Thermal Effects in High Coercivity Perpendicular Media

Size: px
Start display at page:

Download "Thermal Effects in High Coercivity Perpendicular Media"

Transcription

1 Thermal Effects in High Coercivity Perpendicular Media J.W. Harrell Scott Brown MINT Center University of Alabama

2 Introduction Thermal stability of perpendicular media will be a limiting factor in future high density media. Stability is affected by exchange and dipolar (demagnetization) interactions. Relaxation studies in zero applied field as a function demagnetization state are useful in determining interactions. Here we present thermal stability measurements on 3 different types of high coercivity media: Co/Pd multilayer, CoPtCr-SiO, and CoPtCr. Preliminary Monte-Carlo calculations are also given.

3 Perpendicular Media Used in Study 1 CoPtCr-SiO - Hitachi Maxell 4 CoCrPt - Seagate 8 Co/Pd Multilayer - Hitachi Maxell Moment (µemu) 5-5 M S (emu/cc) - Moment (µemu) H (koe) H (koe) H (koe) CoPtCr-SiO : glass/ti(5nm)/ru(4nm)/coptcr-sio(16nm)/c(5nm) CoPtCr: glass/ta(5)/ru(1)/cocrpt(19)/c(5) Co/Pd: glass/ti(5nm)/pdb(8nm)/b[co/pd] (19.5nm)/C(8nm)

4 Time-dependent Remanent Coercivity Room-temperature measurements were analyzed using Sharrock formula: H n cr = ( t) = 3, f H = 1 k 1 K 1 Hz B u T V ln( f t) n H cr (koe) CoPtCr-SiO CoPtCr Co/Pd log(t) H C H K u V M S (koe) (koe) k B T (emu/cc) CoPtCr CoPtCr Co/Pd

5 Temperature-dependent Coercivity CoPtCr-SiO CoPtCr-SiO.7 1 Temperature-dependent H C measurements were analyzed using Sharrock formula with t eff ~ 1 sec. M s (T) ~ constant, suggesting H and K are constant. From temp. dependence of H C : (KV/kT) 3K = 88, H = 1. koe From time dependence of H CR : (KV/kT) 3K = 158, H = 7.5 koe M s (memu) M s H C Temperature K Reason for discrepancy is not understood. Note, however, that we are comparing ordinary and remanent coercivity Hc (koe)

6 Temperature-dependent Coercivity Co/Pd Ms (emu) Fit M s (T) to Hc (H, K = const) Hc (H ~ Ms, K ~ Ms ) Hc (H ~ Ms, K ~ Ms 3 ) 1 3 M M s s T (K) ( T ) () = 1 at Fit H C (T) to Sharrock equation with t eff ~ 1 sec. Ms / Hc (koe) Temperature dependence of M s suggests K and H may be temperature dependent. From temperature dependence of H C : (KV/kT) 3K = 54, if H, K = constant. (KV/kT) 3K = 146, if H M s,k Ms. (KV/kT) 3K = 5, if H M s,k M s3. From time dependence of H CR : (KV/kT) 3K = 17 Time and temp. measurements don t agree. We need a model to account for nucleation and domain wall motion.

7 Comparison of time and temperature dependent measurements For thermally activated reversal, we expect coercivity to have universal temperature-time dependence given by T ln(f t), if material parameters are independent of temperature. Measurements show stronger temperature dependence than time dependence for both CoPtCr-SiO and Co/Pd film (even though M s ~ constant for CoPtCr-SiO.) 1 CoPtCr-SiO 1 Co/Pd Hc, Hcr (koe) Hc (koe) Hcr (koe) Hc, Hcr (koe) Hc (koe) Hcr (koe) T*ln(fo*t) T*ln(fo*t)

8 Relaxation of remanence in zero applied field after dc demagnetization Measurement sequence Energy barrier distribution after partial dc demagnetization 4 1 G (E) 3 E C E

9 Effect of interactions on zero-field relaxation No interactions viscosity independent of M R over wide range. Exchange interactions stabilizes saturation remanence, enhances decay of reduced remanence. Demagnetization field destabilizes saturation remanence. Zero-Field Viscosity, S Remanence Moment, M r

10 Comparison of Zero Field Relaxation Measurements S (%/decade) CoPtCr-SiO CoPtCr Co/Pd M r /M rs The relaxation curves reflect competition between dipolar and exchange interactions. CoPtCr-SiO shows the largest relaxation at saturation remanence, although it has the largest KV/kT. Weak exchange (SiO grain isolation) and strong dipolar interactions (largest M s ). Co/Pd shows the lowest relaxation at saturation remanence due to strong exchange effects.

11 Measured and Monte-Carlo simulation of zero-field viscosity CoPtCr (in collaboration with Roy Chantrell) MC parameters taken from hysteresis fit includes moderate exchange (H ex =.4 H k ). Calculation gives correct shape but wrong magnitude. Parameters need further tuning to fit both hysteresis and zero-field relaxation S (%/dec)..1 measured S (%/dec) 1.5 calculated Mr Mr

12 Conclusions The time and temperature dependence of coercivities are not fully reconciled using the Sharrock formula. Measurements of H cr (t) as a function of temperature are needed. Zero-field viscosity measurements are sensitive to interactions. Although CoPtCr-SiO has the largest KV/kT, it also has the largest zero-field viscosity because of weak exchange interactions. Preliminary Monte-Carlo modeling on CoPtCr are in qualitative agreement with measurements.

