Perpendicular magnetic clusters with configurable domain structures via dipole-dipole interactions

Size: px
Start display at page:

Download "Perpendicular magnetic clusters with configurable domain structures via dipole-dipole interactions"

Transcription

1 Nano Research DOI /s Nano Res 1 Perpendicular magnetic clusters with configurable domain structures via dipole-dipole interactions Weimin Li 1,2, Seng Kai Wong 2, Tun Seng Herng 1, Lee Koon Yap 2, Cheow Hin Sim 2, Zhengchun Yang 1, Yunjie Chen 2, Jianzhong Shi 2, Guchang Han 2, Junmin Xue 1, and Jun Ding 1 ( ) Nano Res., Just Accepted Manuscript DOI /s on July 23, 2015 Tsinghua University Press 2015 Just Accepted This is a Just Accepted manuscript, which has been examined by the peer-review process and has been accepted for publication. A Just Accepted manuscript is published online shortly after its acceptance, which is prior to technical editing and formatting and author proofing. Tsinghua University Press (TUP) provides Just Accepted as an optional and free service which allows authors to make their results available to the research community as soon as possible after acceptance. After a manuscript has been technically edited and formatted, it will be removed from the Just Accepted Web site and published as an ASAP article. Please note that technical editing may introduce minor changes to the manuscript text and/or graphics which may affect the content, and all legal disclaimers that apply to the journal pertain. In no event shall TUP be held responsible for errors or consequences arising from the use of any information contained in these Just Accepted manuscripts. To cite this manuscript please use its Digital Object Identifier (DOI ), which is identical for all formats of publication.

2 Possible application of perpendicular magnetic clusters with configurable domain structures via dipole-dipole interactions. Upper: Programmable Logic Device. Lower: Perpendicular Magnetic Domino. 1

3 Perpendicular Magnetic Clusters with Configurable Domain Structures via Dipole-dipole Interactions Weimin Li 1,2, Seng Kai Wong 2, Tun Seng Herng 1, Lee Koon Yap 2, Cheow Hin Sim 2, Zhengchun Yang 1, Yunjie Chen 2, Jianzhong Shi 2, Guchang Han 2,Junmin Xue 1, Jun Ding 1, * 1 Department of Materials Science and Engineering, National University of Singapore, BLK EA#03-09, 9 Engineering Drive 1, , Singapore 2 Data Storage Institute, Agency for Science, Technology and Research (A*STAR), DSI Building, 5 Engineering Drive 1, , Singapore Address correspondence to Jun Ding, msedingj@nus.edu.sg Abstract The study of magnetic single domain islands based on in-plane anisotropy (usually, shape anisotropy) and their dipole-dipole interactions have been investigated extensively in recent year, driven by potential applications in magnetic recording, spintronics, magneto-biology, etc. Here, we propose a concept of out-of-plane magnetic clusters with configurable domain structure (multi-flux states) via dipole-dipole interactions. Their flux stages can be switched through an external magnetic field. The concept has been successfully demonstrated by patterned [Co/Pd] islands. [Co/Pd] multilayer shows a large perpendicular anisotropy, a well physical separation and uniform intrinsic proprieties after being patterned into individual islands by electron beam lithography. A three-island cluster with six stable flux states has been realized by optimizing island size, thickness, gap, anisotropy, saturation magnetization, etc. Based on Co/Pd multi-layers, we have optimized island structure by tuning magnetic properties (saturation magnetization and perpendicular anisotropy) using LLG simulation/calculation. Potential application have been proposed including a flexi-programmable logic device with the AND, OR, NAND or NOR functionalities and a magnetic domino, which can propagate the magnetic current as far as 1 um down from the surface via vertical dipole-dipole interactions. Keywords perpendicular anisotropy, dipole-dipole interaction, multi-states magnetic recording, logic device, magnetic domino. 2

4 Introduction Recently, various artificial 2D magnetic domains, well known as spin ice has been captured the attentions of scientific community, owing to its unusual magnetic and quantum properties [1-2]. Using the lithographically techniques, geometrically dipole-dipole interactions [3-4] in various spin ice structures such as square [5], hexagonal [6], triangular [7-8], brickwork [9] have been fabricated and investigated theoretically and experimentally based on magnetic in-plane anisotropy (shape anisotropy). Some magnetic nanostructures with in-plane anisotropy have shown great potential for magnetic logic-devices [10-12]. Planar magnetic quantum-dot cellar automata (MQCA) as a logic device formed at least one chain of magnetic islands with in-plane anisotropy is widely investigated for digital computation [11-13]. Another proposed application of these configurable magnetic domain structures is nanomagnet logic (NML) [14] elements which are reconfigurable at run-time. Today, magnetic media of perpendicular anisotropy (or out-of-plane anisotropy) are widely used in magnetic data storage. Bit-patterned media based on closely-packed perpendicular islands have shown their great potential as the next generation high-density magnetic information storage [15]. It is interesting to use perpendicular magnetic clusters for configurable magnetic domains for various applications. In this work, we makes use of commonly used bit patterned media structure, [Co/Pd] multilayer [16-17] with a preferred axis perpendicular to the film plane (out-of-plane anisotropy) as our magnetic cluster materials. It is worthwhile to highlight that the beauty of this [Co/Pd] structure is its uniform and therefore small switching fields distribution (a well uniformity in switching fields after patterned into individual islands) that is favorable for a higher storage density in media recording applications. The switching field of individual island as well as dipole-dipole interaction between neighboring islands have been investigated by varying islands sizes and gaps using micromagnetic simulation. Six stable flux states in a three-island cluster are observed by Magnetic Force Microscope (MFM) at different external field. We have utilized the dipole-dipole interaction characteristic of magnetic islands to design a non-volatile and programmable logic device with AND, OR, NAND or NOR functionalities. Besides, a vertical "magnetic domino" via ferromagnetic coupling which can propagate magnetic current as far as 1 μm has been realized by micromagnetic simulation. In supporting information, we have demonstrated that a multi-state bit-pattern medium may be developed based on dipole-dipole interactions, which allows some enhancement of recording density with the same head pole and servo system. Besides, a three input majority gate computational 3

5 paradigm based on both ferromagnetic and antiferromagnetic coupling has been realized by micromagnetic simulation. These works lay an important milestone for future data storage and logic device applications. 1. Concept of "configurable magnetic clusters with perpendicular anisotropy via dipole-dipole interactions" A magnetized element (here island with perpendicular anisotropy) may be treated as a dipole (as shown in Fig. S3). If a dipole marked as "A" is placed in presence of reversal fields, it may switch at Hc as the intrinsic coercivity (Figure S3(a)). If a dipole "B" is placed closely with dipole "A", the switching field of dipole "A" decreases to Hc-Hdip for parallel configuration (Figure S3(b)), increases to Hc+Hdip for antiparallel configuration (Figure S3(c)). Based on the concept, we can propose perpendicular magnetic clusters with configurable domain structures via dipole-dipole interactions. A configurable two-island cluster may consist of two islands with different intrinsic switching fields Hc0,1 and Hc0,2 (Hc0,1<Hc0,2), as shown in Figure 1(a) and Figure 1(b). When a reversal field (negative field) is applied on the two-island cluster after saturation (by positive field), island 1 is expected to switch first due to low Hc0,1. It is noted that switching energy barrier will be reduced when the neighboring islands have the same magnetization spin direction, resulting switching field decrement of islands 1 (Hc1=Hc0,1-Hdip). After switching of island 1, island 1 and island 2 have opposite spin direction. The switching energy barrier of island 2 will increase. In this case, the switching field of island 2 can be written as Hc2=Hc0,2+Hdip. The difference in switching fields between island 1 and island 2 in the two-island cluster system is defined as ΔH, ΔH=Hc2-Hc1=(Hc0,2-Hc0,1)+2Hdip. The value of ΔH is a key parameter in differentiation of the two magnetic flux states. Based on the previous model, we can extend to three-island cluster with two cases: 1. same intrinsic switching fields (Hc0,1=Hc0,2=Hc0,3), as shown in Figure 2(a); 2. Different intrinsic switching fields (Hc0,1<Hc0,2<Hc0,3), as shown in Figure 2(b). Figure 2 (a) schemes the dipole-dipole interactions in a three-island cluster and their controllable magnetic states. For easy understanding, we number the islands from left to right according to the position, e. g. island 1, island 2, etc. Once a reversal field is applied on the cluster till saturation, island 2 is expected to switch first due to minimum switching energy barrier. With further increasing of the reversal field, theoretically, island 1 and island 3 will switch at the same time due to equally dipole-dipole interaction. Four-flux states can be observed. 4

