Quasi-periodic nanostructures grown by oblique angle deposition

Size: px
Start display at page:

Download "Quasi-periodic nanostructures grown by oblique angle deposition"

Transcription

1 JOURNAL OF APPLIED PHYSICS VOLUME 94, NUMBER DECEMBER 2003 Quasi-periodic nanostructures grown by oblique angle deposition T. Karabacak, a) G.-C. Wang, and T.-M. Lu Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York Received 2 July 2003; accepted 5 September 2003 We report that tungsten nanocolumns grown by oblique angle sputter deposition develop a quasi-periodic morphology which is not observed for continuous films deposited at normal incidence. The maximum position in power spectral density of the quasi-periodic nanostructures decreases exponentially as a function of thickness. We explain the formation of the quasi-periodic nature by a shadowing length concept which plays a similar role to conventional surface diffusion length. Also, we show that the change of the spatial frequency of the periodicity is a result of the elimination of shorter columns due to the shadowing effect during growth American Institute of Physics. DOI: / I. INTRODUCTION Oblique angle deposition technique also know as glancing angle deposition has attracted the interest of many researchers 1 7 due to its ability to generate nanostructures relatively easily. Oblique angle growth, as illustrated in Fig. 1, basically combines a typical deposition system with a tilted and rotating substrate. Due to the shadowing effect, the incident flux of material that comes to the surface with an oblique angle is preferentially deposited on to the top of surface features with larger values in height. This preferential growth dynamic gives rise to the formation of isolated columnar structures. The nanostructures obtained by oblique angle deposition on flat surfaces can show quasi-periodic height correlations. Controlling the periodicity of these nanostructures stands as an important technological issue. However, there has been no detailed quantitative study on the formation of quasi-periodic nanostructures by oblique angle deposition. In this article, we will present the results and analysis obtained from both experiments and simulations. The experiments consist of the deposition, atomic force microscopy AFM measurements, and power spectral density PSD function analysis to extract the periodicity of the surface of tungsten nanocolumns at different thicknesses by oblique angle sputter deposition. Our simulations are based on a three-dimensional Monte Carlo method, which includes the shadowing and surface diffusion effects. We also perform a similar PSD analysis for the simulated columns and compare them with our experimental results. We then explain how shadowing effects play a role, similar to a conventional surface diffusion length, in the formation of correlated surface features. II. EXPERIMENT A dc magnetron sputtering system was used to deposit tungsten nanocolumns. The films were deposited on oxidized p-si 100 resistivity cm substrates ( 2 2 cm 2 size using a 99.95% pure W cathode target diameter 7.6 a Electronic mail: karabt@rpi.edu cm. The substrate was Radio Corporation of America cleaned 8 and mounted on the sample holder located at a distance of 15 cm from the cathode. The substrate was tilted so that the angle between the surface normal of the target and the surface normal of the substrate was 87. The substrate was rotating around the surface normal with a speed of 0.5 Hz 30 rpm. The base pressure of Torr was achieved by a turbomolecular pump backed by a mechanical pump. In all of the deposition experiments, the power was 200 W at an ultrapure Ar pressure of 1.5 mtorr. The deposition rate was measured to be 5.0 nm/min by a step profilometer and also verified by scanning electron microscopy SEM cross-sectional images. The thickness of the films ranged from 15 nm up to 450 nm. The maximum temperature of the substrate during the deposition was found to be 85 C. At the similar deposition conditions described above, we also deposited tungsten films at normal incidence ( 0 ) for comparison. Figure 2 shows SEM top and cross sectional views of a columnar tungsten film grown by the oblique angle sputter deposition technique. It is seen that some of the columns stop growing and the surviving columns grow larger in size which leads to reduced column density as deposition proceeds. The quantitative surface morphology was measured using contact-mode AFM Park Scientific Auto CP, Woodbury, NY. The radius of the silicon tip is about 10 nm, and the side angle is about 12. The scan sizes were nm 2 with pixels. Representative surface morphologies of columnar films are shown in Figs. 3 a 3 g for various film thicknesses. It is seen that the columnar structure starts to form from the very early times of the growth. The quasiperiodic nature can be qualitatively realized especially at a larger thickness. The morphology of a tungsten film deposited by normal incidence angle deposition is also shown in Fig. 3 h for comparison. The films of normal incidence deposition appear to be continuous and have relatively very small height fluctuations compared to oblique angle deposited columnar tungsten films at a similar thickness. We analyzed the quasi-periodic evolution of the nanocolumns by using the method of PSD analysis. PSD, which is a /2003/94(12)/7723/6/$ American Institute of Physics

2 7724 J. Appl. Phys., Vol. 94, No. 12, 15 December 2003 Karabacak, Wang, and Lu 2 /. Also, z is the surface height at surface point r and A represents the surface area of integration. Therefore, the peak position observed in a PSD profile gives the spatial frequency of a periodic surface component. PSD from a discrete height profile can be estimated as: 9 PSD k x,k y 1 N x N x N y m 1 N y n 1 y 2 z m,n e imk x x ink y, 2 where N x and N y are the dimensions of a discrete surface along x and y directions, respectively. Furthermore, for an isotropic surface, PSD can be circularly averaged in order to obtain better statistics, FIG. 1. A schematic of a oblique angle sputter deposition with substrate rotation and b columnar growth due to the shadowing effects. Fourier transform of surface heights, is defined as: 9 PSD k 1 A 1 2 z r e ikr dr 2, where r r(x,y) is the lateral position vector and k k(k x,k y ) is the spatial frequency with wavelength k FIG. 2. SEM images of tungsten nanocolumns grown by oblique angle deposition: a cross section, and b top view images. The film is 450 nm thick. 1 PSD k 1 N k PSD k x,k y k k x 2 ky 2, where N k is the number of points at constant distance k k 2 x k 2 y, and the summation is the overall points having the same distance. Figure 4 plots the PSD curves obtained using Eq. 3 from the height data of columnar surfaces measured by AFM. It is seen that the surfaces contain a clear PSD peak of maximum value at a well-defined spatial frequency k max. The shape of the PSD intensity distribution, which is centered at k max, sharpens with the increase of thickness. This reflects the improvement of the quasi-periodic nature of the growth morphology. The shift of the PSD peak versus thickness is shown as the inset of Fig. 4. The fit to the data reveals that the change of the peak position has an exponential decay form (k max k o be ad, where d is the thickness and k o, a, and b are constants. This implies that the spatial wavelength increases with the thickness. On the other hand, the films deposited at normal incidence do not show any clear PSD peak. III. SIMULATIONS In order to understand this morphological growth behavior, we use a three-dimensional Monte Carlo method to simulate the oblique angle deposition. As illustrated in Fig. 5, a three-dimensional lattice, which allowed overhangs, is formed by cubic lattice points and each incident atom had the dimensions of one lattice point. The simulations include an obliquely incident flux, substrate rotation, and surface diffusion. We assume a uniform flux of atoms approaching the surface with an angle 85. At each simulation step, an atom is sent toward a randomly chosen lattice point on the surface of size L L. To take into account the substrate rotation, each atom is sent with a change degrees in the azimuthal angle from the previous one. After the incident atom is deposited onto the surface, an atom that is chosen randomly within a box around the impact point is allowed to diffuse to another nearest-neighbor random location. The diffusion step is repeated until D number of jumps is made. Then another atom is sent, and the deposition and diffusion steps are repeated in the similar way. This strategy mimics the surface diffusion at the first impact point during the growth by vapor deposition. It is similar to previous simulation work on surface diffusion during growth