Thermal Effects in Magnetic Recording Media

Thermal Effects in Magnetic Recording Media Thermal Effects in Magnetic Recording Media J.W. Harrell MINT Center and Dept. of Physics & Astronomy University of Alabama Work supported by NSF-MRSEC MINT Fall Review, Nov. 21 Stability Problem in Granular

More information

Simulation of Hysteresis In Permalloy Films

Simulation of Hysteresis In Permalloy Films GQ-02 1 Simulation of Hysteresis In Permalloy Films Andrew Kunz and Chuck Campbell Magnetic Microscopy Center University of Minnesota Minneapolis, MN Introduction 2 Looking for the classical behavior of

More information

Anisotropy Distributions in Patterned Magnetic Media

Anisotropy Distributions in Patterned Magnetic Media MINT Review & Workshop 24-25 Oct. 2006 Anisotropy Distributions in Patterned Magnetic Media Tom Thomson Hitachi San Jose Research Center Page 1 Acknowledgements Manfred Albrecht (Post-doc) Tom Albrecht

More information

ECC Media Technology. 1. Introduction. 2. ECC Media. Shunji Takenoiri TuQiang Li Yoshiyuki Kuboki

ECC Media Technology. 1. Introduction. 2. ECC Media. Shunji Takenoiri TuQiang Li Yoshiyuki Kuboki ECC Media Technology Shunji Takenoiri TuQiang Li Yoshiyuki Kuboki 1. Introduction Two years have already elapsed since Fuji Electric began mass-producing perpendicular magnetic recording media, and now

More information

The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method

The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 6656-261 (June 19, 1996) We develop

More information

A Monte Carlo Approach to Modelling Thermal Decay in Perpendicular Recording. Media

A Monte Carlo Approach to Modelling Thermal Decay in Perpendicular Recording. Media A Monte Carlo Approach to Modelling Thermal Decay in Perpendicular Recording Media T. J. Fal, 1 J. I. Mercer, 2 M. D. Leblanc, 1 J. P. Whitehead, 1 M. L. Plumer, 1 and J. van Ek 3 1 Department of Physics

More information

Materials Research for Advanced Data Storage

Materials Research for Advanced Data Storage Materials Research for Advanced Data Storage University of Alabama Center for Materials for Information Technology Fall Review November 18, 2002 Center for Materials for Information Technology (MINT) at

More information

MICROMAGNETICS OF EXCHANGE SPRING MEDIA: OPTIMIZATION AND LIMITS

MICROMAGNETICS OF EXCHANGE SPRING MEDIA: OPTIMIZATION AND LIMITS 1/49 MICROMAGNETICS OF EXCHANGE SPRING MEDIA: OPTIMIZATION AND LIMITS Dieter Suess dieter.suess@tuwien.ac.at Institut of Solid State Physics, Vienna University of Technology, Austria (submitted to Journal

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Engineered materials for all-optical helicity-dependent magnetic switching S. Mangin 1,2, M. Gottwald 1, C-H. Lambert 1,2, D. Steil 3, V. Uhlíř 1, L. Pang 4, M. Hehn 2, S. Alebrand 3, M. Cinchetti 3, G.

More information

An investigation of magnetic reversal in submicron-scale Co dots using first order reversal curve diagrams

An investigation of magnetic reversal in submicron-scale Co dots using first order reversal curve diagrams JOURNAL OF APPLIED PHYSICS VOLUME 85, NUMBER 9 1 MAY 1999 An investigation of magnetic reversal in submicron-scale Co dots using first order reversal curve diagrams Chris Pike a) Department of Geology,

More information

Exchange Bias in [Co/Pd]/IrMn Thin Films. Young Byun

Exchange Bias in [Co/Pd]/IrMn Thin Films. Young Byun Exchange Bias in [Co/Pd]/IrMn Thin Films Young Byun A senior thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Bachelor of Science

More information

Influence of Size on the Properties of Materials

Influence of Size on the Properties of Materials Influence of Size on the Properties of Materials M. J. O Shea Kansas State University mjoshea@phys.ksu.edu If you cannot get the papers connected to this work, please e-mail me for a copy 1. General Introduction

More information

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations

Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations Exchange bias in core/shell magnetic nanoparticles: experimental results and numerical simulations Xavier Batlle, A. Labarta, Ò. Iglesias, M. García del Muro and M. Kovylina Goup of Magnetic Nanomaterials

More information

High-Temperature First-Order-Reversal-Curve (FORC) Study of Magnetic Nanoparticle Based Nanocomposite Materials

High-Temperature First-Order-Reversal-Curve (FORC) Study of Magnetic Nanoparticle Based Nanocomposite Materials High-Temperature First-Order-Reversal-Curve (FORC) Study of Magnetic Nanoparticle Based Nanocomposite Materials B. Dodrill 1, P. Ohodnicki 2, M. McHenry 3, A. Leary 3 1 Lake Shore Cryotronics, Inc., 575

More information

Magnetic properties of spherical fcc clusters with radial surface anisotropy

Magnetic properties of spherical fcc clusters with radial surface anisotropy Magnetic properties of spherical fcc clusters with radial surface anisotropy D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 66506-2601 (December 6, 1994) We