6 When the intrinsic switching fields of three islands are various, more flux states could be obtained. Switching field of a single island increases with decreasing island size, as confirmed by both experimental and micromagnetic simulation (discussed in the following text). We design a cluster consisting of three islands with different intrinsic switching field (Hc0,1>Hc0,2>Hc0,3) by the way of three different island size (island 1<island 2<island 3). Under an application of reversal field, island 2 switches first due to strong dipole-dipole interactions with an influence of two neighboring islands. With a further increasing of reversal field, switching energy barrier between island 1 and island 3 is not the same due to the different coupling. Although island 1 and island 3 feel the same dipole-dipole interaction from island 2, island 3 switches earlier than island 1 due to smaller intrinsic switching field (Hc0,1>Hc0,3). Six-flux states may be observed (Figure 2(b)). In additional to the three-island cluster model, we have designed various cluster structures such as five-island cluster and nano maze (Figure S4-S6), etc. A cluster with six-flux states and ten-flux states are demonstrated in five-island cluster with uniform islands and non-uniform islands, respectively. An eighteen-flux states nano maze via both dipole-dipole interaction and size effect is also obtained through simulation (Figure S6). 2. Demonstration of "configurable magnetic clusters via dipole-dipole interactions" by [Co/Pd] islands In order to realize the concept of "configurable magnetic clusters via dipole-dipole interactions" illustrated in previous models, [Co/Pd] multilayers, which show a well physical separation and uniform intrinsic proprieties (narrow intrinsic switching field distribution, Figure S7-S10) after patterned into individual islands are used for experimental demonstration. 2.1 [Co/Pd] single domain island size The island size in multi-island cluster is a crucial point and it must be big enough to fulfill the thermal stability criterion (calculated as 5 nm for this [Co/Pd] sample with effective thickness of 12 nm). Additionally, the island size must be of single domain particle size (as the upper size limit). Simulation result (Figure S11) indicates the single domain state is energetically stable below 600 nm. This result agrees with our MFM observation and fulfills the scope of this work. Coercivity of a single island as a function of island size (up to 5000 nm) is also investigated by simulation (Figure 3). The measured coercivity at different island 5

7 size by MFM observations is indicated by red dot. Apparently, coercivity increases with island size when the size less than 20 nm, which is attributed to superparamagnetic effects. For the island size of 20 nm to 600 nm, the coercivity decreases with an increase of island size is mostly due to the change in magnetization reversal modes. Beyond the island size of 600 nm, the coercivity becomes insensitive to the islands size and reaches stable value of ~11 koe. 2.2 Maximum dipole-dipole interactions in three-island [Co/Pd] cluster In order to get distinct multi-states in configurable three-island [Co/Pd] cluster, a large dipole-dipole interaction between neighboring islands is desired. Dipole-dipole interaction is strongly influenced by the dimension of islands, including island size, thickness and gap. It can be represented by the simplified following formula for a homogenous spherical dot island: H dip = M s V bit r 3 (1) where Vbit is the volume of the island and r is center-to-center distance (size+gap) between two neighboring islands. As shown in Equation (1), dipole field decays quickly with the separation r (r 3 ). Only the nearest neighbors and next nearest neighbors play the dominant contribution to the dipole field of a particular island. As described in previously, our Co/Pd multi-layer islands have a thickness of 12 nm, and a magnetization of 600 emu/cc based on our available sputtering and e-beam lithography systems. In this circumstance, ΔH is only influenced by island size & gap. Absolute value of ΔH as a function of island dimension, including island size and gap in a three-island [Co/Pd] cluster with thickness of 12 nm is plotted in Figure 4(b). ΔH is defined as difference in reversal fields (normal to film surface) between first (Hc2) and last (Hc1 or Hc3, Hc1 = Hc3) switched island. It shows ΔH increases with the decreases of island gap, down to 5 nm (Figure S14). Nevertheless, the best achievable uniform gap size is ~12 nm based on our experiment data, owing to the limited resolution of our electron beam lithography system. The maximum ΔH (~1 koe) is obtained at island size of ~90 nm. 2.3 Demonstration of a three-island [Co/Pd] cluster with uniform islands Using the optimized parameters for [Co/Pd] islands (island size of 90 nm, gap of 12 nm, thickness of 12 nm and film saturation magnetization of 600 emu/cc), we have fabricated [Co/Pd] clusters to demonstrate "configurable magnetic cluster via dipole-dipole interactions". 6

8 Dipole-dipole interaction of clusters consisting of three closely arranged [Co/Pd] islands is investigated systematically by experiments. Reversal process for a three-island cluster with uniform island size of 90 nm and gap of 12 nm in the presence of external out-of-plane magnetic field are observed by MFM (Figure 5(a)). All remanent states were captured after saturating the sample followed by applying different reversal fields. As discussed in Figure 2(a), when three uniform islands are placed closely with each other, their switching energy barriers influence with each other. Figure 5(a) shows island 2 switches at koe after saturating the sample at 15 koe. The first reversal of island 2 is due to positive dipole-dipole interaction (same magnetization spin direction) with two neighboring islands. When the negative field increases, island 1 and island 3 are expected to switch at the same time due to their equivalent sites. However, it is interested to have observed sequential switching between island 1 and island 3 in our experiment. Two possible remanent states at reversal field of koe are observed with equal probability from statistical data analysis, as type A and type B shown in Figure 5(a). The earlier switched island will switch back earlier than the other one in presence of opposite reversal field. As we mentioned above, magnetic islands in our sample is not absolutely uniform, as indicated in deviations of intrinsic properties (intrinsic switching field distribution [16-19] reported in our previous paper). Therefore, for island 1 and island 3, which one switches earlier than the other, is determined by their intrinsic properties (defects, shape, size, etc). As long as the second island finished switching, it poses an extra field and therefore holds on the reversal of the last-switched island. The switching field of the last-switched island is -15 koe from MFM observations. Six-flux states are found in Figure 5(a). Sequential and individual switching in five-island cluster with uniform islands is also observed similarly as three-island cluster with uniform islands due to the same dipole-to-dipole interaction rule. Ten-flux states are found as shown in Figure S Demonstration of a three-island [Co/Pd] cluster with non-uniform islands In order to avoid this uncertainty of switching sequence between island 1 and island 3 in Figure 5(a), we designed a three-island cluster with different sizes (island 1 ~60 nm, island 2 ~80 nm and island 3 ~90 nm) (Figure 5(b)). Island 2 switches first due to strong dipole-dipole interaction with two neighboring islands. Next is island 3 and followed by island 1. This observation agrees well with our model in Figure 2(b) and results in Figure 3 that larger island has lower switching field and it will switch earlier than smaller one. Sequential and individual switching in five-island cluster with non-uniform islands is also observed. 7

9 ΔH is equal to 1.5 koe for three-island cluster with uniform islands, and 2.5 koe for three-island cluster with non-uniform islands. The value of ΔH is much larger than intrinsic SFD (0.9 koe [16-19] reported in our previous paper). It indicates that the multi-states of three-island cluster are caused by dipole-dipole interaction rather than intrinsic switching field distribution. 3. Optimization of "configurable magnetic clusters via dipole-dipole interactions" for potential applications In potential spintronics device for logic, memory applications, a high value of ΔH/Hc is more desired than a high value of ΔH. Based on Equation 1, ΔH is dependent on several parameters, such as saturation magnetization (Ms), island dimension (including thickness & size) and gap. Hc is related to anisotropy constant Ku. In this work, we have studied how to optimize island cluster structure in terms of magnetization, magnetic anisotropy, island size, thickness and gapthrough LLG calculation. 3.1 Saturation magnetization (Ms) and island thickness As shown in Equation 1, island gap should be kept as small as possible. Based on today s lithography technology (for example e-beam), it is difficult to reduce a gap smaller than 10 nm. We have kept gap to be 10 nm for the following study. When island size and gap are kept in 90 nm and 10 nm, respectively, the relationship between ΔH, saturation magnetization (Ms) and thickness of three-island cluster is investigated by micromagnetic simulation (Figure 6(a)). Also shown in Equation 1, an increase of saturation magnetization (Ms) and/or island volume (here thickness, as island size is kept as a constant of 90 nm) can increase ΔH. Figure 6(a) confirms that large island thickness and high saturation magnetization are desired for high value of ΔH. A too large thickness may affect epitaxial layer structure, and result in reduction of magnetic anisotropy. 20 nm may be a reasonable value for thickness. As for saturation magnetization, the highest achievable value is 1300 emu/cc (for pure Co). Increased magnetization has been reported for Co/Pd via changing thickness of Pd layer while perpendicular magnetic anisotropy can be kept [20]. A saturation magnetization of 1000 emu/cc would be a reasonable value for our optimization. As shown in Figure 6(a), a thick layer (~20 nm) with large saturation magnetization (Ms~1000 emu/cc) may have a large value of ΔH (~1.8 koe). 3.2 Island size 8

