1 Turbidity = NTU 2 ph = Alkalinity = 34 mg/l as CaCO 3 4 Temperature = 5 Fe = 2 mg/l 6 Mn = mg/l 7 Total Hardness = 50mg/l as CaCO 3

Size: px
Start display at page:

Download "1 Turbidity = NTU 2 ph = Alkalinity = 34 mg/l as CaCO 3 4 Temperature = 5 Fe = 2 mg/l 6 Mn = mg/l 7 Total Hardness = 50mg/l as CaCO 3"

Transcription

1

2

3 DESIGN CALIFIER TANK (SLUDGE BLANKET CLARIFIER TYPE : SLUDGE RECIRCULATION) 1. Flow Rate Q 150 m 3 /hr. Raw Water Quality input 1 Turbidity NTU ph Alkalinity 3 mg/l as CaCO 3 Temperature 5 Fe mg/l 6 Mn mg/l 7 Total Hardness 50mg/l as CaCO 3 o C 0:3/7//007 1/1 Design Clarifier Tank(Solid Contact)/Design Flow

4 3. Design Criteria 3.1. Kawamura Flocculation Time approximate 0 min normal 0-0 min 3.1. Settling Time 1 - hr Surface Loading - 3 m/hr 3.1. Weir Loading m 3 /hr Upflow Velocity < 10 mm/min Slurry Circulation rate up to 3-5 time the raw water inflow rate G s MAXIMUM MIXER TIP SPEED 0.9 m/s (Baffled Channel) 0.9 m/s (Horizontal Shaft with Paddles) m/s (Vertical Shaft with Paddles) Equation mixer tip speed π DN Free Board is approximate 0.6 m Water Depth - 5 m Length and Width ratio 6 : 1 (minimum : 1) (Rectangular Basin) Width and Water Depth 3 : 1 (maximum 6 : 1) (Rectangular Basin) Blade area/rapid Mixing Tank area % (page 11) Blade : Diameter Blade/Diameter Mixing Tank (page 11) Shaft rpm Q, Sim 3..1 Detention Time Hr Surface Loading - m/hr 3..3 Weir Loading 7.1 m 3 /m.hr 3.3. Sheet Master Degree of Environmental Engineering 1:0/7//007 1/3 Design Clarifier Tank(Solid Contact)/Design Criteria

5 3.3.1 Weir Loading 7.1 m 3 /m.hr 3.3. Surface Loading - Q < 0.35 m 3 /min m/hr - Q > 0.35 m 3 /min m/hr Water Depth 3-5 m Paddle radius 65-75% of radius for Flocculator Detention Time 1-3 Hr Diameter Tank < 5 m Paddle at bottom tank high bottom cm Paddle Velocity - 3 rpm Effective Paddle Area 10 % Sweep area of the fllocculator 3.. Water Work Engineering Book 3..1 Flocculation..1.1 Detention Time 0-60 min..1. Velocity Gradient S GT 1x10-15x Periperal Velocity of Paddle m/s..1.5 Shaft rotation speed rpm 3.. Sedimetation (Coagulation)...1 Detention Time - 8 hr... Surface Loading 0-0 m 3 /m.day...3 Weir Loading m 3 /m.day 3..3 Sedimentation (Softening)..3.1 Detention Time 1-6 Hr..3. Surface Loading 0-60 m 3 /m.day..3.3 Weir Loading m 3 /m.day 3.5 Clarifier Design (Water Poluttion Control Federation 1985) 1:0/7//007 /3 Design Clarifier Tank(Solid Contact)/Design Criteria

6 3.5.1 Detention Time Flocculator central well 0-30 min 3.5. Weir Loading (outlet) 100 to 150 m 3 /m.day Radial inner feed well 10 to 13% of the tank radius 3.5. velocity gradient S -1 1:0/7//007 3/3 Design Clarifier Tank(Solid Contact)/Design Criteria

7 GiveContact Time in Hopper inside (Flocculation Zone) 0 min Contact Time ZONE 1 0 min (Criteria 0-30 min) Contact Time outside (ZONE + ZONE 3) + ZONE 0 min 5 Flow Rate 150 m 3 /hr 6 Volume in inside Hopper Q x t 100 m 3 7 Give Detention Time in outside Hopper(Sedimentation Zone) 1.7 Hr 8 Volume in outside Hopper Q x t 55 m 3 9 Calculation Diameter Hopper inside 9. ZONE 1 (Circular Basin) Volume in ZONE 1 Q x t Volume in ZONE 1 50 m 3 Give D1 m Surface Area m A 1 πd m Depth in ZONE m 9. ZONE (Circular Basin) Give D 5 m Surface Area m πd A m Depth in ZONE m (safety 0.5 m) Volume ZONE m ZONE 3 (Conical Basin) Give D3 7 m Give Depth in ZONE 3 1 m 0:/7//007 1/ Design Clarifier Tank(Solid Contact)/Hopper inside&outside