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY International Journal of Modern Physics B Vol. 19, Nos. 15, 16 & 17 (2005) 2562-2567 World Scientific Publishing Company World Scientific V www.worldscientific.com ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES

More information

Exchange Coupled Composite Media for Perpendicular Magnetic Recording

Exchange Coupled Composite Media for Perpendicular Magnetic Recording BB-01 1 Exchange Coupled Composite Media for Perpendicular Magnetic Recording R. H. Victora, Fellow, IEEE, X. Shen Abstract Exchange coupled composite (ECC) media has been shown to possess several major

More information

Future Magnetic Recording Technologies

Future Magnetic Recording Technologies Future Magnetic Recording Technologies Seagate Research Areal Density Perspective Max. Areal Density (Gbit/in 2 ) 10000 1000 100 10 1 0.1 1 Tbit/in 2 LABORATORY DEMOS Products Historical 60% CGR line 1990

More information

Magnetization switching in a Heisenberg model for small ferromagnetic particles

Magnetization switching in a Heisenberg model for small ferromagnetic particles Magnetization switching in a Heisenberg model for small ferromagnetic particles D. Hinzke and U. Nowak* Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universität-Duisburg, D-47048 Duisburg, Germany

More information

Microwave Assisted Magnetic Recording

Microwave Assisted Magnetic Recording Microwave Assisted Magnetic Recording, Xiaochun Zhu, and Yuhui Tang Data Storage Systems Center Dept. of Electrical and Computer Engineering Carnegie Mellon University IDEMA Dec. 6, 27 Outline Microwave

More information

Advanced Lab Course. Tunneling Magneto Resistance

Advanced Lab Course. Tunneling Magneto Resistance Advanced Lab Course Tunneling Magneto Resistance M06 As of: 015-04-01 Aim: Measurement of tunneling magnetoresistance for different sample sizes and recording the TMR in dependency on the voltage. Content

More information

Perpendicular Magnetic Recording. Dmitri Litvinov and Sakhrat Khizroev Seagate Research

Perpendicular Magnetic Recording. Dmitri Litvinov and Sakhrat Khizroev Seagate Research Perpendicular Magnetic Recording Dmitri Litvinov and Sakhrat Khizroev Seagate Research Acknowledgments Leon Abelmann (U Twente) James Bain (CMU) Chunghee Chang Roy Chantrell Roy Gustafson Kent Howard Earl

More information

This is a repository copy of Parametric optimization for terabit perpendicular recording.

This is a repository copy of Parametric optimization for terabit perpendicular recording. This is a repository copy of Parametric optimization for terabit perpendicular recording. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/1836/ Article: Miles, J.J., McKirdy,

More information

01 Development of Hard Disk Drives

01 Development of Hard Disk Drives 01 Development of Hard Disk Drives Design Write / read operation MR / GMR heads Longitudinal / perpendicular recording Recording media Bit size Areal density Tri-lemma 11:00 10/February/2016 Wednesday

More information

Collaborators: R. Grössinger D. Triyono H. Sassik J. Fidler H. Michor G. Badurek G. Wiesinger J.P. Sinnecker M. Knobel J.H. Espina J.

Collaborators: R. Grössinger D. Triyono H. Sassik J. Fidler H. Michor G. Badurek G. Wiesinger J.P. Sinnecker M. Knobel J.H. Espina J. Collaborators: R. Grössinger D. Triyono H. Sassik J. Fidler H. Michor G. Badurek G. Wiesinger J.P. Sinnecker M. Knobel J.H. Espina J. Eckert Magnetisation (emu/g) 3 2 1-1 -2 pulsed field static field 175

More information

MAGNETORESISTIVITY OF COBALT-PTFE GRANULAR COMPOSITE FILM PRODUCED BY PULSED LASER DEPOSITION TECHNIQUE

MAGNETORESISTIVITY OF COBALT-PTFE GRANULAR COMPOSITE FILM PRODUCED BY PULSED LASER DEPOSITION TECHNIQUE Magnetoresistivity Rev.Adv.Mater.Sci. of 15(2007) cobalt-ptfe 215-219 granular composite film produced by pulsed laser... 215 MAGNETORESISTIVITY OF COBALT-PTFE GRANULAR COMPOSITE FILM PRODUCED BY PULSED

More information

Techniques for inferring M at small scales

Techniques for inferring M at small scales Magnetism and small scales We ve seen that ferromagnetic materials can be very complicated even in bulk specimens (e.g. crystallographic anisotropies, shape anisotropies, local field effects, domains).

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11733 1 Ising-Macrospin model The Ising-Macrospin (IM) model simulates the configuration of the superlattice (SL) by assuming every layer is a single spin (macrospin)

More information

Magnetic States and Hysteresis Properties of Small Magnetite Particles

Magnetic States and Hysteresis Properties of Small Magnetite Particles The Physics of Metals and Metallography, Vol. 86, No. 3, 998, pp. 269 275. Original Russian Text Copyright 998 by Fizika Metallov i Metallovedenie, Afremov, Panov. English Translation Copyright 998 by

More information

Introduction to magnetism of confined systems

Introduction to magnetism of confined systems Introduction to magnetism of confined systems P. Vavassori CIC nanogune Consolider, San Sebastian, Spain; nano@nanogune.eu Basics: diamagnetism and paramagnetism Every material which is put in a magnetic