10 Figure 6(b) shows ΔH of a three-island cluster (with optimized parameters from Figure 6(a) that island thickness of 20nm, island gap of 10nm and saturation magnetization (Ms) of 1000 emu/cc) as a function of island size. ΔH increases with increasing of island size. When island size reaches 100 nm, ΔH is insensitive to island size. A cluster with island size as smaller as 20 nm is enough to induce high dipole-dipole interaction. As smaller island size is desired for spintronics devices for logic, memory and other applications, we may select 20 nm as the optimized island size. 3.3 Anisotropy constant A low Hc is preferred in magnetic logic device. Since the value of Hc is related to anisotropy constant Ku, we investigated the coercivity of single island as a function of anisotropy constant Ku by simulation (Figure 6(c)). Coercivity lineally increases with increasing of Ku for Ku larger than 100 kerg/cc. When Ku is smaller than 100 kerg/cc, magnetic energy (KuV) is getting close to thermal energy (kbt). Coercivity decreases to zero when thermal energy is comparable to anisotropy energy. Thermal stability of a coherent non-interacting particle can be analyzed by simple coherent non-interacting rate equation model [21-22]: τ ± 1 (h) =f 0 exp ( E B ± (h) k B T ) (2) τ is the relaxation time, f0 is attempt frequency (~10 9 Hz), EB is the energy barrier, kb is Boltzmann constant, T is temperature (~300K). When τ equals to 10 years, KuV =40kBT, Ku is calculated to ~200 kerg/cc. Therefore, when Ku is larger than 200 kerg/cc, island with saturation magnetization (Ms) of 1000 emu/cc, size of 20 nm, gap of 10 nm, thickness of 20 nm is assumed to have stable thermal stability. Coercivity as a function of island size for a single island with different anisotropy is simulated in supporting information (Figure S16). In a magnetic cluster, the switching field of an island is influenced by the neighboring islands. Both dipole-dipole interaction and demagnetized field make contribution to switching field. Based on the geometry of island size of 20 nm, gap of 10 nm and saturation magnetization (Ms) of 1000 emu/cc, the dipole-dipole interactions can generate a relatively large ΔH (~1.8 koe). A dipole field of -900Oe might switch the island, as it exceeds the coercovity (or anisotropy field), as shown in Fig. S16. Therefore, a higher magnetic anisotropy needs to be selected particularly for magnetic logic device applications. A much higher magnetic anisotropy of approximately 1000 kerg/cc is required instead of 200 kerg/cc, in order to keep an energy barrier 200 erg/cc. 9

11 In summary, uniform islands of size of 20 nm, thickness of 20 nm, gap of 10 nm,, saturation magnetization (Ms) of 1000 emu/cc and anisotropy constant (Ku) of 1000 kerg/cc were used for the simulation/calculation for applications of magnetic logic device and magnetic domino, as described below. 4. Potential practical applications 4.1 Programmable Logic Device A configurable logic device consisting of three uniform exchange-coupled islands and a metallic layer structure is proposed (Figure 7(a)). Three magnetic islands are connected by the non-magnetic metallic layer to ensure the magnetizations of the three magnetic islands can be switched independently. The switching of the magnetic islands is controlled by a combination of three independent input currents (IA, IB, IC) with magnetic fields. The spin polarization change between island 2 and island 3 under external electrical stimulus can be detected by variation in resistance of these two islands, readout as output of logic device. The lower resistances state due to parallel alignment of island 2 and island 3 corresponds to logical 1, while higher resistances state caused by antiparallel alignment of island 2 and island 3 is read as logical 0. The logic device operation can be triggered by key two steps. First, ones need to initialize the logic devices into AND, OR, NAND, or NOR operation by inputting the initial current (line A), denoted as the initial setting process. For initializing a device operation, a current with a magnetic field that is sufficient to rotate magnetic islands into preference pattern is required (Figure 7(b)). Once the logic gate is operated in the selected logic mode, the users can input the signal via B and C line, named as the logic operation process. Since the direction of the magnetization is maintained when the current is turned off, the information is non-volatile and can be read out repeatedly by measurement the resistance of the island 2 and island 3. Logic operations for four functional gates are summarized in Application S Perpendicular Magnetic Domino Another key practical application of our configurable magnetic islands is "magnetic domino" (one chain of magnetic dots coupled only to nearest neighbors (Figure S2(a)), which can propagate the "magnetic current" in a long distance via vertical dipole-dipole interactions. In our proposal, the driving force for magnetic domino is a magnetic nano-bar (Figure S17). It indicates that a magnetic nano-bar (with diameter of 50nm and length of 100nm) in the distance of 50nm can only result in the switching of the top dot in magnetic domino. The 10

12 information propagates along the magnetic domino entirely via magnetic dipole-dipole interactions. Figure 8(a) illustrates the proposed fabrication process of magnetic domino with length of 500nm in total. Magnetic multilayers can be deposited by dc magnetron sputtering system. Non-magnetic layer (1nm) between two magnetic layer (50nm) are used to isolate the neighboring vertical islands. Anisotropy constant (Ku) and saturation magnetization (Ms) of different magnetic layers used in micromagnetic simulation are also indicated in the Figure 8(a). Material with large Ku and Ms in the top layer is desired to generate large out-of-plane reversal fields at the initial propagation of the magnetic domino. The magnetic domino is saturated by an opposite external field followed by in presence of a magnetic nano-bar. After removing the magnetic nano-bar, the propagation process of magnetic domino is captured by LLG micromagnetic simulator at the same time interval. It indicates that the magnetization spreads from one dot to another from the top down. Simulation result shows that the magnetic current can spread as far as 1 μm (not shown here) via vertical dipole-dipole interactions. It shows a prominent application in future logic device. In addition, multi-states bit pattered medium consisting of closely arranged magnetic islands to achieve ultra-high magnetic recording density and a three input MQCA device based on both ferromagnetic and antiferromagnetic coupling are demonstrated in Application S2 and S3, respectively. 5. Conclusion In conclusion, perpendicular magnetic clusters with configurable domain structures via dipole-dipole interactions are demonstrated. The [Co/Pd] cluster with a strong out-of-plane anisotropy shows a well defined physical gap and uniform intrinsic properties. Maximum dipole-dipole interaction in [Co/Pd] three-island cluster is obtained by varying island size and gap using micromagnetic simulation. Six stable magnetic states in three-island [Co/Pd] cluster are observed by MFM after saturating the sample followed by applying different reversal fields. In order to make use of dipole-dipole interaction to generate distinct multi-states in a cluster for potential memory or logic applications, optimized material parameters other than our demonstrated [Co/Pd] are proposed by micromagnetic simulation. A cluster consisting of three uniform islands (with island size of 20 nm, gap of 10 nm, thickness of 20 nm, saturation magnetization (Ms) of 1000 emu/cc and Ku of 1000 kerg/cc) is assumed to have sufficient dipole-dipole interaction leading to distinguish flux states and stable thermal stability. 11

13 Several potential applications of configurable domain structures via dipole-dipole interactions have been proposed. One is a simple and configurable logic device consisting of three exchange-coupled islands and a metallic layer. Three independent input current lines are sufficient to provide four functionalities: AND, OR, NAND and NOR gates. The other potential application is magnetic domino which can propagate the magnetic current as far as 1 μm away via vertical dipole-dipole interaction. Experimental Section Sample preparation. [Co3/Pd8]10 multilayer for this study is prepared using a dc magnetron sputtering machine on a thermally oxidized Si substrate. The number following the symbols is the respective layer thickness in angstrom and the subscript refers to the number of repetitions. The film are deposited on [Ta50/Cu50/Pd30] to induce proper crystallographic growth of the Co layer and capped with [Pd30/Ta50] for protection. The base pressure is Torr while the Ar working pressure during sputtering is 1.5 mtorr. The patterned dots are generated using high resolution electron beam lithography (Eli onix ELS 7000 EBL) by first coating the film with hydrogen silsesquioxane (HSQ) photoresist. Ar + ion-milling is carried out at angle of 3ºoff normal incidence to the sample to form discrete magnetic islands (Figure S7). Milling is stopped as soon as isolated magnetic islands are identified. In total, approximately 30 nm of material that included the [Co/Pd] (~12nm) magnetic layer is milled to ensure sufficient isolation between islands (Figure S10). Experimental measurement. The physical structure of the patterned islands is investigated in Scanning Electron Microscope (SEM, Zeiss Supra 40) to obtain plane views. Magnetic remanent states are characterized by MFM using a Digital Instruments Dimension 3000 Scanning Probe Microscope (SPM) with high resolution MFM tips. Saturation magnetization and coercivity of the continuous film before patterning are measured by Vibrating Sample Magnetometer (VSM) and Superconducting Quantum Interference Device system (SQUIDs). The ex situ out-of-plane magnetic field before MFM measurements are implemented by VSM. Micromagnetic simulation. A Landau-Liftshitz-Gilbert (LLG) simulator is used for micromagnetic simulation of nanomagnets. This simulator is based on an energy minimization procedure that searches the 12

14 grid point by point and a parallel (Fourier space) implementation of general LLG equation solves. The energy terms in this simulation include the exchange coupling (Ex), uniaxial anisotropy (Ek), stray field (or demagnetization including dipolar interactions) (Ed) and external field (Ez) contributions. 3D complex Fast Fourier Transform (FFT) method (that is, parallel solution in time) is used to compute the solution to the LLG equations. In this work, all the parameters of [Co/Pd] island in simulation including saturation magnetization of 600 emu/cc, anisotropy constant of 580 kerg/cc, island size of 90 nm, island-to-island gap of 12 nm, etc., are obtained from our experimental measurements. An exchange stiffness of 10-6 erg/cm is used based on references [23-25]. The size of the finite element mesh is 5 nm which is well below the exchange length of 8.5 nm for [Co/Pd] multilayer [16]. Acknowledgements This research work was financially supported by NRF-CRP and NRF2012NRF-CRP