3 J. Appl. Phys., Vol. 94, No. 12, 15 December 2003 Karabacak, Wang, and Lu 7725 FIG. 3. a g AFM images of the tungsten nanocolumns grown by oblique angle deposition at various thicknesses. Vertical scales are different for each image. Notice the formation of quasi-periodic morphology as thickness increases. h Morphology of a continuous tungsten film by normal incidence deposition at similar deposition conditions. Our simulations typically involved a system size of L L N , with periodic boundary conditions. The simulations were conducted for different values of D. Figure 6 shows representative simulated cross sections with increasing rates of D from Figs. 6 a to 6 c. Itis realized that when the diffusion rate approaches zero, columns are fractal-like and it is difficult to define column borders. As we increase the diffusion rate, we start to get columns with smoother borders and they look very much like the experimentally obtained nanocolumns. Diffusion is shown to improve the columnar structure by making columns denser and column edges smoother. After each simulation, PSD data are calculated as a function of thickness d. Figure 7 plots a sample PSD data for a diffusion rate of D 300. We see that there exists a peak shift with thickness qualitatively similar to our experimental results. The PSD maximum k max in spatial frequency as a function of thickness d is also plotted in the inset of Fig. 7. The peak position changes with an exponential decay function that is consistent with the experimental results of tungsten columns in Fig. 4. The results are similar for other values of diffusion. Interestingly, as shown in Fig. 8, even for the simulations without diffusion (D 0), we still get a similar quasi-periodic morphology and also a similar change of the PSD peak position with thickness. IV. DISCUSSIONS We learned that the nanocolumns in films deposited at an oblique incident angle show a clear quasi-periodic structure.

4 7726 J. Appl. Phys., Vol. 94, No. 12, 15 December 2003 Karabacak, Wang, and Lu FIG. 4. PSD function curves calculated at different thicknesses of tungsten nanocolumns. The peak position corresponds to the spatial frequency of the quasi-periodic structure. The inset shows the change of the maximum peak in spatial frequency as a function of thickness. The continuous films of tungsten, deposited at normal incidence, are relatively smooth and do not show any periodic mound structures. This indicates that our experimental conditions normally do not favor the formation of quasi-periodic morphology. Therefore, the periodic structure of a nanocolumn should be due to the shadowing effects of oblique incident flux. Our Monte Carlo simulations also show that shadowing effects actually give rise to quasi-periodic morphological growth even in the absence of diffusion. The spatial wavelength of periodicity increases exponentially as a function of thickness, similar to our experimental results. Both the experiments and simulations reveal that the morphology of oblique angle deposition, even at low diffusion rates, evolves toward a quasi-periodic structure. The rate of change of the peak is shown to be exponential as a function of thickness. The behavior of growth is similar; almost independent of the diffusion. This shows that during oblique angle deposition, the shadowing effects control the evolution of the quasiperiodic surface morphology. Our results bring the question of how the shadowing effects would give rise to the quasi-periodic morphology. Figure 9 illustrates a cartoon showing the shadowing mechanism during oblique angle deposition. The higher surface FIG. 5. A schematic of the three-dimensional Monte Carlo simulations for oblique angle deposition. FIG. 6. Cross-sectional images of simulated columns by a threedimensional Monte Carlo code are shown for various surface diffusion rates: a D 20, b D 100, and c D 500. features shadow a nearby region of lower surface heights. All of the incident atoms that approach this region are captured by the taller surface object. In fact, this mimics the conventional surface diffusion length concept. In the conventional island growth mode, an adatom joins an existing island by hoping through a distance, which is called the diffusion length. 13 Often, the diffusion length is proportional to the ratio D c /F, where D c is the diffusion constant and F is the deposition rate. Each island has a chance to incorporate the randomly diffusing adatoms within the distance of a diffusion length. The typical island island separation can be determined by the diffusion length. Therefore, the lateral distance shadowed by a surface object, which we will call shadowing length, plays a similar role as the diffusion length. The capturing radius due to the shadowing increases

5 J. Appl. Phys., Vol. 94, No. 12, 15 December 2003 Karabacak, Wang, and Lu 7727 FIG. 9. A schematic that shows the definition of shadowing length L. FIG. 7. PSD function curves obtained from simulations are plotted as a function of normalized spatial frequency. The inset shows the maximum PSD peak in spatial frequency as a function of thickness. with the height of the surface feature and the oblique angle, and we estimated this shadowing length to be L h tan, 4 where h is the height of the surface feature. Due to the random effect during growth, some surface columns can become higher by h than the nearby ones and they get additional flux by the increase in shadowing length. As the thickness increases, this can give rise to a competition of columns that can lead to a reduction of the number of surviving columns. After a critical thickness, the columns get long enough so that the height increase h due to the random effect becomes insignificant compared to the height h of the column (h h). From Eq. 4, after this critical thickness, the shadowing length does not increase significantly and all the columns start to grow uniformly. Therefore, column density and spatial frequency of periodicity k max starts to converge to a limiting value, as observed in our results from experiments and simulations. In addition, the mechanism above can explain the almost constant size of columns after a critical thickness, which is also observed in nanocolumns of other materials. 14 During the initial times, the columns can grow in the lateral directions due to the side flux coming through the nearby gaps of nonsurviving columns. When the column density of surviving columns reaches the limiting values, the incident flux starts to be uniformly consumed by mainly the tops of the columns, and this can give rise to constant column size as the thickness increases. V. CONCLUSIONS In conclusion, we have shown that the nanocolumns deposited by oblique angle deposition develop a quasi-periodic morphology which is not observed for continuous films deposited at normal incidence under similar deposition conditions. The spatial frequency of periodic nanostructures decreases exponentially as a function of thickness. We explain the formation of quasi-periodic nature by the shadowing length which plays a similar role to the surface diffusion length in the conventional island formation morphology. Also, the change of the spatial frequency of periodicity is described by a competition mechanism of survival/ nonsurvival of columns. ACKNOWLEDGMENTS This work is supported in part by the NSF. One of the authors T.K. was supported by the Harry F. Meiners Fellowship. The authors thank Dexian Ye for taking SEM images. FIG. 8. The value of the maximum PSD peaks in spatial frequency is plotted as a function of thickness for various simulation cases: Oblique angle deposition with and without surface diffusion. 1 Y.-P. Zhao, D.-X. Ye, P.-I. Wang, G.-C. Wang, and T.-M. Lu, Int. J. Nanosci. 1, Y.-P. Zhao, D.-X. Ye, G.-C. Wang, and T.-M. Lu, Nano Lett. 2, R. N. Tait, T. Smy, and M. J. Brett, Thin Solid Films 226, K. Robbie, M. J. Brett, and A. Lakhtakia, Nature London 384, R. Messier, V. C. Venugopal, and P. D. Sunal, J. Vac. Sci. Technol. A 18, F. Liu, M. T. Umlor, L. Shen, J. Weston, W. Eads, J. A. Barnard, and G. J. Mankey, J. Appl. Phys. 85, M. Malac, R. F. Egerton, M. J. Brett, and B. Dick, J. Vac. Sci. Technol. B 17, S. A. Campbell, The Science and Engineering of Microelectronic Fabrication Oxford University Press, New York, 1996, p Y.-P. Zhao, G.-C. Wang, and T.-M. Lu, Characterization of Amorphous and Crystalline Rough Surface: Principles and Applications Academic, San Diego, 2001, p J. G. Amar, F. Family, and P.-M. Lam, Phys. Rev. B 50,