More information

On the Ultimate Speed of Magnetic Switching

On the Ultimate Speed of Magnetic Switching On the Ultimate Speed of Magnetic Switching Joachim Stöhr Stanford Synchrotron Radiation Laboratory Collaborators: H. C. Siegmann, C. Stamm, I. Tudosa, Y. Acremann ( Stanford ) A. Vaterlaus (ETH Zürich)

More information

Phenomenology and Models of Exchange Bias in Core /Shell Nanoparticles

Phenomenology and Models of Exchange Bias in Core /Shell Nanoparticles Phenomenology and Models of Exchange Bias in Core /Shell Nanoparticles Xavier Batlle and Amílcar Labarta Departament de Física Fonamental and Institut de Nanociència i Nanotecnologia Universitat de Barcelona,

More information

Enhanced pinning in high-temperature superconducting cuprate single crystals at low DC magnetic field

Enhanced pinning in high-temperature superconducting cuprate single crystals at low DC magnetic field Enhanced pinning in high-temperature superconducting cuprate single crystals at low DC magnetic field V.Yu.Monarkha, Yu.A.Savina, V.P.Timofeev B.Verkin Institute for Low Temperature Physics & Engineering

More information

Exchange bias in nanogranular films. D. Fiorani. Institute for Matter s Structure (CNR, Rome, Italy)

Exchange bias in nanogranular films. D. Fiorani. Institute for Matter s Structure (CNR, Rome, Italy) Exchange bias in nanogranular films D. Fiorani Institute for Matter s Structure (CNR, Rome, Italy) Nanospin EU project D. Fiorani. E. Agostinelli, CNR, Rome, Italy A.Testa, D. Peddis J. Tejada, N. Domingo*

More information

Micromagnetic simulation of dynamic and thermal effects

Micromagnetic simulation of dynamic and thermal effects Micromagnetic simulation of dynamic and thermal effects T. Schrefl, J. Fidler, D. Suess, W. Scholz, V. Tsiantos Institute of Applied and Technical Physics Vienna University of Technology Wiedner Haupstr.

More information

MatSci 224 Magnetism and Magnetic. November 5, 2003

MatSci 224 Magnetism and Magnetic. November 5, 2003 MatSci 224 Magnetism and Magnetic Materials November 5, 2003 How small is small? What determines whether a magnetic structure is made of up a single domain or many domains? d Single domain d~l d d >> l

More information

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials CHAPTER 2 MAGNETISM Magnetism plays a crucial role in the development of memories for mass storage, and in sensors to name a few. Spintronics is an integration of the magnetic material with semiconductor

More information

Scanning Probe Microscopy. L. J. Heyderman

Scanning Probe Microscopy. L. J. Heyderman 1 Scanning Probe Microscopy 2 Scanning Probe Microscopy If an atom was as large as a ping-pong ball......the tip would have the size of the Matterhorn! 3 Magnetic Force Microscopy Stray field interaction

More information

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998. Magnetoresistance due to Domain Walls in Micron Scale Fe Wires with Stripe Domains arxiv:cond-mat/9803101v1 [cond-mat.mes-hall] 9 Mar 1998 A. D. Kent a, U. Ruediger a, J. Yu a, S. Zhang a, P. M. Levy a

More information

Neutron Reflectometry of Ferromagnetic Arrays

Neutron Reflectometry of Ferromagnetic Arrays Neutron Reflectometry of Ferromagnetic Arrays Z.Y. Zhao a, P. Mani a, V.V.Krishnamurthy a, W.-T. Lee b, F. Klose b, and G.J. Mankey a a Center for Materials for Information Technology and Department of

More information

Thickness Dependence of Magnetic Hysteresis of Ising Films in Nano-thickness Range

Thickness Dependence of Magnetic Hysteresis of Ising Films in Nano-thickness Range CMU. J.Nat.Sci. Special Issue on Nanotechnology (2008) Vol. 7(1) 203 Thickness Dependence of Magnetic Hysteresis of Ising Films in Nano-thickness Range Atchara Punya 1*, Pitak Laoratanakul 2, Rattikorn

More information

SPIN TRANSFER TORQUES IN HIGH ANISOTROPY MAGNETIC NANOSTRUCTURES

SPIN TRANSFER TORQUES IN HIGH ANISOTROPY MAGNETIC NANOSTRUCTURES CRR Report Number 29, Winter 2008 SPIN TRANSFER TORQUES IN HIGH ANISOTROPY AGNETIC NANOSTRUCTURES Eric Fullerton 1, Jordan Katine 2, Stephane angin 3, Yves Henry 4, Dafine Ravelosona 5, 1 University of

More information

Chapter 2 Magnetic Properties

Chapter 2 Magnetic Properties Chapter 2 Magnetic Properties Abstract The magnetic properties of a material are the basis of their applications. Specifically, the contrast agents that will be developed in Chaps. 4 and 5 use their magnetic

More information

Transition from single-domain to vortex state in soft magnetic cylindrical nanodots

Transition from single-domain to vortex state in soft magnetic cylindrical nanodots Transition from single-domain to vortex state in soft magnetic cylindrical nanodots W. Scholz 1,2, K. Yu. Guslienko 2, V. Novosad 3, D. Suess 1, T. Schrefl 1, R. W. Chantrell 2 and J. Fidler 1 1 Vienna

