifolds Dominique Perrault-Joncas Department of Statistics University of Washington Seattle, WA 98195-4322,

More information

Learning Representation & Behavior:

Learning Representation & Behavior: Learning Representation & Behavior: Manifold and Spectral Methods for Markov Decision Processes and Reinforcement Learning Sridhar Mahadevan, U. Mass, Amherst Mauro Maggioni, Yale Univ. June 25, 26 ICML

More information

Embeddings of finite metric spaces in Euclidean space: a probabilistic view

Embeddings of finite metric spaces in Euclidean space: a probabilistic view Embeddings of finite metric spaces in Euclidean space: a probabilistic view Yuval Peres May 11, 2006 Talk based on work joint with: Assaf Naor, Oded Schramm and Scott Sheffield Definition: An invertible

More information

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation

Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Laplacian Eigenmaps for Dimensionality Reduction and Data Representation Neural Computation, June 2003; 15 (6):1373-1396 Presentation for CSE291 sp07 M. Belkin 1 P. Niyogi 2 1 University of Chicago, Department

More information

Dimensionality Reduction:

Dimensionality Reduction: Dimensionality Reduction: From Data Representation to General Framework Dong XU School of Computer Engineering Nanyang Technological University, Singapore What is Dimensionality Reduction? PCA LDA Examples:

More information

Multiscale bi-harmonic Analysis of Digital Data Bases and Earth moving distances.

Multiscale bi-harmonic Analysis of Digital Data Bases and Earth moving distances. Multiscale bi-harmonic Analysis of Digital Data Bases and Earth moving distances. R. Coifman, Department of Mathematics, program of Applied Mathematics Yale University Joint work with M. Gavish and W.

More information

Learning gradients: prescriptive models

Learning gradients: prescriptive models Department of Statistical Science Institute for Genome Sciences & Policy Department of Computer Science Duke University May 11, 2007 Relevant papers Learning Coordinate Covariances via Gradients. Sayan

More information

DIMENSION REDUCTION. min. j=1

DIMENSION REDUCTION. min. j=1 DIMENSION REDUCTION 1 Principal Component Analysis (PCA) Principal components analysis (PCA) finds low dimensional approximations to the data by projecting the data onto linear subspaces. Let X R d and

More information

Algorithm S1. Nonlinear Laplacian spectrum analysis (NLSA)

Algorithm S1. Nonlinear Laplacian spectrum analysis (NLSA) Algorithm S1. Nonlinear Laplacian spectrum analysis (NLSA) input : data array x of size m S lag window q Gaussian width ɛ number of nearest neighbors b number of Laplacian eigenfunctions l output: array

More information

Multivariate Statistics Random Projections and Johnson-Lindenstrauss Lemma

Multivariate Statistics Random Projections and Johnson-Lindenstrauss Lemma Multivariate Statistics Random Projections and Johnson-Lindenstrauss Lemma Suppose again we have n sample points x,..., x n R p. The data-point x i R p can be thought of as the i-th row X i of an n p-dimensional

More information

Graph Matching & Information. Geometry. Towards a Quantum Approach. David Emms

Graph Matching & Information. Geometry. Towards a Quantum Approach. David Emms Graph Matching & Information Geometry Towards a Quantum Approach David Emms Overview Graph matching problem. Quantum algorithms. Classical approaches. How these could help towards a Quantum approach. Graphs

More information

Semi-Supervised Learning on Riemannian Manifolds

Semi-Supervised Learning on Riemannian Manifolds Semi-Supervised Learning on Riemannian Manifolds Mikhail Belkin, Partha Niyogi University of Chicago, Department of Computer Science Abstract. We consider the general problem of utilizing both labeled

More information

IFT CONTINUOUS LAPLACIAN Mikhail Bessmeltsev

IFT CONTINUOUS LAPLACIAN   Mikhail Bessmeltsev IFT 6112 07 CONTINUOUS LAPLACIAN http://www-labs.iro.umontreal.ca/~bmpix/teaching/6112/2018/ Mikhail Bessmeltsev Famous Motivation An Experiment Unreasonable to Ask? Length of string http://www.takamine.com/templates/default/images/gclassical.png