6 7728 J. Appl. Phys., Vol. 94, No. 12, 15 December 2003 Karabacak, Wang, and Lu 11 T. Karabacak, Y.-P. Zhao, G.-C. Wang, and T.-M. Lu, Phys. Rev. B 64, T. Karabacak, Y.-P. Zhao, G.-C. Wang, and T.-M. Lu, Phys. Rev. B 66, A.-L. Barabasi and H. E. Stanley, Fractal Concepts in Surface Growth Cambridge University, Cambridge, UK, 1995, pp T. Karabacak, J. P. Singh, Y.-P. Zhao, G.-C. Wang, and T.-M. Lu, Phys. Rev. B 68,

Scaling during shadowing growth of isolated nanocolumns

Scaling during shadowing growth of isolated nanocolumns Scaling during shadowing growth of isolated nanocolumns T. Karabacak, J. P. Singh, Y.-P. Zhao, G.-C. Wang, and T.-M. Lu Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute,

More information

PHYSICAL SELF-ASSEMBLY AND NANO-PATTERNING*

PHYSICAL SELF-ASSEMBLY AND NANO-PATTERNING* Mater. Res. Soc. Symp. Proc. Vol. 849 2005 Materials Research Society KK8.4.1 PHYSICAL SELF-ASSEMBLY AND NANO-PATTERNING* T.-M. Lu, D.-X. Ye, T. Karabacak, and G.-C. Wang, Department of Physics, Applied

More information

Physical self-assembly and the nucleation of three-dimensional nanostructures by oblique angle deposition

Physical self-assembly and the nucleation of three-dimensional nanostructures by oblique angle deposition Physical self-assembly and the nucleation of three-dimensional nanostructures by oblique angle deposition T. Karabacak, a) G.-C. Wang, and T.-M. Lu Department of Physics, Applied Physics and Astronomy,

More information

Continuum model for nanocolumn growth during oblique angle deposition

Continuum model for nanocolumn growth during oblique angle deposition JOURNAL OF APPLIED PHYSICS VOLUME 95, NUMBER 8 15 APRIL 2004 Continuum model for nanocolumn growth during oblique angle deposition E. Main, T. Karabacak, a) and T. M. Lu Department of Physics, Applied

More information

"Enhanced Layer Coverage of Thin Films by Oblique Angle Deposition"

Enhanced Layer Coverage of Thin Films by Oblique Angle Deposition Mater. Res. Soc. Symp. Proc. Vol. 859E 2005 Materials Research Society JJ9.5.1 "Enhanced Layer Coverage of Thin Films by Oblique Angle Deposition" * karabt@rpi.edu Tansel Karabacak *, Gwo-Ching Wang, and

More information

Growth-front roughening in amorphous silicon films by sputtering

Growth-front roughening in amorphous silicon films by sputtering PHYSICAL REVIEW B, VOLUME 64, 085323 Growth-front roughening in amorphous silicon films by sputtering T. Karabacak,* Y.-P. Zhao, G.-C. Wang, and T.-M. Lu Department of Physics, Applied Physics and Astronomy,

More information

Uniform Si nanostructures grown by oblique angle deposition with substrate swing rotation

Uniform Si nanostructures grown by oblique angle deposition with substrate swing rotation INSTITUTE OF PHYSICS PUBLISHING Nanotechnology 16 (2005) 1717 1723 NANOTECHNOLOGY doi:10.1088/0957-4484/16/9/052 Uniform Si nanostructures grown by oblique angle deposition with substrate swing rotation

More information

Magnetic properties of Co nanocolumns fabricated by oblique-angle deposition

Magnetic properties of Co nanocolumns fabricated by oblique-angle deposition JOURNAL OF APPLIED PHYSICS VOLUME 93, NUMBER 7 1 APRIL 2003 Magnetic properties of Co nanocolumns fabricated by oblique-angle deposition F. Tang, a) D.-L. Liu, D.-X. Ye, Y.-P. Zhao, T.-M. Lu, and G.-C.

More information

Optical and Structural Properties of Bilayer Circular Filter Prepared by Glancing Angle Deposition

Optical and Structural Properties of Bilayer Circular Filter Prepared by Glancing Angle Deposition Journal of the Optical Society of Korea Vol. 13, No. 2, June 29, pp. 218-222 DOI:.387/JOSK.29.13.2.218 Optical and Structural Properties of Bilayer Circular Filter Prepared by Glancing Angle Deposition

More information

Surface roughening in shadowing growth and etching in 2 1 dimensions

Surface roughening in shadowing growth and etching in 2 1 dimensions PHYSICAL REVIEW B VOLUME 62, NUMBER 3 15 JULY 2000-I Surface roughening in shadowing and etching in 2 1 dimensions Jason T. Drotar, Y.-P. Zhao, T.-M. Lu, and G.-C. Wang Department of Physics, Applied Physics,

More information

Physical properties of nanostructures grown by oblique angle deposition

Physical properties of nanostructures grown by oblique angle deposition Physical properties of nanostructures grown by oblique angle deposition J. P. Singh, T. Karabacak, D.-X. Ye, and D.-L. Liu Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic

More information

Monte Carlo simulation of submonolayer vapor-deposition polymerization

Monte Carlo simulation of submonolayer vapor-deposition polymerization PHYSICAL REVIEW E VOLUME 60, NUMBER 4 OCTOBER 1999 Monte Carlo simulation of submonolayer vapor-deposition polymerization Y.-P. Zhao, 1 A. R. Hopper, 2 G.-C. Wang, 1 and T.-M. Lu 1 1 Department of Physics,