More information

Micromagnetic Modeling of Soft Underlayer Magnetization Processes and Fields in Perpendicular Magnetic Recording

Micromagnetic Modeling of Soft Underlayer Magnetization Processes and Fields in Perpendicular Magnetic Recording 1670 IEEE TRANSACTIONS ON MAGNETICS, VOL. 38, NO. 4, JULY 2002 Micromagnetic Modeling of Soft Underlayer Magnetization Processes and Fields in Perpendicular Magnetic Recording Manfred E. Schabes, Byron

More information

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Imprinting domain/spin configurations in antiferromagnets A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Dr. J. Sort Institució Catalana de Recerca i Estudis Avançats (ICREA)

More information

2D Coding and Iterative Detection Schemes

2D Coding and Iterative Detection Schemes 2D Coding and Iterative Detection Schemes J. A. O Sullivan, N. Singla, Y. Wu, and R. S. Indeck Washington University Magnetics and Information Science Center Nanoimprinting and Switching of Patterned Media

More information

Torque magnetometry of perpendicular anisotropy exchange spring heterostructures

Torque magnetometry of perpendicular anisotropy exchange spring heterostructures Torque magnetometry of perpendicular anisotropy exchange spring heterostructures P. Vallobra 1, T. Hauet 1, F. Montaigne 1, E.G Shipton 2, E.E. Fullerton 2, S. Mangin 1 1. Institut Jean Lamour, UMR 7198

More information

Exchange bias in a superspin glass system of ferromagnetic particles in an antiferromagnetic matrix

Exchange bias in a superspin glass system of ferromagnetic particles in an antiferromagnetic matrix Exchange bias in a superspin glass system of ferromagnetic particles in an antiferromagnetic matrix D. Fiorani Institute of Matter s Structure (ISM) Rome, CNR, Italy I) OUTLINE Exchange Bias concepts (role

More information

AC Measurement of Magnetic Susceptibility. Physics 401, Fall 2016 Eugene V. Colla

AC Measurement of Magnetic Susceptibility. Physics 401, Fall 2016 Eugene V. Colla AC Measurement of Magnetic Susceptibility Physics 41, Fall 216 Eugene V. Colla Outline Ferromagnetism Measurement of the magnetic properties of the materials Lab experimental setup and experiments Some

More information

Magnetic dissipation force microscopy studies of magnetic materials invited

Magnetic dissipation force microscopy studies of magnetic materials invited JOURNAL OF APPLIED PHYSICS VOLUME 83, NUMBER 11 1 JUNE 1998 Advances in Magnetic Force Microscopy John Moreland, Chairman Magnetic dissipation force microscopy studies of magnetic materials invited Y.

More information

Magnetization Dynamics

Magnetization Dynamics Magnetization Dynamics Italian School on Magnetism Pavia - 6-10 February 2012 Giorgio Bertotti INRIM - Istituto Nazionale di Ricerca Metrologica, Torino, Italy Part I Free energy of a ferromagnetic body:

More information

Adouble-layered (DL) perpendicular anisotropy system

Adouble-layered (DL) perpendicular anisotropy system 1200 IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 3, MARCH 2005 Methodology for Investigating the Magnetization Process of the Storage Layer in Double-Layered Perpendicular Magnetic Recording Media Using

More information

Problem 3.1 Magnetic Moments + - I

Problem 3.1 Magnetic Moments + - I MASSACHUSETTS NSTTUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.007 Electromagnetic Energy: From Motors to Lasers Spring 2011 Problem Set 3: Magnetic Materials and Magnetic

More information

curve show no change in susceptibility with temperature, ideal paramagnetic curve is a straight line

curve show no change in susceptibility with temperature, ideal paramagnetic curve is a straight line Figure DR1. Low-Temperature susceptibility Normalized reciprocal magnetic susceptibility (ko/k) as a function of temperature. Ideal ferromagnetic curve show no change in susceptibility with temperature,

More information

Micromagnetics: Basic Principles

Micromagnetics: Basic Principles A small class of materials exhibit the important property of long range magnetic order Fundamentally, this arises because of the so-called exchange energy which can, under certain circumstances, lead to

More information

HALL EFFECT AND MAGNETORESISTANCE MEASUREMENTS ON PERMALLOY Py THIN FILMS AND Py/Cu/Py MULTILAYERS

HALL EFFECT AND MAGNETORESISTANCE MEASUREMENTS ON PERMALLOY Py THIN FILMS AND Py/Cu/Py MULTILAYERS Journal of Optoelectronics and Advanced Materials, Vol. 4, No. 1, March 2002, p. 79-84 HALL EFFECT AND MAGNETORESISTANCE MEASUREMENTS ON PERMALLOY Py THIN FILMS AND Py/Cu/Py MULTILAYERS M. Volmer, J. Neamtu

More information

MAGNETISM IN NANOSCALE MATERIALS, EFFECT OF FINITE SIZE AND DIPOLAR INTERACTIONS

MAGNETISM IN NANOSCALE MATERIALS, EFFECT OF FINITE SIZE AND DIPOLAR INTERACTIONS MAGNETISM IN NANOSCALE MATERIALS, EFFECT OF FINITE SIZE AND DIPOLAR INTERACTIONS By RITESH KUMAR DAS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