15 References [1] L. Bovo, J. A. Bloxsom, D. Prabhakaran, G. Aeppli and S. T. Bramwell, Nat Commun 2013, 4, [2] J. Li, S. Zhang, J. Bartell, C. Nisoli, X. Ke, P. E. Lammert, V. H. Crespi and P. Schiffer, Physical Review B 2010, 82, [3] B. C. den Hertog and M. J. P. Gingras, Physical Review Letters 2000, 84, [4] T. Yavors kii, T. Fennell, M. J. P. Gingras and S. T. Bramwell, Physical Review Letters 2008, 101, [5] R. F. Wang, C. Nisoli, R. S. Freitas, J. Li, W. McConville, B. J. Cooley, M. S. Lund, N. Samarth, C. Leighton, V. H. Crespi and P. Schiffer, Nature 2006, 439, [6] S. Ladak, D. E. Read, G. K. Perkins, L. F. Cohen and W. R. Branford, Nat Phys 2010, 6, [7] X. Ke, J. Li, S. Zhang, C. Nisoli, V. H. Crespi and P. Schiffer, Applied Physics Letters 2008, 93, [8] Y. Han, Physical Review E 2009, 80, [9] J. Li, X. Ke, S. Zhang, D. Garand, C. Nisoli, P. Lammert, V. H. Crespi and P. Schiffer, Physical Review B 2010, 81, [10] A. Imre, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein and W. Porod, Science 2006, 311, [11] R. P. Cowburn and M. E. Welland, Science 2000, 287, [12] A. Orlov, A. Imre, G. Csaba, L. Ji, W. Porod and G. H. Bernstein, Journal of Nanoelectronics and Optoelectronics 2008, 3, [13] S. Breitkreutz, J. Kiermaier, I. Eichwald, J. Xueming, G. Csaba, D. Schmitt-Landsiedel and M. Becherer, Magnetics, IEEE Transactions on 2012, 48, [14]L. Chang, D. J. Frank, R. K. Montoye, S. J. Koester, B. L. Ji, P. W. Coteus, R. H. Dennard and W. Haensch, Proceedings of the IEEE 2010, 98, [15]J. K. W. Yang, Y. S. Jung, J.-B. Chang, R. A. Mickiewicz, A. Alexander Katz, C. A. Ross and K. K. Berggren, Nat Nano 2010, 5, [16] W. M. Li, Y. Yang, Y. J. Chen, T. L. Huang, J. Z. Shi and J. Ding, Journal of Magnetism and Magnetic Materials 2012, 324, [17]Y. J. Chen, T. L. Huang, J. Z. Shi, J. Deng, J. Ding, W. M. Li, S. H. Leong, B. Y. Zong, H. Y. Y. Ko, S. B. Hu and J. M. Zhao, Journal of Magnetism and Magnetic Materials 2012, 324,

16 [18] W. M. Li, X. L. Huang, J. Z. Shi, Y. J. Chen, T. L. Huang and J. Ding, Journal of Applied Physics 2012, 111, 07B [19] W. M. Li, Y. J. Chen, T. L. Huang, J. M. Xue and J. Ding, Journal of Applied Physics 2011, 109, 07B [20] D. G. Stinson and S. C. Shin, Journal of Applied Physics 1990, 67, [21] E. C. Stoner and E. P. Wohlfarth, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 1948, 240, [22]R. Street,J. C. Woolley: Proc. Phys. Soc., Sect. A 1949, 62, 562. [23] D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, M. F. Toney and M. Schwickert, IEEE Transactions on Magnetics 2000, 36, [24] P. Krone, D. Makarov, T. Schrefl and M. Albrecht, J. Appl. Phys. 2009, 106, [25] W. Scholz, D. Suess, T. Schrefl and J. Fidler, Journal of Applied Physics 2004, 95,

17 Figure Captions Figure 1. A schematic of origins of dipole-dipole interactions in a two-island cluster system with different islands (with different switching fields). Hc0,1 and Hc0,2 are switching fields of single island 1 (d) and island 2 (e) without considering dipole-dipole interactions. Hc0,1 is smaller than Hc0,2 (g). When island 1 and island 2 are placed closely with other, their switching field could vary due to increased or decreased energy barrier (c). When a reversal field (negative field) is applied on the two-island cluster after saturation at the same magnetization direction (by positive field), island 1 is expected to switch first at (Hc0,1-Hdip) due to smaller energy barrier and dipole-dipole interaction. After switching of island 1, two neighboring islands have the opposite spin direction. Switching energy of island 2 increases due to dipole-dipole interaction, therefore, island 2 switch at (Hc0,2+Hdip) (f). Hc1 and Hc2 are switching fields of island 1 and island 2 after considering dipole-dipole interactions. Figure 2. Model of a three-island cluster with uniform (a) and non-uniform (b) islands. Upper, a schematic of switching energy barrier and magnetic states of a three-island cluster. Lower, a hysteresis loop and corresponding magnetic states of a three-island cluster. Figure 3. Single [Co/Pd] island with thickness of 12 nm. (a) MFM images of single [Co/Pd] island with thickness of 12 nm and island size of 3 μm with up (left image) and down (right image) magnetization directions. (b) Simulation result of coercivity (switching field) of [Co/Pd] island as a function of island size by LLG simulator. Red dot is the measured coercivity by MFM observation. Insert: enlarged curve when island size is smaller than 100 nm. Figure 4. Simulation of dipole-dipole interactions in three-island [Co/Pd] cluster. (a) Illustration of reversal process and corresponding switching fields for three-island cluster in the presence of an external magnetic field perpendicular to film surface. (b) Simulation result of ΔH of three-island [Co/Pd] cluster with thickness of 12 nm as a function of island dimension, including island size and gap. H is defined as difference in reversal fields between first (Hc2) and last (Hc1 or Hc3, Hc1 = Hc3) switching island. Figure 5. Demonstration of a three-island [Co/Pd] cluster with uniform islands (a) and non-uniform islands (b). Upper, SEM images of a three-island cluster (with island size of 90 16

18 nm and gap of 12 nm). Lower, MFM images of a three-island cluster at different magnetic reversal fields perpendicular to film plane. Figure 6. (a) Simulation results of ΔH in a three-island cluster as a function of island thickness and saturation magnetization (Ms). Cluster has uniform island size of 90 nm and gap of 10nm. (b) Simulation results of ΔH as a function of island size. (c) Simulation result of coercivity as a function of anisotropy constant Ku. Figure 7. Programmable Logic Device. (a) a schematic of a non-volatile and programmable logic device based on three-island cluster with uniform island size. One can control the functionality of logic device (AND, OR, NAND, or NOR operation) by manipulating its spin polarization information (up or down) of the islands via a strong dipole-dipole interaction between their neighboring islands through external current with multi-level magnetic fields. Once this structure is employed as a programmable logic device, the operation has to proceed in two steps: "initial setting" by input current A and "logic operation" by combination of input currents B and C. The spin polarization change between island 2 and island 3 can be detected by variation in resistance of these two islands, readout as the output of logic device. (b) initial setting shown in a hysteresis loop of a three-island cluster with uniform island size of 20nm, gap of 10nm, thickness of 20nm, Ku of 1000 kerg/cc and Ms of 1000 emu/cc. Figure 8. Perpendicular Magnetic Domino. (a) a schematic of proposed fabrication process of magnetic domino by E-beam lithography. The magnetic domino is saturated by an external magnetic field before being in presence of a reversal field generated by a magnetic bar. (b) simulated reversal process of magnetic domino captured by LLG micromagnetic simulator. 17

19 Figure 1 18

20 Figure 2 Figure 3 19

21 Figure 4 Figure 5 20

22 Figure 6 21

23 Figure 7 22

24 Figure 8 23

Anisotropy Distributions in Patterned Magnetic Media

Anisotropy Distributions in Patterned Magnetic Media MINT Review & Workshop 24-25 Oct. 2006 Anisotropy Distributions in Patterned Magnetic Media Tom Thomson Hitachi San Jose Research Center Page 1 Acknowledgements Manfred Albrecht (Post-doc) Tom Albrecht

More information

Enhanced Magnetic Properties of Bit Patterned Magnetic Recording Media by Trench-Filled Nanostructure

Enhanced Magnetic Properties of Bit Patterned Magnetic Recording Media by Trench-Filled Nanostructure CMRR Report Number 32, Summer 2009 Enhanced Magnetic Properties of Bit Patterned Magnetic Recording Media by Trench-Filled Nanostructure Edward Chulmin Choi, Daehoon Hong, Young Oh, Leon Chen, Sy-Hwang

More information

Techniques for inferring M at small scales

Techniques for inferring M at small scales Magnetism and small scales We ve seen that ferromagnetic materials can be very complicated even in bulk specimens (e.g. crystallographic anisotropies, shape anisotropies, local field effects, domains).