More information

Paper No. IMECE

Paper No. IMECE Proceedings of IMECE2009 2009 ASME International Mechanical Engineering Congress and Exposition November 13-19, 2009, Lake Buena Vista, Florida Paper No. IMECE2009-11008 A COMPACT NANOSTRUCTURE INTEGRATED

More information

One and Two-Dimensional Pattern Formation on Ion Sputtered Silicon

One and Two-Dimensional Pattern Formation on Ion Sputtered Silicon Mat. Res. Soc. Symp. Proc. Vol. 792 2004 Materials Research Society R7.8.1 One and Two-Dimensional Pattern Formation on Ion Sputtered Silicon Ari-David Brown 1,2, H. Bola George 3, Michael J. Aziz 3, and

More information

Morphology control of tungsten nanorods grown by glancing angle RF magnetron sputtering under variable argon pressure and flow rate

Morphology control of tungsten nanorods grown by glancing angle RF magnetron sputtering under variable argon pressure and flow rate University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Army Research U.S. Department of Defense 2010 Morphology control of tungsten nanorods grown by glancing angle RF magnetron

More information

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma THE HARRIS SCIENCE REVIEW OF DOSHISHA UNIVERSITY, VOL. 56, No. 1 April 2015 Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

More information

Plasma Deposition (Overview) Lecture 1

Plasma Deposition (Overview) Lecture 1 Plasma Deposition (Overview) Lecture 1 Material Processes Plasma Processing Plasma-assisted Deposition Implantation Surface Modification Development of Plasma-based processing Microelectronics needs (fabrication

More information

Off-axis unbalanced magnetron sputtering of YBa2Cu307 thin films

Off-axis unbalanced magnetron sputtering of YBa2Cu307 thin films ELSEVIER Materials Chemistry and Physics 49 (1997) 229-233 MATERIALS CHEMISTRYAND PHYSICS Off-axis unbalanced magnetron sputtering of YBa2Cu307 thin films Wen-Chou Tsai, Tseung-Yuen Tseng * Institute of

More information

Microstructure Control of Fe Catalyst Films for the Growth of Multiwalled Carbon Nanotube Arrays

Microstructure Control of Fe Catalyst Films for the Growth of Multiwalled Carbon Nanotube Arrays Journal of the Korean Physical Society, Vol. 52, February 2008, pp. S132S137 Microstructure Control of Fe Catalyst Films for the Growth of Multiwalled Carbon Nanotube Arrays Guo-an Cheng, Hua-ping Liu,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Topological insulator nanostructures for near-infrared transparent flexible electrodes Hailin Peng 1*, Wenhui Dang 1, Jie Cao 1, Yulin Chen 2,3, Di Wu 1, Wenshan Zheng 1, Hui Li 1, Zhi-Xun Shen 3,4, Zhongfan

More information

Structure-Thermal Property Correlation of Aligned Silicon. Dioxide Nanorod Arrays

Structure-Thermal Property Correlation of Aligned Silicon. Dioxide Nanorod Arrays Supplementary Material for Structure-Thermal Property Correlation of Aligned Silicon Dioxide Nanorod Arrays S. Dynamic shadowing growth (DSG) technique Figure S depicts a schematic of the DSG setup. For

More information

Si etching in high-density SF 6 plasmas for microfabrication: surface roughness formation

Si etching in high-density SF 6 plasmas for microfabrication: surface roughness formation Microelectronic Engineering 73 74 (2004) 312 318 www.elsevier.com/locate/mee Si etching in high-density SF 6 plasmas for microfabrication: surface roughness formation E. Gogolides *, C. Boukouras, G. Kokkoris,

More information

Nanostructured Antireflection Coatings for Optical Detection and Sensing Applications

Nanostructured Antireflection Coatings for Optical Detection and Sensing Applications Mater. Res. Soc. Symp. Proc. Vol. 1805 2015 Materials Research Society DOI: 10.1557/opl.2015.689 Nanostructured Antireflection Coatings for Optical Detection and Sensing Applications Gopal G. Pethuraja

More information

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes

SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes SUPPLEMENTARY NOTES Supplementary Note 1: Fabrication of Scanning Thermal Microscopy Probes Fabrication of the scanning thermal microscopy (SThM) probes is summarized in Supplementary Fig. 1 and proceeds

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

Controllable growth of metallic nano-helices at room temperature conditions

Controllable growth of metallic nano-helices at room temperature conditions Controllable growth of metallic nano-helices at room temperature conditions José M. Caridad, David McCloskey, John F. Donegan, and Vojislav Krstić Citation: Applied Physics Letters 105, 233114 (2014);

More information

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD Chapter 4 DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD 4.1 INTRODUCTION Sputter deposition process is another old technique being used in modern semiconductor industries. Sputtering

More information

Song Fengqi, Zhang Lu, Zhu Lianzhong, Ge Jun, Wang Guanghou *

Song Fengqi, Zhang Lu, Zhu Lianzhong, Ge Jun, Wang Guanghou * Low energy cluster beam deposited BN films as the cascade for Field Emission 一 Song Fengqi, Zhang Lu, Zhu Lianzhong, Ge Jun, Wang Guanghou * National laboratory of Solid State Microstructures, Department

More information

Revealing High Fidelity of Nanomolding Process by Extracting the Information from AFM Image with Systematic Artifacts

Revealing High Fidelity of Nanomolding Process by Extracting the Information from AFM Image with Systematic Artifacts Revealing High Fidelity of Nanomolding Process by Extracting the Information from AFM Image with Systematic Artifacts Sajal Biring* Department of Electronics Engineering and Organic Electronics Research

More information

TOPOGRAPHY STUDIES OF A MAGNETRON REACTIVE SPUTTERED COATING

TOPOGRAPHY STUDIES OF A MAGNETRON REACTIVE SPUTTERED COATING U.P.B. Sci. Bull., Series B, Vol. 75, Iss. 3, 2013 ISSN 1454-2331 TOPOGRAPHY STUDIES OF A MAGNETRON REACTIVE SPUTTERED COATING Ileana ŞTEFĂNESCU 1, Ion CIUCĂ 2 The present paper shows changes of the morphological

More information

2 M. N. POPESCU, F. FAMILY, AND J. G. AMAR a set of deterministic, coupled reaction-diffusion equations describing the time (coverage) dependence of a

2 M. N. POPESCU, F. FAMILY, AND J. G. AMAR a set of deterministic, coupled reaction-diffusion equations describing the time (coverage) dependence of a CAPTURE-NUMBERS AND ISLAND SIZE-DISTRIBUTIONS IN IRREVERSIBLE HOMOEPITAXIAL GROWTH A Rate-Equation Approach M. N. POPESCU 1,F.FAMILY Department of Physics, Emory University, Atlanta, GA 30322 AND J. G.