8 Surface area on Top πd Surface area on Top (A3) m Surface area on Bottom πd Surface area on Bottom (A) m d Volume x ( A 1 + A + A 1 xa 6 Volume ZONE m 3 ) 9. Outside Volume ZONE andzone 3 Volume ZONE + ZONE 3 - Volume ZONE m ZONE (Circular Basin) Volume in ZONE Total Volume in Hopper inside id - (Volume ZONE+ ZONE3) Volume in ZONE.3331 m 3 Depth in ZONE Volume Zone π D x m Check Detention Time Outside ZONE and ZONE3 + ZONE hr 0 min Water Depth m (Design Criteria 3-5 m,kawamura,page161) Free Board from Design Criteria 0.6 m (Kawamura) Solid Contact Clarifier Tank Height m 0:/7//007 / Design Clarifier Tank(Solid Contact)/Hopper inside&outside

9 10 Calculation Diameter Solid Contact Clarifier Total Volume Volume inside Hopper + Volume outside Hopper 355 m 3 Diameter Solid Contact Clarifier xvolume π xwater depth m 0:/7//007 3/ Design Clarifier Tank(Solid Contact)/Hopper inside&outside

10 D ZONE Depth ZONE ZONE1 D1 ZONE3 Depth ZONE 3 ZONE Depth ZONE D3 0:/7//007 / Design Clarifier Tank(Solid Contact)/Hopper inside&outside

11 Page 1 of 1 Impellers Mixer Shape of Impeller

12 1. Rapid Mixing by Radial and Axial Impellers Page 1 of 3 G P μ V Where : G P Velocity gradient, sec -1 (G 700 to 1000 sec -1 ) Power Imparted to the water, N-m/s or Watt or kg.m /s 3 V Volume of the basin, m 3 μ absolute viscosity of the fluid, N-s/m The motor power of the mixer is the power to drive the speed reduction gears. The powe imparted to the water by a mixer is calculated from P πnt Where : n T Impeller speed, revolutions per second (rps) Impeller shaft torque, N-m. Other expression for the power imparted to the water are given by : P N n d 3 is used for the Laminar-flow range (Reynolds number N R < 10) P N pμ n 3 d 5 P ρ is used for the Turbulent-flow range (Reynolds number NR > 10,000) Where : N P d ρ Power number of the impeller (power numbers for different types of impellers are give in table 8-5 impeller diameter, m mass density of fluid, kg/m 3 Design Clarifier Tank(Solid Contact) Equation

13 μ Page of 3 absolute viscosity of water, N-s/m The Reynolds number for Rapid mixers is given by : N R d nρ μ The velocity gradient for a mixing basin utilizing flow - induced turbulence can be calculated from : Where : G h L t g ρ h t μ L total head loss through the mixer,m detention time, s Detention time in Rapid-Mix Basin t V Q Where : t average detention time, min Q flow rate, m 3 /min V volume of the tank, m 3 Check Mixer Tip Speed Where : Tip Speed π Dn D n m/s Diameter of Impeller (m.) Impeller speed, revolutions per second (rps) Design Clarifier Tank(Solid Contact) Equation

14 Page 3 of 3 Rapid Mix Tip Speed > 1 m/s Slow Mix 1.Baffle Channel < 0.9 m/s.mechanical Flocculators - Horozontal Shaft with Paddle < 0.9 m/s - Vertical Shaft with Blade < 1.8 m/s to.7 m/s Design Clarifier Tank(Solid Contact) Equation

15 Page 1 of 1 1. Power Number for Impeller. Coefficient of Drag for Paddle Design Clarifier Tank(Solid Contact) Power Number

16 Page 1 of 5 Impeller Mixing Give 1 Flow rates 150 m 3 /hr Volume of the ZONE m 3 μ ρ Kg/m.s at 5 o C Kg/m 3 at 5 o C G P μv Where : G Velocity gradient, sec -1 P Power Imparted to the water, N-m/s or Watt or kg.m /s 3 V Volume of the basin, m 3 μ absolute viscosity of the fluid, N-s/m Give Velocity Gradient (G) 70 s -1 (Design Criteria Kawamora) 3 Power Imparted to the water, P 19.3 N-m/s or Watt or kg.m /s kwatt P is the power imparted to the water. The power of the driver(p') is calculated by diving P by the efficiency of the gearbox, which is typically around 80 percent Power Imparted to the water, P' 0.71 kwatt 1 HP kwatt Power Imparted to the water, P' HP Use Standard motor of P' HP, rpm and efficiency 80 percent Design Clarifier Tank(Solid Contact).xls Flocculation Mixing