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11733 1 Ising-Macrospin model The Ising-Macrospin (IM) model simulates the configuration of the superlattice (SL) by assuming every layer is a single spin (macrospin)

More information

Exchange Coupled Composite Media for Perpendicular Magnetic Recording

Exchange Coupled Composite Media for Perpendicular Magnetic Recording BB-01 1 Exchange Coupled Composite Media for Perpendicular Magnetic Recording R. H. Victora, Fellow, IEEE, X. Shen Abstract Exchange coupled composite (ECC) media has been shown to possess several major

More information

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY International Journal of Modern Physics B Vol. 19, Nos. 15, 16 & 17 (2005) 2562-2567 World Scientific Publishing Company World Scientific V www.worldscientific.com ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES

More information

Giant Magnetoresistance

Giant Magnetoresistance Giant Magnetoresistance This is a phenomenon that produces a large change in the resistance of certain materials as a magnetic field is applied. It is described as Giant because the observed effect is

More information

Simulation of Hysteresis In Permalloy Films

Simulation of Hysteresis In Permalloy Films GQ-02 1 Simulation of Hysteresis In Permalloy Films Andrew Kunz and Chuck Campbell Magnetic Microscopy Center University of Minnesota Minneapolis, MN Introduction 2 Looking for the classical behavior of

More information

Resistivity (mohm-cm) Magnetoresistance (%) H=0 T H=1 T MR. Temperature (K)

Resistivity (mohm-cm) Magnetoresistance (%) H=0 T H=1 T MR. Temperature (K) Supplemental material for Nanostructured complex oxides as a route towards thermal behavior in artificial spin ice systems R.V. Chopdekar 1, B. Li 1, T.A. Wynn 1, M.S. Lee 1, Y. Jia 1, Z.Q. Liu 2, M.D.

More information

Artificial spin ice: Frustration by design

Artificial spin ice: Frustration by design Artificial spin ice: Frustration by design Peter Schiffer Pennsylvania State University Joe Snyder, Ben Ueland, Rafael Freitas, Ari Mizel Princeton: Bob Cava, Joanna Slusky, Garret Lau Ruifang Wang, Cristiano

More information

Injecting, Controlling, and Storing Magnetic Domain Walls in Ferromagnetic Nanowires

Injecting, Controlling, and Storing Magnetic Domain Walls in Ferromagnetic Nanowires Marquette University e-publications@marquette Physics Faculty Research and Publications Physics, Department of 8-1-2010 Injecting, Controlling, and Storing Magnetic Domain Walls in Ferromagnetic Nanowires

More information

Preparation, Structural Characterization, and Dynamic Properties Investigation of Permalloy Antidot Arrays

Preparation, Structural Characterization, and Dynamic Properties Investigation of Permalloy Antidot Arrays University of Montana ScholarWorks at University of Montana Chemistry and Biochemistry Faculty Publications Chemistry and Biochemistry 5-12-2005 Preparation, Structural Characterization, and Dynamic Properties

More information

ELECTRON HOLOGRAPHY OF NANOSTRUCTURED MAGNETIC MATERIALS. Now at: Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK

ELECTRON HOLOGRAPHY OF NANOSTRUCTURED MAGNETIC MATERIALS. Now at: Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK ELECTRON HOLOGRAPHY OF NANOSTRUCTURED MAGNETIC MATERIALS R. E. DUNIN-BORKOWSKI a,b, B. KARDYNAL c,d, M. R. MCCARTNEY a, M. R. SCHEINFEIN e,f, DAVID J. SMITH a,e a Center for Solid State Science, Arizona

More information

Dyeing Bacterial Cellulose Pellicles for Energetic Heteroatom Doped Carbon Nanofiber Aerogels

Dyeing Bacterial Cellulose Pellicles for Energetic Heteroatom Doped Carbon Nanofiber Aerogels Nano Research DOI 10.1007/s12274-014-0546-4 Nano Res 1 Dyeing Bacterial Cellulose Pellicles for Energetic Heteroatom Doped Carbon Nanofiber Aerogels Zhen-Yu Wu, Hai-Wei Liang, Chao Li, Bi-Cheng Hu, Xing-Xing

More information

SPIN TRANSFER TORQUES IN HIGH ANISOTROPY MAGNETIC NANOSTRUCTURES

SPIN TRANSFER TORQUES IN HIGH ANISOTROPY MAGNETIC NANOSTRUCTURES CRR Report Number 29, Winter 2008 SPIN TRANSFER TORQUES IN HIGH ANISOTROPY AGNETIC NANOSTRUCTURES Eric Fullerton 1, Jordan Katine 2, Stephane angin 3, Yves Henry 4, Dafine Ravelosona 5, 1 University of

More information

Micromagnetic simulation of magnetization reversal in rotational magnetic fields

Micromagnetic simulation of magnetization reversal in rotational magnetic fields Physica B 306 (2001) 112 116 Micromagnetic simulation of magnetization reversal in rotational magnetic fields J. Fidler*, T. Schrefl, W. Scholz, D. Suess, V.D. Tsiantos Institute of Applied and Technical

More information

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998. Magnetoresistance due to Domain Walls in Micron Scale Fe Wires with Stripe Domains arxiv:cond-mat/9803101v1 [cond-mat.mes-hall] 9 Mar 1998 A. D. Kent a, U. Ruediger a, J. Yu a, S. Zhang a, P. M. Levy a

More information

The exchange interaction between FM and AFM materials

The exchange interaction between FM and AFM materials Chapter 1 The exchange interaction between FM and AFM materials When the ferromagnetic (FM) materials are contacted with antiferromagnetic (AFM) materials, the magnetic properties of FM materials are drastically

More information

Magnetic Force Microscopy practical

Magnetic Force Microscopy practical European School on Magnetism 2015 From basic magnetic concepts to spin currents Magnetic Force Microscopy practical Organized by: Yann Perrin, Michal Staňo and Olivier Fruchart Institut NEEL (CNRS & Univ.

More information

Influence of Size on the Properties of Materials

Influence of Size on the Properties of Materials Influence of Size on the Properties of Materials M. J. O Shea Kansas State University mjoshea@phys.ksu.edu If you cannot get the papers connected to this work, please e-mail me for a copy 1. General Introduction

More information

Neutron Reflectometry of Ferromagnetic Arrays

Neutron Reflectometry of Ferromagnetic Arrays Neutron Reflectometry of Ferromagnetic Arrays Z.Y. Zhao a, P. Mani a, V.V.Krishnamurthy a, W.-T. Lee b, F. Klose b, and G.J. Mankey a a Center for Materials for Information Technology and Department of

More information

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Imprinting domain/spin configurations in antiferromagnets A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems Dr. J. Sort Institució Catalana de Recerca i Estudis Avançats (ICREA)

More information

Investigation of possibility of high temperature quantum-dot cellular automata

Investigation of possibility of high temperature quantum-dot cellular automata Journal of Physics: Conference Series Investigation of possibility of high temperature quantum-dot cellular automata To cite this article: G Varga 2007 J. Phys.: Conf. Ser. 61 1216 View the article online

More information

Magnetization reversal of CrO 2 nanomagnet arrays

Magnetization reversal of CrO 2 nanomagnet arrays JOURNAL OF APPLIED PHYSICS VOLUME 96, NUMBER 12 15 DECEMBER 2004 Magnetization reversal of CrO 2 nanomagnet arrays Qiang Zhang, Y. Li, and A. V. Nurmikko Division of Engineering and Department of Physics,

More information

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction D. Chiba 1, 2*, Y. Sato 1, T. Kita 2, 1, F. Matsukura 1, 2, and H. Ohno 1, 2 1 Laboratory

More information

MAGNETO-RESISTANCE AND INDUCED DOMAIN STRUCTURE IN TUNNEL JUNCTIONS

MAGNETO-RESISTANCE AND INDUCED DOMAIN STRUCTURE IN TUNNEL JUNCTIONS Mat. Res. Soc. Symp. Proc. Vol. 674 001 Materials Research Society MAGNETO-RESISTANCE AND INDUCED DOMAIN STRUCTURE IN TUNNEL JUNCTIONS M. Hehn, O. Lenoble, D. Lacour and A. Schuhl Laboratoire de Physique

More information

Advanced Lab Course. Tunneling Magneto Resistance

Advanced Lab Course. Tunneling Magneto Resistance Advanced Lab Course Tunneling Magneto Resistance M06 As of: 015-04-01 Aim: Measurement of tunneling magnetoresistance for different sample sizes and recording the TMR in dependency on the voltage. Content

More information

Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays

Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays Abstract #: 983 Program # MI+NS+TuA9 Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays D. A. Tulchinsky, M. H. Kelley, J. J. McClelland, R. Gupta, R. J. Celotta National Institute of Standards

More information

Spin-transfer-torque efficiency enhanced by edge-damage. of perpendicular magnetic random access memories

Spin-transfer-torque efficiency enhanced by edge-damage. of perpendicular magnetic random access memories Spin-transfer-torque efficiency enhanced by edge-damage of perpendicular magnetic random access memories Kyungmi Song 1 and Kyung-Jin Lee 1,2,* 1 KU-KIST Graduate School of Converging Science and Technology,

More information

Magnetic anisotropy of elongated thin ferromagnetic nano-islands for artificial spin ice arrays

Magnetic anisotropy of elongated thin ferromagnetic nano-islands for artificial spin ice arrays Magnetic anisotropy of elongated thin ferromagnetic nano-islands for artificial spin ice arrays G M Wysin 1, W A Moura-Melo 2, L A S Mól 2, A R Pereira 2 1 Department of Physics, Kansas State University,

More information

Paolo Vavassori. Ikerbasque, Basque Fundation for Science and CIC nanogune Consolider, San Sebastian, Spain.