More information

Magnetic Yoking and Tunable Interactions in FePt-Based Hard/Soft Bilayers

Magnetic Yoking and Tunable Interactions in FePt-Based Hard/Soft Bilayers Magnetic Yoking and Tunable Interactions in FePt-Based Hard/Soft Bilayers Dustin A. Gilbert, 1,2 Jung-Wei Liao, 3 Brian J. Kirby, 2 Michael Winklhofer, 4,5,6 Chih-Huang Lai, 3 and Kai Liu 1,* 1 Dept. of

More information

E102. Study of the magnetic hysteresis

E102. Study of the magnetic hysteresis E102. Study of the magnetic hysteresis 1. Introduction Due to the behavior in a magnetic field, the materials can be divided into three groups: diamagnets (weakly repelled by a magnet), paramagnets (weakly

More information

Perpendicular exchange bias and magnetic anisotropy in CoOÕpermalloy multilayers

Perpendicular exchange bias and magnetic anisotropy in CoOÕpermalloy multilayers Perpendicular exchange bias and magnetic anisotropy in CoOÕpermalloy multilayers S. M. Zhou, 1,2 L. Sun, 3 P. C. Searson, 3 and C. L. Chien 1 1 Department of Physics and Astronomy, Johns Hopkins University,

More information

Magnetic domain theory in dynamics

Magnetic domain theory in dynamics Chapter 3 Magnetic domain theory in dynamics Microscale magnetization reversal dynamics is one of the hot issues, because of a great demand for fast response and high density data storage devices, for

More information

arxiv: v1 [cond-mat.mtrl-sci] 7 Nov 2012

arxiv: v1 [cond-mat.mtrl-sci] 7 Nov 2012 Spin torque switching in perpendicular films at finite temperature, HP-13 Ru Zhu and P B Visscher arxiv:12111665v1 [cond-matmtrl-sci] 7 Nov 212 MINT Center and Department of Physics and Astronomy University

More information

Theory of magnetoelastic dissipation due to domain wall width oscillation

Theory of magnetoelastic dissipation due to domain wall width oscillation JOURNAL OF APPLIED PHYSICS VOLUME 83, NUMBER 11 1 JUNE 1998 Theory of magnetoelastic dissipation due to domain wall width oscillation Y. Liu and P. Grütter a) Centre for the Physics of Materials, Department

More information

Magnetic properties of dipolar interacting single-domain particles

Magnetic properties of dipolar interacting single-domain particles PHYSICAL REVIEW B VOLUME 58, NUMBER 18 1 NOVEMBER 1998-II Magnetic properties of dipolar interacting single-domain particles D. Kechrakos and K. N. Trohidou Institute of Materials Science, National Center

More information

Perpendicular MTJ stack development for STT MRAM on Endura PVD platform

Perpendicular MTJ stack development for STT MRAM on Endura PVD platform Perpendicular MTJ stack development for STT MRAM on Endura PVD platform Mahendra Pakala, Silicon Systems Group, AMAT Dec 16 th, 2014 AVS 2014 *All data in presentation is internal Applied generated data

More information

Table A.1 Nomenclature Symbol Unit Description A m 2 Area (surface) a m, / Thickness, fraction of refrigerant seen by a single highfield

Table A.1 Nomenclature Symbol Unit Description A m 2 Area (surface) a m, / Thickness, fraction of refrigerant seen by a single highfield Appendix See Tables A.1, A.2 and A.3. Table A.1 Nomenclature Symbol Unit Description A m 2 Area (surface) a m, / Thickness, fraction of refrigerant seen by a single highfield region a 0 / Geometry factor

More information

MAGNETIC BEHAVIOUR OF CORE/SHELL NANOPARTICLE ASSEMBLIES: INTERPARTICLE INTERACTIONS EFFECTS

MAGNETIC BEHAVIOUR OF CORE/SHELL NANOPARTICLE ASSEMBLIES: INTERPARTICLE INTERACTIONS EFFECTS IMS MAGNETIC BEHAVIOUR OF CORE/SHELL NANOPARTICLE ASSEMBLIES: INTERPARTICLE INTERACTIONS EFFECTS Kalliopi Trohidou Computational Materials Science Group Institute of Materials Science, NCSR Demokritos,

More information

Interaction Effects in Nickel Nanowires Arrays

Interaction Effects in Nickel Nanowires Arrays University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 5-16-2008 Interaction Effects in Nickel Nanowires Arrays Ovidiu Cezar Trusca University

More information

Magnetic force microscopy of signature erasure in magnetic recording media

Magnetic force microscopy of signature erasure in magnetic recording media Magnetic force microscopy of signature erasure in magnetic recording media Hsia-Po V. Kuo and E.D. Dahlberg Department of Physics, University of Minnesota Minneapolis, MN 55455 Magnetic force microscope

More information

The exchange interaction between FM and AFM materials

The exchange interaction between FM and AFM materials Chapter 1 The exchange interaction between FM and AFM materials When the ferromagnetic (FM) materials are contacted with antiferromagnetic (AFM) materials, the magnetic properties of FM materials are drastically

More information

The GENERATION, MEASURING TECHNIQUE AND APPLICATION OF PULSED FIELDS. R.Grössinger

The GENERATION, MEASURING TECHNIQUE AND APPLICATION OF PULSED FIELDS. R.Grössinger High Magnetic Fields The GENERATION, MEASURING TECHNIQUE AND APPLICATION OF PULSED FIELDS R.Grössinger Coworker: M. Küpferling, H.Sassik, R.Sato, E.Wagner, O.Mayerhofer, M.Taraba ƒ1 Content CONTENT Generation