More information

Kinetic Monte Carlo simulation of semiconductor quantum dot growth

Kinetic Monte Carlo simulation of semiconductor quantum dot growth Solid State Phenomena Online: 2007-03-15 ISSN: 1662-9779, Vols. 121-123, pp 1073-1076 doi:10.4028/www.scientific.net/ssp.121-123.1073 2007 Trans Tech Publications, Switzerland Kinetic Monte Carlo simulation

More information

Effects of substrate rotation in oblique-incidence metal(100) epitaxial growth

Effects of substrate rotation in oblique-incidence metal(100) epitaxial growth W Recently, using a simplified ballistic deposition model 6 which includes the effects of downward funneling (DF) 8 and rapid diffusion on () facets, two of us have shown that many of the qualitative and

More information

Accepted Manuscript. Authors: Charbel S. Madi, Michael J. Aziz S (11) Reference: APSUSC 22249

Accepted Manuscript. Authors: Charbel S. Madi, Michael J. Aziz S (11) Reference: APSUSC 22249 Title: Multiple Scattering Causes the Low Energy Low Angle Constant Wavelength Topographical Instability of Argon Ion Bombarded Silicon surfaces Authors: Charbel S. Madi, Michael J. Aziz PII: S0169-4332(11)01226-8

More information

Spontaneous Pattern Formation from Focused and Unfocused Ion Beam Irradiation

Spontaneous Pattern Formation from Focused and Unfocused Ion Beam Irradiation Mat. Res. Soc. Symp. Proc. Vol. 696 2002 Materials Research Society Spontaneous Pattern Formation from Focused and Unfocused Ion Beam Irradiation Alexandre Cuenat and Michael J. Aziz Division of Engineering

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.2491 Experimental Realization of Two-dimensional Boron Sheets Baojie Feng 1, Jin Zhang 1, Qing Zhong 1, Wenbin Li 1, Shuai Li 1, Hui Li 1, Peng Cheng 1, Sheng Meng 1,2, Lan Chen 1 and

More information

Two simple lattice models of the equilibrium shape and the surface morphology of supported 3D crystallites

Two simple lattice models of the equilibrium shape and the surface morphology of supported 3D crystallites Bull. Nov. Comp. Center, Comp. Science, 27 (2008), 63 69 c 2008 NCC Publisher Two simple lattice models of the equilibrium shape and the surface morphology of supported 3D crystallites Michael P. Krasilnikov

More information

arxiv:cond-mat/ v2 28 Jul 1999

arxiv:cond-mat/ v2 28 Jul 1999 International Journal of Modern Physics C, Vol. 10, No. 0 (1999) 000 000 c World Scientific Publishing Company A SIMPLE SOLID-ON-SOLID MODEL OF EPITAXIAL FILMS GROWTH: SURFACE ROUGHNESS AND DYNAMICS arxiv:cond-mat/9905110v2

More information

Monte Carlo Simulation of Pulsed Laser Deposition

Monte Carlo Simulation of Pulsed Laser Deposition Monte Carlo Simulation of Pulsed Laser Deposition Pui-Man Lam @, S. J. Liu, and C.H. Woo Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong ABSTRACT Using the Monte Carlo

More information

Flux heterogeneity through incidence angle and particle energy in steering-enhanced growth

Flux heterogeneity through incidence angle and particle energy in steering-enhanced growth Flux heterogeneity through incidence angle and particle energy in steering-enhanced growth Herbert Wormeester* and Bene Poelsema MESA Research Institute, University of Twente, P.O. Box 217, 7500 AE Enschede,

More information

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Frank Ceballos 1, Ming-Gang Ju 2 Samuel D. Lane 1, Xiao Cheng Zeng 2 & Hui Zhao 1 1 Department of Physics and Astronomy,

More information

On the correlation between the self-organized island pattern and substrate elastic anisotropy

On the correlation between the self-organized island pattern and substrate elastic anisotropy JOURNAL OF APPLIED PHYSICS 100, 013527 2006 On the correlation between the self-organized island pattern and substrate elastic anisotropy E. Pan a and R. Zhu Department of Civil Engineering, University

More information

Lecture 30: Kinetics of Epitaxial Growth: Surface Diffusion and

Lecture 30: Kinetics of Epitaxial Growth: Surface Diffusion and Lecture 30: Kinetics of Epitaxial Growth: Surface Diffusion and Nucleation Today s topics Understanding the basics of epitaxial techniques used for surface growth of crystalline structures (films, or layers).

More information

Chapter 3. Step Structures and Epitaxy on Semiconductor Surfaces

Chapter 3. Step Structures and Epitaxy on Semiconductor Surfaces and Epitaxy on Semiconductor Surfaces Academic and Research Staff Professor Simon G.J. Mochrie, Dr. Ophelia Tsui Graduate Students Seugheon Song, Mirang Yoon 3.1 Introduction Sponsors Joint Services Electronics

More information

MEASUREMENT OF ELECTRICAL RESISTIVITY OF NANOSTRUCTURED PLATINUM THIN FILMS AND QUANTUM MECHANICAL ESTIMATES

MEASUREMENT OF ELECTRICAL RESISTIVITY OF NANOSTRUCTURED PLATINUM THIN FILMS AND QUANTUM MECHANICAL ESTIMATES Journal of Metastable and Nanocrystalline Materials Vols. 20-21 (2004) pp. 775-780 online at http://www.scientific.net 2004 Trans Tech Publications, Switzerland MEASUREMENT OF ELECTRICAL RESISTIVITY OF

More information

Simulations of Epitaxial Growth With Shadowing in Three Dimensions. Andy Hill California Polytechnic Institute, San Luis Obispo

Simulations of Epitaxial Growth With Shadowing in Three Dimensions. Andy Hill California Polytechnic Institute, San Luis Obispo Simulations of Epitaxial Growth With Shadowing in Three Dimensions Andy Hill California Polytechnic Institute, San Luis Obispo Advisor: Dr. Jacques Amar University of Toledo REU Program Summer 2002 ABSTRACT

More information

Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays

Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays Abstract #: 983 Program # MI+NS+TuA9 Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays D. A. Tulchinsky, M. H. Kelley, J. J. McClelland, R. Gupta, R. J. Celotta National Institute of Standards

More information

Modeling the sputter deposition of thin film photovoltaics using long time scale dynamics techniques

Modeling the sputter deposition of thin film photovoltaics using long time scale dynamics techniques Loughborough University Institutional Repository Modeling the sputter deposition of thin film photovoltaics using long time scale dynamics techniques This item was submitted to Loughborough University's

More information

Fabrication at the nanoscale for nanophotonics

Fabrication at the nanoscale for nanophotonics Fabrication at the nanoscale for nanophotonics Ilya Sychugov, KTH Materials Physics, Kista silicon nanocrystal by electron beam induced deposition lithography Outline of basic nanofabrication methods Devices