Paolo Vavassori. Ikerbasque, Basque Fundation for Science and CIC nanogune Consolider, San Sebastian, Spain. Magnetic nanostructures Paolo Vavassori Ikerbasque, Basque Fundation for Science and CIC nanogune Consolider, San Sebastian, Spain. P. Vavassori nano@nanogune.eu I www.nanogune.eu 1 Outline Part I Introduction.

More information

Wouldn t it be great if

Wouldn t it be great if IDEMA DISKCON Asia-Pacific 2009 Spin Torque MRAM with Perpendicular Magnetisation: A Scalable Path for Ultra-high Density Non-volatile Memory Dr. Randall Law Data Storage Institute Agency for Science Technology

More information

Direct observation of the ice rule in artificial kagome spin ice

Direct observation of the ice rule in artificial kagome spin ice 1/31/2008 Direct observation of the ice rule in artificial kagome spin ice Yi Qi 1, T. Brintlinger 1,2, and John Cumings 1* 1 Department of Materials Science and Engineering 2 Center for Nanophysics and

More information

Thermal Effects in High Coercivity Perpendicular Media

Thermal Effects in High Coercivity Perpendicular Media Thermal Effects in High Coercivity Perpendicular Media J.W. Harrell Scott Brown MINT Center University of Alabama Introduction Thermal stability of perpendicular media will be a limiting factor in future

More information

EXPERIMENTAL STUDY OF NANOMAGNETS FOR MAGNETIC QUANTUM- DOT CELLULAR AUTOMATA (MQCA) LOGIC APPLICATIONS. A Dissertation

EXPERIMENTAL STUDY OF NANOMAGNETS FOR MAGNETIC QUANTUM- DOT CELLULAR AUTOMATA (MQCA) LOGIC APPLICATIONS. A Dissertation EXPERIMENTAL STUDY OF NANOMAGNETS FOR MAGNETIC QUANTUM- DOT CELLULAR AUTOMATA (MQCA) LOGIC APPLICATIONS A Dissertation Submitted to the Graduate School of the University of Notre Dame in Partial Fulfillments

More information

Magnetic QCA systems

Magnetic QCA systems Microelectronics Journal 36 (2005) 619 624 www.elsevier.com/locate/mejo Magnetic QCA systems G.H. Bernstein a, *, A. Imre a, V. Metlushko c, A. Orlov a, L. Zhou a,l.ji a, G. Csaba b, W. Porod a a Center

More information

Design of 3D Nanomagnetic Logic Circuits: a Full-Adder Case Study

Design of 3D Nanomagnetic Logic Circuits: a Full-Adder Case Study Design of 3D Nanomagnetic Logic Circuits: a Full-Adder Case Study Robert Perricone, X. Sharon Hu, Joseph Nahas, and Michael Niemier Department of Computer Science and Engineering, University of Notre Dame

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Exchange Bias in [Co/Pd]/IrMn Thin Films. Young Byun

Exchange Bias in [Co/Pd]/IrMn Thin Films. Young Byun Exchange Bias in [Co/Pd]/IrMn Thin Films Young Byun A senior thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Bachelor of Science

More information

Scaling during shadowing growth of isolated nanocolumns

Scaling during shadowing growth of isolated nanocolumns Scaling during shadowing growth of isolated nanocolumns T. Karabacak, J. P. Singh, Y.-P. Zhao, G.-C. Wang, and T.-M. Lu Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute,

More information

Hysteretic properties of a two dimensional array of small magnetic particles: a test-bed for the Preisach model

Hysteretic properties of a two dimensional array of small magnetic particles: a test-bed for the Preisach model Preisach Memorial Book A. Iványi (Ed.) Akadémiai Kiadó, Budapest, 2005 Hysteretic properties of a two dimensional array of small magnetic particles: a test-bed for the Preisach model Gábor VÉRTESY Research

More information

Scanning Probe Microscopy. L. J. Heyderman

Scanning Probe Microscopy. L. J. Heyderman 1 Scanning Probe Microscopy 2 Scanning Probe Microscopy If an atom was as large as a ping-pong ball......the tip would have the size of the Matterhorn! 3 Magnetic Force Microscopy Stray field interaction

More information

Planar Hall Effect in Magnetite (100) Films

Planar Hall Effect in Magnetite (100) Films Planar Hall Effect in Magnetite (100) Films Xuesong Jin, Rafael Ramos*, Y. Zhou, C. McEvoy and I.V. Shvets SFI Nanoscience Laboratories, School of Physics, Trinity College Dublin, Dublin 2, Ireland 1 Abstract.

More information

Micromagnetic simulations of magnetization reversal. in Co/Ni multilayers

Micromagnetic simulations of magnetization reversal. in Co/Ni multilayers 16 May 2001 Micromagnetic simulations of magnetization reversal in Co/Ni multilayers V. D. Tsiantos a, T. Schrefl a, D. Suess a, W. Scholz a, J. Fidler a, and J. M. Gonzales b a Vienna University of Technology,

More information

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 Spin transfer torques in high anisotropy magnetic nanostructures S. Mangin 1, Y. enry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 1) Laboratoire de Physique des

More information

Magnetization reversal of Co/Pd multilayers on nanoporous templates

Magnetization reversal of Co/Pd multilayers on nanoporous templates NANO EXPRESS Open Access Magnetization reversal of Co/Pd multilayers on nanoporous templates Chien-Chih Huang 1, Chin-Chung Yu 1*, Shih-Yuan Chen 2, Yeong-Der Yao 3 and Jun-Yang Lai 4 Abstract By making

More information

MICROMAGNETICS OF EXCHANGE SPRING MEDIA: OPTIMIZATION AND LIMITS

MICROMAGNETICS OF EXCHANGE SPRING MEDIA: OPTIMIZATION AND LIMITS 1/49 MICROMAGNETICS OF EXCHANGE SPRING MEDIA: OPTIMIZATION AND LIMITS Dieter Suess dieter.suess@tuwien.ac.at Institut of Solid State Physics, Vienna University of Technology, Austria (submitted to Journal

More information

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Supplementary Figure 1. SEM images of perovskite single-crystal patterned thin film with

More information

Introduction to magnetic recording + recording materials

Introduction to magnetic recording + recording materials Introduction to magnetic recording + recording materials Laurent Ranno Institut Néel, Nanoscience Dept, CNRS-UJF, Grenoble, France I will give two lectures about magnetic recording. In the first one, I

More information

Micromagnetic simulation of dynamic and thermal effects

Micromagnetic simulation of dynamic and thermal effects Micromagnetic simulation of dynamic and thermal effects T. Schrefl, J. Fidler, D. Suess, W. Scholz, V. Tsiantos Institute of Applied and Technical Physics Vienna University of Technology Wiedner Haupstr.

More information

Supplementary Note 1 Description of the sample and thin lamella preparation Supplementary Figure 1 FeRh lamella prepared by FIB and used for in situ

Supplementary Note 1 Description of the sample and thin lamella preparation Supplementary Figure 1 FeRh lamella prepared by FIB and used for in situ Supplementary Note 1 Description of the sample and thin lamella preparation A 5nm FeRh layer was epitaxially grown on a go (1) substrate by DC sputtering using a co-deposition process from two pure Fe

More information

Tuning the magnetic properties of Co nanoparticles by Pt capping

Tuning the magnetic properties of Co nanoparticles by Pt capping 1 Tuning the magnetic properties of Co nanoparticles by Pt capping A. Ebbing, 1,a) O. Hellwig, 2 L. Agudo, 3 G. Eggeler, 3 and O. Petracic 1,b) 1 Institute of Experimental Physics/Condensed Matter Physics,

More information

Breaking the thermally induced write error in heat assisted recording by using low and high Tc materials

Breaking the thermally induced write error in heat assisted recording by using low and high Tc materials Breaking the thermally induced write error in heat assisted recording by using low and high Tc materials D. Suess, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria. T. Schrefl

More information

Evolution of magnetic domain reversal with temperature in CoÕ Pt multilayers observed by magneto-optical Kerr imaging

Evolution of magnetic domain reversal with temperature in CoÕ Pt multilayers observed by magneto-optical Kerr imaging Evolution of magnetic domain reversal with temperature in CoÕ Pt multilayers observed by magneto-optical Kerr imaging X. P. Xie, X. W. Zhao, J. W. Knepper, F. Y. Yang, and R. Sooryakumar Department of