More information

Micromagnetic Modeling

Micromagnetic Modeling Micromagnetic Modeling P. B. Visscher Xuebing Feng, D. M. Apalkov, and Arkajyoti Misra Department of Physics and Astronomy Supported by NSF grants # ECS-008534 and DMR-0213985, and DOE grant # DE-FG02-98ER45714

More information

M-H 자기이력곡선 : SQUID, VSM

M-H 자기이력곡선 : SQUID, VSM 자성특성측정방법 자기장측정 M-H 자기이력곡선 : SQUID, VSM 고주파특성 ( 투자율 ) (1) 자기장측정 자기센서기술연구동향 지구자기장 NVE InSb By Honeywell 휴대폰용 COMPASS 센서응용 SQUID Flux gate Magneto-Impedance Hall AMR 지구자기장 0.1 nt 1 nt 30 nt 0.1 nt 차세대 compass

More information

Proton Decay searches -- sensitivity, BG and photo-coverage. Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

Proton Decay searches -- sensitivity, BG and photo-coverage. Univ. of Tokyo, Kamioka Observatory Masato Shiozawa Proton Decay searches -- sensitivity, BG and photo-coverage -- Univ. of Tokyo, Kamioka Observatory Masato Shiozawa April-25 @ NNN5 Water as a proton decay detector Source H 2 O 2/1 free proton no nuclear

More information

Magnetic iron nanoparticles in carbon nanotubes

Magnetic iron nanoparticles in carbon nanotubes Magnetic iron nanoparticles in carbon nanotubes Author: Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Advisors: Dr.Javier Tejada Palacios & Jaume Calvo de la Rosa

More information

Hysteretic properties of a two dimensional array of small magnetic particles: a test-bed for the Preisach model

Hysteretic properties of a two dimensional array of small magnetic particles: a test-bed for the Preisach model Preisach Memorial Book A. Iványi (Ed.) Akadémiai Kiadó, Budapest, 2005 Hysteretic properties of a two dimensional array of small magnetic particles: a test-bed for the Preisach model Gábor VÉRTESY Research

More information

Thermal Evolution of Magnetic Interactions in Ni Nanowires Embedded in Polycarbonate Membranes by Ferromagnetic Resonance

Thermal Evolution of Magnetic Interactions in Ni Nanowires Embedded in Polycarbonate Membranes by Ferromagnetic Resonance Vol. 116 (2009) ACTA PHYSICA POLONICA A No. 6 Thermal Evolution of Magnetic Interactions in Ni Nanowires Embedded in Polycarbonate Membranes by Ferromagnetic Resonance A. Ghaddar a, J. Gieraltowski a,

More information

Macroscopic properties II

Macroscopic properties II Paolo Allia DISAT Politecnico di Torino acroscopic properties II acroscopic properties II Crucial aspects of macroscopic ferromagnetism Crystalline magnetic anisotropy Shape anisotropy Ferromagnetic domains

More information

Supplementary Figure 1 Representative sample of DW spin textures in a

Supplementary Figure 1 Representative sample of DW spin textures in a Supplementary Figure 1 Representative sample of DW spin textures in a Fe/Ni/W(110) film. (a) to (d) Compound SPLEEM images of the Fe/Ni/W(110) sample. As in Fig. 2 in the main text, Fe thickness is 1.5

More information

Lecture 5. Chapters 3 & 4. Induced magnetization: that which is induced in the presence of an applied magnetic field. diamagnetic.

Lecture 5. Chapters 3 & 4. Induced magnetization: that which is induced in the presence of an applied magnetic field. diamagnetic. Lecture 5 Induced magnetization: that which is induced in the presence of an applied magnetic field diamagnetic paramagnetic Remanent magnetization: that which remains in the absence of an external field

More information

Depolarization of a piezoelectric film under an alternating current field

Depolarization of a piezoelectric film under an alternating current field JOURNAL OF APPLIED PHYSICS 101, 054108 2007 Depolarization of a piezoelectric film under an alternating current field K. W. Kwok, a M. K. Cheung, H. L. W. Chan, and C. L. Choy Department of Applied Physics

More information

Florida State University Libraries

Florida State University Libraries Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2009 Analysis of Aftereffect Phenomena and Noise Spectral Properties of Magnetic Hysteretic Systems

More information

NMR Dynamics and Relaxation

NMR Dynamics and Relaxation NMR Dynamics and Relaxation Günter Hempel MLU Halle, Institut für Physik, FG Festkörper-NMR 1 Introduction: Relaxation Two basic magnetic relaxation processes: Longitudinal relaxation: T 1 Relaxation Return

More information

Calculations of switching field and energy barrier for magnetic islands with perpendicular anisotropy

Calculations of switching field and energy barrier for magnetic islands with perpendicular anisotropy NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2017, 8 (6), P. 701 708 Calculations of switching field and energy barrier for magnetic islands with perpendicular anisotropy S. Y. Liashko 1,2, H. Jónsson

More information

Supplementary Figure 1. Magnetic domain configuration under out-of-plane field application. (a), (b) MTXM images showing magnetic domain state