More information

Metal-coated carbon nanotube tips for Magnetic Force Microscopy

Metal-coated carbon nanotube tips for Magnetic Force Microscopy Metal-coated carbon nanotube tips for Magnetic Force Microscopy Zhifeng Deng 1,4, Erhan Yenilmez 2,4, Josh Leu 1,4, J.E. Hoffman 2,4, Eric Straver 2,4, Hongjie Dai 3,4, Kathryn A. Moler 1,2,4 1 Department

More information

Near-perfect modulator for polarization state of light

Near-perfect modulator for polarization state of light Journal of Nanophotonics, Vol. 2, 029504 (11 November 2008) Near-perfect modulator for polarization state of light Yi-Jun Jen, Yung-Hsun Chen, Ching-Wei Yu, and Yen-Pu Li Department of Electro-Optical

More information

Application of single crystalline tungsten for fabrication of high resolution STM probes with controlled structure 1

Application of single crystalline tungsten for fabrication of high resolution STM probes with controlled structure 1 Application of single crystalline tungsten for fabrication of high resolution STM probes with controlled structure 1 A. N. Chaika a, S. S. Nazin a, V. N. Semenov a, V. G. Glebovskiy a, S. I. Bozhko a,b,

More information

1. Fabrication. Lukáš Ondič a, Marian Varga a, Karel Hruška a, Jan Fait a,b and Peter Kapusta c

1. Fabrication. Lukáš Ondič a, Marian Varga a, Karel Hruška a, Jan Fait a,b and Peter Kapusta c Supporting information to Enhanced Extraction of Silicon-Vacancy Centers Light Emission Using Bottom-Up Engineered Polycrystalline Diamond Photonic Crystal Slabs Lukáš Ondič a, Marian Varga a, Karel Hruška

More information

A new method of growing graphene on Cu by hydrogen etching

A new method of growing graphene on Cu by hydrogen etching A new method of growing graphene on Cu by hydrogen etching Linjie zhan version 6, 2015.05.12--2015.05.24 CVD graphene Hydrogen etching Anisotropic Copper-catalyzed Highly anisotropic hydrogen etching method

More information

Research on the Wide-angle and Broadband 2D Photonic Crystal Polarization Splitter

Research on the Wide-angle and Broadband 2D Photonic Crystal Polarization Splitter Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 551 Research on the Wide-angle and Broadband 2D Photonic Crystal Polarization Splitter Y. Y. Li, P. F. Gu, M. Y. Li,

More information

Island-size distribution and capture numbers in three-dimensional nucleation: Comparison with mean-field behavior

Island-size distribution and capture numbers in three-dimensional nucleation: Comparison with mean-field behavior Island-size distribution and capture numbers in three-dimensional nucleation: Comparison with mean-field behavior Feng Shi,* Yunsic Shim, and Jacques G. Amar Department of Physics & Astronomy, University

More information

Monte Carlo simulation of thin-film growth on a surface with a triangular lattice

Monte Carlo simulation of thin-film growth on a surface with a triangular lattice Vacuum 52 (1999) 435 440 Monte Carlo simulation of thin-film growth on a surface with a triangular lattice Wei Helin*, Liu Zuli, Yao Kailun Department of Physics, Huazhong University of Science and Technology,

More information

Chapter 10. Nanometrology. Oxford University Press All rights reserved.

Chapter 10. Nanometrology. Oxford University Press All rights reserved. Chapter 10 Nanometrology Oxford University Press 2013. All rights reserved. 1 Introduction Nanometrology is the science of measurement at the nanoscale level. Figure illustrates where nanoscale stands

More information

Thermal characterization of Au-Si multilayer using 3- omega method

Thermal characterization of Au-Si multilayer using 3- omega method Thermal characterization of Au-Si multilayer using 3- omega method Sunmi Shin Materials Science and Engineering Program Abstract As thermal management becomes a serious issue in applications of thermoelectrics,

More information

Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique

Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique PRAMANA c Indian Academy of Sciences Vol. 67, No. 2 journal of August 2006 physics pp. 395 400 Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique KHURSHED AHMAD

More information

UNIVERSITY OF CALIFORNIA. College of Engineering. Department of Electrical Engineering and Computer Sciences. Professor Ali Javey.

UNIVERSITY OF CALIFORNIA. College of Engineering. Department of Electrical Engineering and Computer Sciences. Professor Ali Javey. UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EE 143 Professor Ali Javey Spring 2009 Exam 2 Name: SID: Closed book. One sheet of notes is allowed.

More information

Enhanced Magnetic Properties of Bit Patterned Magnetic Recording Media by Trench-Filled Nanostructure

Enhanced Magnetic Properties of Bit Patterned Magnetic Recording Media by Trench-Filled Nanostructure CMRR Report Number 32, Summer 2009 Enhanced Magnetic Properties of Bit Patterned Magnetic Recording Media by Trench-Filled Nanostructure Edward Chulmin Choi, Daehoon Hong, Young Oh, Leon Chen, Sy-Hwang

More information

3.155J/6.152J Microelectronic Processing Technology Fall Term, 2004

3.155J/6.152J Microelectronic Processing Technology Fall Term, 2004 3.155J/6.152J Microelectronic Processing Technology Fall Term, 2004 Bob O'Handley Martin Schmidt Quiz Nov. 17, 2004 Ion implantation, diffusion [15] 1. a) Two identical p-type Si wafers (N a = 10 17 cm

More information

Direct observation of a Ga adlayer on a GaN(0001) surface by LEED Patterson inversion. Xu, SH; Wu, H; Dai, XQ; Lau, WP; Zheng, LX; Xie, MH; Tong, SY

Direct observation of a Ga adlayer on a GaN(0001) surface by LEED Patterson inversion. Xu, SH; Wu, H; Dai, XQ; Lau, WP; Zheng, LX; Xie, MH; Tong, SY Title Direct observation of a Ga adlayer on a GaN(0001) surface by LEED Patterson inversion Author(s) Xu, SH; Wu, H; Dai, XQ; Lau, WP; Zheng, LX; Xie, MH; Tong, SY Citation Physical Review B - Condensed

More information

Paper No. IMECE

Paper No. IMECE Proceedings of the ASME International Mechanical Engineering Congress & Exposition IMECE2010 November 12-18, 2010, Vancouver, British Columbia Paper No. IMECE2010-39055 SUBMERGED JET IMPINGEMENT COOLING

More information

Modeling and Simulating Gold Nanoparticle Interactions on a Liquid-Air Interface

Modeling and Simulating Gold Nanoparticle Interactions on a Liquid-Air Interface Modeling and Simulating Gold Nanoparticle Interactions on a Liquid-Air Interface Jennifer Jin 1 and Dr. Jacques Amar 2 1 Mary Baldwin College, 2 Department of Physics & Astronomy, University of Toledo

More information

SCALING OF THE ADHESION BETWEEN PARTICLES AND SURFACES FROM MICRON-SCALE TO THE NANOMETER SCALE FOR PHOTOMASK CLEANING APPLICATIONS