More information

CS 468, Lecture 11: Covariant Differentiation

CS 468, Lecture 11: Covariant Differentiation CS 468, Lecture 11: Covariant Differentiation Adrian Butscher (scribe: Ben Mildenhall) May 6, 2013 1 Introduction We have talked about various extrinsic and intrinsic properties of surfaces. Extrinsic

More information

A NEW BASIS SELECTION PARADIGM FOR WAVELET PACKET IMAGE CODING

A NEW BASIS SELECTION PARADIGM FOR WAVELET PACKET IMAGE CODING A NEW BASIS SELECTION PARADIGM FOR WAVELET PACKET IMAGE CODING Nasir M. Rajpoot, Roland G. Wilson, François G. Meyer, Ronald R. Coifman Corresponding Author: nasir@dcs.warwick.ac.uk ABSTRACT In this paper,

More information

Chapter 3. Riemannian Manifolds - I. The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves

Chapter 3. Riemannian Manifolds - I. The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves Chapter 3 Riemannian Manifolds - I The subject of this thesis is to extend the combinatorial curve reconstruction approach to curves embedded in Riemannian manifolds. A Riemannian manifold is an abstraction

More information

KERNEL DENSITY ESTIMATION ON EMBEDDED MANIFOLDS WITH BOUNDARY

KERNEL DENSITY ESTIMATION ON EMBEDDED MANIFOLDS WITH BOUNDARY Submitted to the Annals of Statistics KERNEL DENSITY ESTIMATION ON EMBEDDED MANIFOLDS WITH BOUNDARY By Tyrus Berry and Timothy Sauer We consider practical density estimation from large data sets sampled

More information

Contents. Acknowledgments

Contents. Acknowledgments Table of Preface Acknowledgments Notation page xii xx xxi 1 Signals and systems 1 1.1 Continuous and discrete signals 1 1.2 Unit step and nascent delta functions 4 1.3 Relationship between complex exponentials

More information

Perturbation of the Eigenvectors of the Graph Laplacian: Application to Image Denoising

Perturbation of the Eigenvectors of the Graph Laplacian: Application to Image Denoising *Manuscript Click here to view linked References Perturbation of the Eigenvectors of the Graph Laplacian: Application to Image Denoising F.G. Meyer a,, X. Shen b a Department of Electrical Engineering,

More information

Manifold Regularization

Manifold Regularization 9.520: Statistical Learning Theory and Applications arch 3rd, 200 anifold Regularization Lecturer: Lorenzo Rosasco Scribe: Hooyoung Chung Introduction In this lecture we introduce a class of learning algorithms,

More information

Math 307 Learning Goals

Math 307 Learning Goals Math 307 Learning Goals May 14, 2018 Chapter 1 Linear Equations 1.1 Solving Linear Equations Write a system of linear equations using matrix notation. Use Gaussian elimination to bring a system of linear

More information

Stable Spectral Mesh Filtering

Stable Spectral Mesh Filtering Stable Spectral Mesh Filtering Artiom Kovnatsky, Michael M. Bronstein, and Alexander M. Bronstein 2 Institute of Computational Science, Faculty of Informatics, Università della Svizzera Italiana, Lugano,

More information

Nonlinear Methods. Data often lies on or near a nonlinear low-dimensional curve aka manifold.

Nonlinear Methods. Data often lies on or near a nonlinear low-dimensional curve aka manifold. Nonlinear Methods Data often lies on or near a nonlinear low-dimensional curve aka manifold. 27 Laplacian Eigenmaps Linear methods Lower-dimensional linear projection that preserves distances between all

More information

Harnack inequalities and Gaussian estimates for random walks on metric measure spaces. Mathav Murugan Laurent Saloff-Coste

Harnack inequalities and Gaussian estimates for random walks on metric measure spaces. Mathav Murugan Laurent Saloff-Coste Harnack inequalities and Gaussian estimates for random walks on metric measure spaces Mathav Murugan Laurent Saloff-Coste Author address: Department of Mathematics, University of British Columbia and Pacific

More information

A Statistical Look at Spectral Graph Analysis. Deep Mukhopadhyay

A Statistical Look at Spectral Graph Analysis. Deep Mukhopadhyay A Statistical Look at Spectral Graph Analysis Deep Mukhopadhyay Department of Statistics, Temple University Office: Speakman 335 deep@temple.edu http://sites.temple.edu/deepstat/ Graph Signal Processing