More information

7. Basics of Magnetization Switching

7. Basics of Magnetization Switching Beyond CMOS computing 7. Basics of Magnetization Switching Dmitri Nikonov Dmitri.e.nikonov@intel.com 1 Outline Energies in a nanomagnet Precession in a magnetic field Anisotropies in a nanomagnet Hysteresis

More information

Perpendicular exchange bias and magnetic anisotropy in CoOÕpermalloy multilayers

Perpendicular exchange bias and magnetic anisotropy in CoOÕpermalloy multilayers Perpendicular exchange bias and magnetic anisotropy in CoOÕpermalloy multilayers S. M. Zhou, 1,2 L. Sun, 3 P. C. Searson, 3 and C. L. Chien 1 1 Department of Physics and Astronomy, Johns Hopkins University,

More information

The Meissner and Mesoscopic Superconducting States in 1-4 Unit- Cell FeSe- Films up to 80 K

The Meissner and Mesoscopic Superconducting States in 1-4 Unit- Cell FeSe- Films up to 80 K The Meissner and Mesoscopic Superconducting States in 1-4 Unit- Cell FeSe- Films up to 80 K L. Z. Deng 1, B. Lv 1, Z. Wu 1, Y. Y. Xue 1, W. H. Zhang 2, F. H. Li 2, L. L. Wang 3, X. C. Ma 3, Q. K. Xue 2

More information

Mechanism of Polarization Fatigue in BiFeO 3 : the Role of Schottky Barrier

Mechanism of Polarization Fatigue in BiFeO 3 : the Role of Schottky Barrier Mechanism of Polarization Fatigue in BiFeO 3 : the Role of Schottky Barrier Yang Zhou, 1 Xi Zou, 1 Lu You, 1 Rui Guo, 1 Zhi Shiuh Lim, 1 Lang Chen, 1 Guoliang Yuan, 2,a) and Junling Wang 1,b) 1 School

More information

Micromagnetic Modeling of Soft Underlayer Magnetization Processes and Fields in Perpendicular Magnetic Recording

Micromagnetic Modeling of Soft Underlayer Magnetization Processes and Fields in Perpendicular Magnetic Recording 1670 IEEE TRANSACTIONS ON MAGNETICS, VOL. 38, NO. 4, JULY 2002 Micromagnetic Modeling of Soft Underlayer Magnetization Processes and Fields in Perpendicular Magnetic Recording Manfred E. Schabes, Byron

More information

Manipulation of the magnetic configuration of (Ga,Mn)As

Manipulation of the magnetic configuration of (Ga,Mn)As Manipulation of the magnetic configuration of (Ga,Mn)As nanostructures J.A. Haigh, M. Wang, A.W. Rushforth, E. Ahmad, K.W. Edmonds, R.P. Campion, C.T. Foxon, and B.L. Gallagher School of Physics and Astronomy,

More information

Bridging the Gap between Nanomagnetic Devices and Circuits

Bridging the Gap between Nanomagnetic Devices and Circuits Bridging the Gap between Nanomagnetic Devices and Circuits Michael Niemier 1,X.SharonHu 1, Aaron Dingler 1,M.TanvirAlam 2, G. Bernstein 2, and W. Porod 2 (1) Department of Computer Science and Engineering,

More information

Quasi-periodic nanostructures grown by oblique angle deposition

Quasi-periodic nanostructures grown by oblique angle deposition JOURNAL OF APPLIED PHYSICS VOLUME 94, NUMBER 12 15 DECEMBER 2003 Quasi-periodic nanostructures grown by oblique angle deposition T. Karabacak, a) G.-C. Wang, and T.-M. Lu Department of Physics, Applied

More information

High-frequency measurements of spin-valve films and devices invited

High-frequency measurements of spin-valve films and devices invited JOURNAL OF APPLIED PHYSICS VOLUME 93, NUMBER 10 15 MAY 003 High-frequency measurements of spin-valve films and devices invited Shehzaad Kaka, John P. Nibarger, and Stephen E. Russek a) National Institute

More information

Direct observation of the skyrmion Hall effect

Direct observation of the skyrmion Hall effect SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS3883 Direct observation of the skyrmion Hall effect Wanjun Jiang 1,2,3, *,, Xichao Zhang 4,*, Guoqiang Yu 5, Wei Zhang 1, Xiao Wang 6, M. Benjamin Jungfleisch

More information

Chapter 3. Magnetic Model. 3.1 Magnetic interactions

Chapter 3. Magnetic Model. 3.1 Magnetic interactions Chapter 3 Magnetic Model In this chapter, the micromagnetic model for the description of the magnetic properties of a laterally nanostructured film during growth is presented. The main physical idea of

More information

Dispersion and Scaling Law of Dynamic Hysteresis Based on the Landau-Lifshitz-Gilbert Model

Dispersion and Scaling Law of Dynamic Hysteresis Based on the Landau-Lifshitz-Gilbert Model Dispersion and Scaling Law of Dynamic Hysteresis Based on the Landau-Lifshitz-Gilbert Model Siying Liu, Hongyi Zhang, Hao Yu * Department of Mathematical Sciences, Xi an Jiaotong-Liverpool University,

More information

A detailed study of magnetization reversal in individual Ni nanowires

A detailed study of magnetization reversal in individual Ni nanowires A detailed study of magnetization reversal in individual Ni nanowires Item Type Article Authors Vidal, Enrique Vilanova; Ivanov, Yurii P.; Mohammed, Hanan; Kosel, Jürgen Citation A detailed study of magnetization

More information

Perpendicular MTJ stack development for STT MRAM on Endura PVD platform

Perpendicular MTJ stack development for STT MRAM on Endura PVD platform Perpendicular MTJ stack development for STT MRAM on Endura PVD platform Mahendra Pakala, Silicon Systems Group, AMAT Dec 16 th, 2014 AVS 2014 *All data in presentation is internal Applied generated data

More information

Control of the Magnetic State of Massifs of Ferromagnetic Nanoparticles with the Aid of the Inhomogeneous Field of a Magnetic-Force-Microscope Probe 1

Control of the Magnetic State of Massifs of Ferromagnetic Nanoparticles with the Aid of the Inhomogeneous Field of a Magnetic-Force-Microscope Probe 1 ISSN 0031-918X, The Physics of Metals and Metallography, 2010, Vol. 110, No. 7, pp. 1 27. Pleiades Publishing, Ltd., 2010. Control of the Magnetic State of Massifs of Ferromagnetic Nanoparticles with the

More information

The effect of the spatial correlation length in Langevin. micromagnetic simulations

The effect of the spatial correlation length in Langevin. micromagnetic simulations F043, version 1, 30 May 2001 The effect of the spatial correlation length in Langevin micromagnetic simulations V. Tsiantos a, W. Scholz a, D. Suess a, T. Schrefl a, J. Fidler a a Institute of Applied

More information

Magnetization reversal of microstructured kagome lattices

Magnetization reversal of microstructured kagome lattices Magnetization reversal of microstructured kagome lattices A. Westphalen, A. Schumann, A. Remhof, and H. Zabel* Institut für Experimentalphysik/Festkörperphysik, Ruhr-Universität Bochum, 44780 Bochum, Germany

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Magneto-ionic Control of Interfacial Magnetism Uwe Bauer, Lide Yao, Aik Jun Tan, Parnika Agrawal, Satoru Emori, Harry L. Tuller, Sebastiaan van Dijken and Geoffrey S. D. Beach - Supplementary Information

More information

ConceptGraphene. Small or medium-scale focused research project. WP4 Spin transport devices

ConceptGraphene. Small or medium-scale focused research project. WP4 Spin transport devices ConceptGraphene New Electronics Concept: Wafer-Scale Epitaxial Graphene Small or medium-scale focused research project WP4 Spin transport devices Deliverable 4.1 Report on spin transport in graphene on

More information

Stripes developed at the strong limit of nematicity in FeSe film

Stripes developed at the strong limit of nematicity in FeSe film Stripes developed at the strong limit of nematicity in FeSe film Wei Li ( ) Department of Physics, Tsinghua University IASTU Seminar, Sep. 19, 2017 Acknowledgements Tsinghua University Prof. Qi-Kun Xue,

More information

Magnetic domain theory in dynamics

Magnetic domain theory in dynamics Chapter 3 Magnetic domain theory in dynamics Microscale magnetization reversal dynamics is one of the hot issues, because of a great demand for fast response and high density data storage devices, for

More information

Quantum-dot cellular automata

Quantum-dot cellular automata Quantum-dot cellular automata G. L. Snider, a) A. O. Orlov, I. Amlani, X. Zuo, G. H. Bernstein, C. S. Lent, J. L. Merz, and W. Porod Department of Electrical Engineering, University of Notre Dame, Notre

More information

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor From nanophysics research labs to cell phones Dr. András Halbritter Department of Physics associate professor Curriculum Vitae Birth: 1976. High-school graduation: 1994. Master degree: 1999. PhD: 2003.