SCALING OF THE ADHESION BETWEEN PARTICLES AND SURFACES FROM MICRON-SCALE TO THE NANOMETER SCALE FOR PHOTOMASK CLEANING APPLICATIONS SCALING OF THE ADHESION BETWEEN PARTICLES AND SURFACES FROM MICRON-SCALE TO THE NANOMETER SCALE FOR PHOTOMASK CLEANING APPLICATIONS Gautam Kumar, Shanna Smith, Florence Eschbach, Arun Ramamoorthy, Michael

More information

Investigation of film surface roughness and porosity dependence on lattice size in a porous thin film deposition process

Investigation of film surface roughness and porosity dependence on lattice size in a porous thin film deposition process PHYSICAL REVIEW E 8, 41122 29 Investigation of film surface roughness and porosity dependence on lattice size in a porous thin film deposition process Gangshi Hu, Jianqiao Huang, Gerassimos Orkoulas, and

More information

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References

Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Title of file for HTML: Supplementary Information Description: Supplementary Figures and Supplementary References Supplementary Figure 1. SEM images of perovskite single-crystal patterned thin film with

More information

performance electrocatalytic or electrochemical devices. Nanocrystals grown on graphene could have

performance electrocatalytic or electrochemical devices. Nanocrystals grown on graphene could have Nanocrystal Growth on Graphene with Various Degrees of Oxidation Hailiang Wang, Joshua Tucker Robinson, Georgi Diankov, and Hongjie Dai * Department of Chemistry and Laboratory for Advanced Materials,

More information

Plasma Enhanced Chemical Vapor Deposition (PECVD) of Silicon Dioxide (SiO2) Using Oxford Instruments System 100 PECVD

Plasma Enhanced Chemical Vapor Deposition (PECVD) of Silicon Dioxide (SiO2) Using Oxford Instruments System 100 PECVD University of Pennsylvania ScholarlyCommons Tool Data Browse by Type 2-7-2017 Plasma Enhanced Chemical Vapor Deposition (PECVD) of Silicon Dioxide (SiO2) Using Oxford Instruments System 100 PECVD Meredith

More information

Metal Deposition. Filament Evaporation E-beam Evaporation Sputter Deposition

Metal Deposition. Filament Evaporation E-beam Evaporation Sputter Deposition Metal Deposition Filament Evaporation E-beam Evaporation Sputter Deposition 1 Filament evaporation metals are raised to their melting point by resistive heating under vacuum metal pellets are placed on

More information

Fast and facile preparation of graphene. oxide and reduced graphene oxide nanoplatelets

Fast and facile preparation of graphene. oxide and reduced graphene oxide nanoplatelets Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets Jianfeng Shen, Yizhe Hu, Min Shi, Xin Lu, Chen Qin, Chen Li, Mingxin Ye Department of Materials Science, Fudan University,

More information

Effect of Sample Configuration on Droplet-Particles of TiN Films Deposited by Pulse Biased Arc Ion Plating

Effect of Sample Configuration on Droplet-Particles of TiN Films Deposited by Pulse Biased Arc Ion Plating J. Mater. Sci. Technol., Vol.25 No.5, 29 681 Effect of Sample Configuration on Droplet-Particles of TiN Films Deposited by Pulse Biased Arc Ion Plating Yanhui Zhao 1), Guoqiang Lin 2), Jinquan Xiao 1),

More information

CARBON NANOSTRUCTURES SYNTHESIZED THROUGH GRAPHITE ETCHING

CARBON NANOSTRUCTURES SYNTHESIZED THROUGH GRAPHITE ETCHING CARBON NANOSTRUCTURES SYNTHESIZED THROUGH GRAPHITE ETCHING Q. Yang 1, C. Xiao 1, R. Sammynaiken 2 and A. Hirose 1 1 Plasma Physics Laboratory, University of Saskatchewan, 116 Science Place Saskatoon, SK

More information

TiO2/sapphire Beam Splitter for High-order Harmonics

TiO2/sapphire Beam Splitter for High-order Harmonics Technical Communication TiO2/sapphire Beam Splitter for High-order Harmonics Y. Sanjo*1, M. Murata*1, Y. Tanaka*1, H. Kumagai*1, and M. Chigane*2 *1 Graduate School of Engineering,Osaka City University,

More information

Interface roughness evolution in sputtered WSi 2 /Si multilayers

Interface roughness evolution in sputtered WSi 2 /Si multilayers JOURNAL OF APPLIED PHYSICS 101, 023503 2007 Interface roughness evolution in sputtered WSi 2 /Si multilayers Yi-Ping Wang, Hua Zhou, Lan Zhou, and Randall L. Headrick a Department of Physics, University

More information

Kinetic Monte Carlo simulation of nucleation on patterned substrates

Kinetic Monte Carlo simulation of nucleation on patterned substrates PHYSICAL REVIEW B, VOLUME 63, 035407 Kinetic Monte Carlo simulation of nucleation on patterned substrates L. Nurminen, A. Kuronen, and K. Kaski Helsinki University of Technology, Laboratory of Computational

More information

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25)

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25) 1 TMT4320 Nanomaterials November 10 th, 2015 Thin films by physical/chemical methods (From chapter 24 and 25) 2 Thin films by physical/chemical methods Vapor-phase growth (compared to liquid-phase growth)

More information

SPUTTER-WIND HEATING IN IONIZED METAL PVD+

SPUTTER-WIND HEATING IN IONIZED METAL PVD+ SPUTTER-WIND HEATING IN IONIZED METAL PVD+ Junqing Lu* and Mark Kushner** *Department of Mechanical and Industrial Engineering **Department of Electrical and Computer Engineering University of Illinois

More information

NUCLEAR TRANSMUTATION IN DEUTERED PD FILMS IRRADIATED BY AN UV LASER

NUCLEAR TRANSMUTATION IN DEUTERED PD FILMS IRRADIATED BY AN UV LASER Castellano, et al. Nuclear Transmutation in Deutered Pd Films Irradiated by an UV Laser. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna,

More information

Newcastle University eprints

Newcastle University eprints Newcastle University eprints Ponon NK, Appleby DJR, Arac E, Kwa KSK, Goss JP, Hannemann U, Petrov PK, Alford NM, O'Neill A. Impact of Crystalline Orientation on the Switching Field in Barium Titanate Using

More information

doi: /

doi: / doi: 10.1063/1.350497 Morphology of hydrofluoric acid and ammonium fluoride-treated silicon surfaces studied by surface infrared spectroscopy M. Niwano, Y. Takeda, Y. Ishibashi, K. Kurita, and N. Miyamoto

More information

Fabrication Technology, Part I

Fabrication Technology, Part I EEL5225: Principles of MEMS Transducers (Fall 2004) Fabrication Technology, Part I Agenda: Microfabrication Overview Basic semiconductor devices Materials Key processes Oxidation Thin-film Deposition Reading:

More information

Supporting data for On the structure and topography of free-standing chemically modified graphene

Supporting data for On the structure and topography of free-standing chemically modified graphene 1 Supporting data for On the structure and topography of free-standing chemically modified graphene N R Wilson 1, P A Pandey 1, R Beanland 1, J P Rourke 2, U Lupo 1, G Rowlands 1 and R A Römer 1,3 1 Department

More information

Applied Surface Science CREST, Japan Science and Technology Corporation JST, Japan

Applied Surface Science CREST, Japan Science and Technology Corporation JST, Japan Ž. Applied Surface Science 130 13 1998 78 83 Selective chemical reaction of HBO molecules on the ž / Si 111-7 = 7 surface studied by scanning tunneling microscopy Koji Miyake a,), Masahiko Ishida a, Hidemi

More information

Mechanical Characterization of High Aspect Ratio Silicon Nanolines

Mechanical Characterization of High Aspect Ratio Silicon Nanolines Mater. Res. Soc. Symp. Proc. Vol. 1086 2008 Materials Research Society 1086-U05-07 Mechanical Characterization of High Aspect Ratio Silicon Nanolines Bin Li 1, Huai Huang 1, Qiu Zhao 1, Zhiquan Luo 1,

More information

In#uence of microstructure of substrate surface on early stage of thin "lm growth

In#uence of microstructure of substrate surface on early stage of thin lm growth Vacuum 56 (2000) 185}190 In#uence of microstructure of substrate surface on early stage of thin "lm growth Helin Wei*, Zuli Liu, Kailun Yao Department of Physics, Huazhong University of Science and Technology.

More information

Oxygen Reduction Reaction Electrocatalytic Activity of SAD-Pt/GLAD-Cr Nanorods

Oxygen Reduction Reaction Electrocatalytic Activity of SAD-Pt/GLAD-Cr Nanorods Oxygen Reduction Reaction Electrocatalytic Activity of SAD-Pt/GLAD-Cr Nanorods Wisam J. Khudhayer a*, Nancy Kariuki b, Deborah J. Myers b, Ali U. Shaikh c, and Tansel Karabacak d a Departments of Systems

More information

1 EX/P4-8. Hydrogen Concentration of Co-deposited Carbon Films Produced in the Vicinity of Local Island Divertor in Large Helical Device

1 EX/P4-8. Hydrogen Concentration of Co-deposited Carbon Films Produced in the Vicinity of Local Island Divertor in Large Helical Device 1 EX/P4-8 Hydrogen Concentration of Co-deposited Carbon Films Produced in the Vicinity of Local Island Divertor in Large Helical Device T. Hino 1,2), T. Hirata 1), N. Ashikawa 2), S. Masuzaki 2), Y. Yamauchi

More information

CHAPTER 5 ATOMIC HYDROGEN

CHAPTER 5 ATOMIC HYDROGEN CHAPTER 5 TEMPERATURE DEPENDENT ETCHING OF THE DIAMOND (100) SURFACE BY ATOMIC HYDROGEN 5.1 Introduction Described in previous chapters of this dissertation are the results of the initial UHV STM studies

More information

arxiv: v1 [nlin.ps] 9 May 2015

arxiv: v1 [nlin.ps] 9 May 2015 Scaling properties of generalized two-dimensional Kuramoto-Sivashinsky equations V. Juknevičius Institute of Theoretical Physics and Astronomy, Vilnius University, A. Goštauto 2, LT-008 Vilnius, Lithuania

More information

Supporting Information

Supporting Information Supporting Information Direct Chemical Vapor Deposition-Derived Graphene Glasses Targeting Wide Ranged Applications Jingyu Sun, Yubin Chen, Manish Kr. Priydarshi, Zhang Chen, Alicja Bachmatiuk,, Zhiyu

More information

QUASI-EQUILIBRIUM MONTE-CARLO: OFF-LATTICE KINETIC MONTE CARLO SIMULATION OF HETEROEPITAXY WITHOUT SADDLE POINTS

QUASI-EQUILIBRIUM MONTE-CARLO: OFF-LATTICE KINETIC MONTE CARLO SIMULATION OF HETEROEPITAXY WITHOUT SADDLE POINTS QUASI-EQUILIBRIUM MONTE-CARLO: OFF-LATTICE KINETIC MONTE CARLO SIMULATION OF HETEROEPITAXY WITHOUT SADDLE POINTS Henry A. Boateng University of Michigan, Ann Arbor Joint work with Tim Schulze and Peter

More information

Phase Transitions in Nonequilibrium Steady States and Power Laws and Scaling Functions of Surface Growth Processes

Phase Transitions in Nonequilibrium Steady States and Power Laws and Scaling Functions of Surface Growth Processes Phase Transitions in Nonequilibrium Steady States and Power Laws and Scaling Functions of Surface Growth Processes Term-paper for PHY563 Xianfeng Rui, UIUC Physics Abstract: Three models of surface growth

More information

Supplementary Figure 1 In-situ and ex-situ XRD. a) Schematic of the synchrotron

Supplementary Figure 1 In-situ and ex-situ XRD. a) Schematic of the synchrotron Supplementary Figure 1 In-situ and ex-situ XRD. a) Schematic of the synchrotron based XRD experimental set up for θ-2θ measurements. b) Full in-situ scan of spot deposited film for 800 sec at 325 o C source

More information

Solutions for Assignment-6

Solutions for Assignment-6 Solutions for Assignment-6 Q1. What is the aim of thin film deposition? [1] (a) To maintain surface uniformity (b) To reduce the amount (or mass) of light absorbing materials (c) To decrease the weight

More information

Surface morphology of GaAs during molecular beam epitaxy growth: Comparison of experimental data with simulations based on continuum growth equations

Surface morphology of GaAs during molecular beam epitaxy growth: Comparison of experimental data with simulations based on continuum growth equations PHYSICAL REVIEW B, VOLUME 65, 205302 Surface morphology of GaAs during molecular beam epitaxy growth: Comparison of experimental data with simulations based on continuum growth equations A. Ballestad,*

More information

Plasma transport around dust agglomerates having complex shapes

Plasma transport around dust agglomerates having complex shapes JOURNAL OF APPLIED PHYSICS VOLUME 83, NUMBER 11 1 JUNE 1998 Plasma transport around dust agglomerates having complex shapes Eric R. Keiter a) and Mark J. Kushner b) Department of Electrical and Computer

More information

Spontaneous generation of negatively charged clusters and their deposition as crystalline films during hot-wire silicon chemical vapor deposition*

Spontaneous generation of negatively charged clusters and their deposition as crystalline films during hot-wire silicon chemical vapor deposition* Pure Appl. Chem., Vol. 78, No. 9, pp. 1715 1722, 2006. doi:10.1351/pac200678091715 2006 IUPAC Spontaneous generation of negatively charged clusters and their deposition as crystalline films during hot-wire

More information