Supplementary Figure 1. Magnetic domain configuration under out-of-plane field application. (a), (b) MTXM images showing magnetic domain state Supplementary Figure 1. Magnetic domain configuration under out-of-plane field application. (a), (b) MTXM images showing magnetic domain state acquired at a given out-ofplane magnetic field. Bright and

More information

Lecture 5: Temperature, Adiabatic Processes

Lecture 5: Temperature, Adiabatic Processes Lecture 5: Temperature, Adiabatic Processes Chapter II. Thermodynamic Quantities A.G. Petukhov, PHYS 743 September 20, 2017 Chapter II. Thermodynamic Quantities Lecture 5: Temperature, Adiabatic Processes

More information

Neutron Diffraction Study of Antiferromagnetic Phase Transitions in an Ordered Pt 3 Fe(111) Film

Neutron Diffraction Study of Antiferromagnetic Phase Transitions in an Ordered Pt 3 Fe(111) Film Neutron Diffraction Study of Antiferromagnetic Phase Transitions in an Ordered Pt 3 Fe(111) Film G. J. Mankey, V. V. Krishnamurthy, and I. Zoto MINT Center, The University of Alabama, Tuscaloosa, AL 35487-0209

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:.38/nphys436 Non-adiabatic spin-torques in narrow magnetic domain walls C. Burrowes,2, A. P. Mihai 3,4, D. Ravelosona,2, J.-V. Kim,2, C. Chappert,2, L. Vila 3,4, A. Marty

More information

Perpendicular magnetic clusters with configurable domain structures via dipole-dipole interactions

Perpendicular magnetic clusters with configurable domain structures via dipole-dipole interactions Nano Research DOI 10.1007/s12274-015-0864-1 Nano Res 1 Perpendicular magnetic clusters with configurable domain structures via dipole-dipole interactions Weimin Li 1,2, Seng Kai Wong 2, Tun Seng Herng

More information

复习题. 2 Calculate the intensity of magnetic field in the air gap of the magnetic circuit shown in the figure. Use the values N=200,

复习题. 2 Calculate the intensity of magnetic field in the air gap of the magnetic circuit shown in the figure. Use the values N=200, 复习题 1 Calculate the magnetic moment of a sphere of radius R made from a magnetic material with magnetic susceptibility, when it is magnetized by an external magnetic field H. How is the value of the moment

More information

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Spin electronics at the nanoscale Michel Viret Service de Physique de l Etat Condensé CEA Saclay France Principles of spin electronics: ferromagnetic metals spin accumulation Resistivity of homogeneous

More information

Chapter 3. Magnetic Model. 3.1 Magnetic interactions

Chapter 3. Magnetic Model. 3.1 Magnetic interactions Chapter 3 Magnetic Model In this chapter, the micromagnetic model for the description of the magnetic properties of a laterally nanostructured film during growth is presented. The main physical idea of

More information

Theory of Spin Diode Effect

Theory of Spin Diode Effect Theory of Spin Diode Effect Piotr Ogrodnik Warsaw University of Technology and Institute of Molecular Physics Polish Academy of Sciences NANOSPIN Summarizing Meeting, Kraków, 11-12th July 216 Outline:

More information

Probing Magnetic Order with Neutron Scattering

Probing Magnetic Order with Neutron Scattering Probing Magnetic Order with Neutron Scattering G.J. Mankey, V.V. Krishnamurthy, F.D. Mackey and I. Zoto University of Alabama in collaboration with J.L. Robertson and M.L. Crow Oak Ridge National Laboratory

More information

Decay mechanisms of oscillating quartz tuning fork immersed in He II

Decay mechanisms of oscillating quartz tuning fork immersed in He II Journal of Physics: Conference Series Decay mechanisms of oscillating quartz tuning fork immersed in He II To cite this article: I Gritsenko et al 202 J. Phys.: Conf. Ser. 400 02068 View the article online

More information

CHAPTER 6 DIELECTRIC AND CONDUCTIVITY STUDIES OF ZIRCONIUM TIN TITANATE (ZST)

CHAPTER 6 DIELECTRIC AND CONDUCTIVITY STUDIES OF ZIRCONIUM TIN TITANATE (ZST) 123 CHAPTER 6 DIELECTRIC AND CONDUCTIVITY STUDIES OF ZIRCONIUM TIN TITANATE (ZST) 6.1 INTRODUCTION We know that zirconium tin titanate ceramics are mostly used in microwave frequency applications. Previous

More information

G. Ravichandran Aeronautics & Mechanical Engineering Graduate Aeronautical Laboratories California Institute of Technology

G. Ravichandran Aeronautics & Mechanical Engineering Graduate Aeronautical Laboratories California Institute of Technology Multi-Disciplinary University Initiative Army Research Office Engineering Microstructural Complexity in Ferroelectric Devices Mechanical Characterization G. Ravichandran Aeronautics & Mechanical Engineering

More information

GIANT MAGNETORESISTANCE IN MAGNETIC NANOSTRUCTURES

GIANT MAGNETORESISTANCE IN MAGNETIC NANOSTRUCTURES etnnu. Rev. Mater. Sci. 1995.25." 357-88 Copyright 1995 by Annual Reviews 1no. All rights reserved GIANT MAGNETORESISTANCE IN MAGNETIC NANOSTRUCTURES S. S. P. Park& IBM Research Division, Almaden Research

More information