More information

0.002 ( ) R xy

0.002 ( ) R xy a b z 0.002 x H y R xy () 0.000-0.002 0 90 180 270 360 (degree) Supplementary Figure 1. Planar Hall effect resistance as a function of the angle of an in-plane field. a, Schematic of the planar Hall resistance

More information

voltage measurement for spin-orbit torques"

voltage measurement for spin-orbit torques SUPPLEMENTARY for article "Accurate analysis for harmonic Hall voltage measurement for spin-orbit torques" Seok Jin Yun, 1 Eun-Sang Park, 2 Kyung-Jin Lee, 1,2 and Sang Ho Lim 1,* 1 Department of Materials

More information

Properties and applications of ferromagnetic nanostructures

Properties and applications of ferromagnetic nanostructures Properties and applications of ferromagnetic nanostructures Diego Bisero, Lucia Del Bianco, Federico Spizzo Magnetism Experimental group Outline 1.Nanostructures: some examples 2.Why ferromagnetic nanostructures?

More information

Zurich Open Repository and Archive. Current-Induced Critical State in NbN Thin-Film Structures

Zurich Open Repository and Archive. Current-Induced Critical State in NbN Thin-Film Structures University of Zurich Zurich Open Repository and Archive Winterthurerstr. 190 CH-8057 Zurich http://www.zora.uzh.ch Year: 2008 Current-Induced Critical State in NbN Thin-Film Structures Il in, K; Siegel,

More information

Magnetic properties of spherical fcc clusters with radial surface anisotropy

Magnetic properties of spherical fcc clusters with radial surface anisotropy Magnetic properties of spherical fcc clusters with radial surface anisotropy D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 66506-2601 (December 6, 1994) We

More information

Antiferromagnetically coupled capped bit patterned media: Writability, switching field distributions, and readback regulation

Antiferromagnetically coupled capped bit patterned media: Writability, switching field distributions, and readback regulation Antiferromagnetically coupled capped bit patterned media: Writability, switching field distributions, and readback regulation Marko V. Lubarda, 1 Shaojing Li, 1 Boris Livshitz, 2 Eric E. Fullerton, 1 Vitaliy

More information

OSCILLATORY THICKNESS DEPENDENCE OF THE COERCIVE FIELD IN MAGNETIC 3D ANTI-DOT ARRAYS

OSCILLATORY THICKNESS DEPENDENCE OF THE COERCIVE FIELD IN MAGNETIC 3D ANTI-DOT ARRAYS 1 OSCILLATORY THICKNESS DEPENDENCE OF THE COERCIVE FIELD IN MAGNETIC 3D ANTI-DOT ARRAYS A. A. Zhukov 1, M. A. Ghanem 2, A. V. Goncharov 1, R. Boardman 3, V. Novosad 4, G. Karapetrov 4, H. Fangohr 3, P.

More information

Spin Hall effect clocking of nanomagnetic logic without a magnetic field

Spin Hall effect clocking of nanomagnetic logic without a magnetic field SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2013.241 Spin Hall effect clocking of nanomagnetic logic without a magnetic field (Debanjan Bhowmik *, Long You *, Sayeef Salahuddin) Supplementary Section

More information

Jahresbericht 2003 der Arbeitsgruppe Experimentalphysik Prof. Dr. Michael Farle

Jahresbericht 2003 der Arbeitsgruppe Experimentalphysik Prof. Dr. Michael Farle Self-assembly of Fe x Pt 1-x nanoparticles. M. Ulmeanu, B. Stahlmecke, H. Zähres and M. Farle Institut für Physik, Universität Duisburg-Essen, Lotharstr. 1, 47048 Duisburg Future magnetic storage media

More information

ECC Media Technology. 1. Introduction. 2. ECC Media. Shunji Takenoiri TuQiang Li Yoshiyuki Kuboki

ECC Media Technology. 1. Introduction. 2. ECC Media. Shunji Takenoiri TuQiang Li Yoshiyuki Kuboki ECC Media Technology Shunji Takenoiri TuQiang Li Yoshiyuki Kuboki 1. Introduction Two years have already elapsed since Fuji Electric began mass-producing perpendicular magnetic recording media, and now

More information

Simulation of Ion Beam Etching of Patterned Nanometer-scale Magnetic Structures for High-Density Storage Applications

Simulation of Ion Beam Etching of Patterned Nanometer-scale Magnetic Structures for High-Density Storage Applications Engineered Excellence A Journal for Process and Device Engineers Simulation of Ion Beam Etching of Patterned Nanometer-scale Magnetic Structures for High-Density Storage Applications Introduction Fabrication

More information

Thickness Dependence of Magnetic Hysteresis of Ising Films in Nano-thickness Range

Thickness Dependence of Magnetic Hysteresis of Ising Films in Nano-thickness Range CMU. J.Nat.Sci. Special Issue on Nanotechnology (2008) Vol. 7(1) 203 Thickness Dependence of Magnetic Hysteresis of Ising Films in Nano-thickness Range Atchara Punya 1*, Pitak Laoratanakul 2, Rattikorn

More information

Magnetic imaging of layer-by-layer reversal in Co/ Pt multilayers with perpendicular anisotropy

Magnetic imaging of layer-by-layer reversal in Co/ Pt multilayers with perpendicular anisotropy Magnetic imaging of layer-by-layer reversal in Co/ Pt multilayers with perpendicular anisotropy M. Robinson, Y. Au, J. W. Knepper, F. Y. Yang, and R. Sooryakumar Department of Physics, The Ohio State University,

More information

Supplementary Notes of spin-wave propagation in cubic anisotropy materials

Supplementary Notes of spin-wave propagation in cubic anisotropy materials Supplementary Notes of spin-wave propagation in cubic anisotropy materials Koji Sekiguchi, 1, 2, Seo-Won Lee, 3, Hiroaki Sukegawa, 4 Nana Sato, 1 Se-Hyeok Oh, 5 R. D. McMichael, 6 and Kyung-Jin Lee3, 5,

More information

Influence of magnetic field and mechanical scratch on the recorded magnetization stability of longitudinal and perpendicular recording media

Influence of magnetic field and mechanical scratch on the recorded magnetization stability of longitudinal and perpendicular recording media Available online at www.sciencedirect.com Physics Procedia 16 (2011) 53 57 The 9th Perpendicular Magnetic Recording Conference Influence of magnetic field and mechanical scratch on the recorded magnetization

More information

Direct study of domain and domain wall structure in magnetic films and nanostructures

Direct study of domain and domain wall structure in magnetic films and nanostructures Direct study of domain and domain wall structure in magnetic films and nanostructures John Chapman, University of Glasgow Synopsis Why use Lorentz microscopy? Magnetisation reversal in soft magnetic films

More information

Thermal Effects in Magnetic Recording Media

Thermal Effects in Magnetic Recording Media Thermal Effects in Magnetic Recording Media J.W. Harrell MINT Center and Dept. of Physics & Astronomy University of Alabama Work supported by NSF-MRSEC MINT Fall Review, Nov. 21 Stability Problem in Granular

More information

Developing Spin Devices for Logic and Memory Applications

Developing Spin Devices for Logic and Memory Applications Developing Spin Devices for Logic and Memory Applications Zheng Gu Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2014-225 http://www.eecs.berkeley.edu/pubs/techrpts/2014/eecs-2014-225.html

More information

Theory of magnetoelastic dissipation due to domain wall width oscillation

Theory of magnetoelastic dissipation due to domain wall width oscillation JOURNAL OF APPLIED PHYSICS VOLUME 83, NUMBER 11 1 JUNE 1998 Theory of magnetoelastic dissipation due to domain wall width oscillation Y. Liu and P. Grütter a) Centre for the Physics of Materials, Department

More information

M-H 자기이력곡선 : SQUID, VSM

M-H 자기이력곡선 : SQUID, VSM 자성특성측정방법 자기장측정 M-H 자기이력곡선 : SQUID, VSM 고주파특성 ( 투자율 ) (1) 자기장측정 자기센서기술연구동향 지구자기장 NVE InSb By Honeywell 휴대폰용 COMPASS 센서응용 SQUID Flux gate Magneto-Impedance Hall AMR 지구자기장 0.1 nt 1 nt 30 nt 0.1 nt 차세대 compass

More information

Spin wave assisted current induced magnetic. domain wall motion

Spin wave assisted current induced magnetic. domain wall motion Spin wave assisted current induced magnetic domain wall motion Mahdi Jamali, 1 Hyunsoo Yang, 1,a) and Kyung-Jin Lee 2 1 Department of Electrical and Computer Engineering, National University of Singapore,

More information

THERE are many possibilities by which the hysteresis loop

THERE are many possibilities by which the hysteresis loop 1968 IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 7, JULY 2008 Exchange-Biased Magnetic Vortices Axel Hoffmann 1;2, Jordi Sort 3, Kristen S. Buchanan 2, and Josep Nogués 4 Materials Science Division, Argonne

More information

THE continuous increase in areal density and data rate in

THE continuous increase in areal density and data rate in IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 10, OCTOBER 2005 2839 Micromagnetic Simulation of Head-Field and Write Bubble Dynamics in Perpendicular Recording Werner Scholz, Member, IEEE, and Sharat Batra,

More information