More information

Robust Laplacian Eigenmaps Using Global Information

Robust Laplacian Eigenmaps Using Global Information Manifold Learning and its Applications: Papers from the AAAI Fall Symposium (FS-9-) Robust Laplacian Eigenmaps Using Global Information Shounak Roychowdhury ECE University of Texas at Austin, Austin, TX

More information

Harmonic Analysis and Geometries of Digital Data Bases

Harmonic Analysis and Geometries of Digital Data Bases Harmonic Analysis and Geometries of Digital Data Bases AMS Session Special Sesson on the Mathematics of Information and Knowledge, Ronald Coifman (Yale) and Matan Gavish (Stanford, Yale) January 14, 2010

More information

Recall that any inner product space V has an associated norm defined by

Recall that any inner product space V has an associated norm defined by Hilbert Spaces Recall that any inner product space V has an associated norm defined by v = v v. Thus an inner product space can be viewed as a special kind of normed vector space. In particular every inner

More information

Spectral Graph Theory and its Applications. Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity

Spectral Graph Theory and its Applications. Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity Spectral Graph Theory and its Applications Daniel A. Spielman Dept. of Computer Science Program in Applied Mathematics Yale Unviersity Outline Adjacency matrix and Laplacian Intuition, spectral graph drawing

More information

1 First and second variational formulas for area

1 First and second variational formulas for area 1 First and second variational formulas for area In this chapter, we will derive the first and second variational formulas for the area of a submanifold. This will be useful in our later discussion on

More information

Spectral Algorithms I. Slides based on Spectral Mesh Processing Siggraph 2010 course

Spectral Algorithms I. Slides based on Spectral Mesh Processing Siggraph 2010 course Spectral Algorithms I Slides based on Spectral Mesh Processing Siggraph 2010 course Why Spectral? A different way to look at functions on a domain Why Spectral? Better representations lead to simpler solutions

More information

Geometry on Probability Spaces

Geometry on Probability Spaces Geometry on Probability Spaces Steve Smale Toyota Technological Institute at Chicago 427 East 60th Street, Chicago, IL 60637, USA E-mail: smale@math.berkeley.edu Ding-Xuan Zhou Department of Mathematics,

More information

arxiv: v1 [math.na] 9 Sep 2014

arxiv: v1 [math.na] 9 Sep 2014 Finite Integral ethod for Solving Poisson-type Equations on anifolds from Point Clouds with Convergence Guarantees arxiv:1409.63v1 [math.na] 9 Sep 014 Zhen Li Zuoqiang Shi Jian Sun September 10, 014 Abstract

More information

Dimension Reduction and Low-dimensional Embedding

Dimension Reduction and Low-dimensional Embedding Dimension Reduction and Low-dimensional Embedding Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1/26 Dimension

More information

Stable MMPI-2 Scoring: Introduction to Kernel. Extension Techniques

Stable MMPI-2 Scoring: Introduction to Kernel. Extension Techniques 1 Stable MMPI-2 Scoring: Introduction to Kernel Extension Techniques Liberty,E., Almagor,M., Zucker,S., Keller,Y., and Coifman,R.R. Abstract The current study introduces a new technique called Geometric

More information

Differential Geometry for Image Processing

Differential Geometry for Image Processing MSc TU/e Course: Differential Geometry for Image Processing Teachers: R. Duits MF 7.072 (responsible teacher, lecturer) E.J. Bekkers MF 7.074 (teacher, instructor) Course Description: This MSc course aims

More information

RIGIDITY OF MINIMAL ISOMETRIC IMMERSIONS OF SPHERES INTO SPHERES. Christine M. Escher Oregon State University. September 10, 1997

RIGIDITY OF MINIMAL ISOMETRIC IMMERSIONS OF SPHERES INTO SPHERES. Christine M. Escher Oregon State University. September 10, 1997 RIGIDITY OF MINIMAL ISOMETRIC IMMERSIONS OF SPHERES INTO SPHERES Christine M. Escher Oregon State University September, 1997 Abstract. We show two specific uniqueness properties of a fixed minimal isometric

More information