17 Page of 5 Impeller Design Calculate impeller size and rotational speed. The rapid-mix basin will be an "up flow" type.experience shown that radial-flow mixers perform batter than axial-flow mixers in a vertical-flow basin Use Disc Turbine 6 Blade Blade width-to-diameter ratio 0.5 N P 6. (Table 8.5 Power Number ) P N n 3 d 5 n ρ P ρ P N Diameter of mixing tank (D).000 m Width of Rapid Mixing Tank Diameter of impeller (d) 0. to 0.D use 0.3 D Diameter of impeller (d) 1.00 m P 5 d rps rpm use gear box to convert rpm(standard motor) to rpm n 5 Check Reynolds number for turbulent flow N R 19,018 > 10,000 OK N R d nρ μ Therefore this equation is Valid 6 Dimentions of impeller are as follow - Diameter of impeller (d) 10.0 cm. - Width of impeller (W) 30.0 cm. 7 Check Impeller shaft torque P πnt Design Clarifier Tank(Solid Contact).xls Flocculation Mixing

18 Page 3 of N-m T choose motor gear rpm. Shaft torque N-m Use Standard motor of P' HP 8 Head loss through the mixer G gρ h tμ L.07853E-05 m. h L 9 Check Mixer Tip Speed Tip Speed πdn Tip Speed m/s (0.9 m/s m/s,kawamura) (Horizontal Shaft with Paddles) 10 Check Blade area/tank area 0.09 (Design Criteria ) m/s Design Clarifier Tank(Solid Contact).xls Flocculation Mixing

19 Page 5 of 5 (Horizontal Shaft with Paddles) Bladed Disk Turbine L W d Where : D Diameter of Mixing Tank (m) d Diameter of Bladed Disk Turbine (m) L Long of single bladed (m) W Width of single bladed (m) Equation : d 0. to 0. D L W d d 5 sourec : Water Treatment Process : Simple Option (S.Vigneswaran) Design Clarifier Tank(Solid Contact).xls Flocculation Mixing

20 Outlet Clarifier Tank Weir Loading m 3 /m.hr From Diameter Tank m. Minus outlet hole side 1 m. (Launders side) Length of weir m. 3 Q ( m / hr ) Length of weir 3 Weir Loading ( m / m. hr ) Weir Loading m 3 /m.hr OK. Give Diameter of Orifice 0.5 in m. Give 1 m. of outlet weir have orifice 5 pores/side side 50 pores Length of Orifice m./ 1 m. weir 1 side m./ 1 m. weir Then Free Space of weir m./ 1 m. weir Space between orifice to orifice m..73 cm. Give 1 m. of outlet weir have orifice 5 pores/side side 50 pores Then total orifice 35 pores Then sum area of orifice 0.06 m Flow Rate pass through 1 orifice 0.35 m 3 /hr Each of orifice area πd Each of orifice area m 0:9/7//007 1/3 Weir Loading/Design Clarifier Tank(Solid Contact)

21 Q Av Velocity pass through each orifice m/s 0:9/7//007 /3 Weir Loading/Design Clarifier Tank(Solid Contact)

22 Launders Launders Collection Water at Central Tank 0:9/7//007 3/3 Weir Loading/Design Clarifier Tank(Solid Contact)

23 3 Inlet Structure From Static Mixer Design criteria velocity pass through static mixer 1 - m/s Select velocity 1.5 m/s Q Av Q Area m v m Circular pipe area πd D D m in. 7 in. Calculation Surface Loading (Sedimentation Zone) Surface Area at Sedimentation Zone D outside D inside + ( xlaunders width ) π D D outside inside + xlaunderswidth π m. 6 m. Surface Area at Sedimentation Zone m Surface Loading Q A m/hr. Design Criteria m/hr upflow (radial upflow type) Text Book (Chularrongkron University <. m/hr.) Water Works Engineering m/hr Kawamura - 3 m/hr 1:07/7//007 1/1 Inlet structure&surface loading/design Clarifier Tank(Solid Contact)

1 Turbidity = NTU 2pH = 3 Alkalinity = mg/l as CaCO 3 4 Temperature = 5 Fe mg/l 6 Mn mg/l 7 Total Hardness mg/l as CaCO 3

1 Turbidity = NTU 2pH = 3 Alkalinity = mg/l as CaCO 3 4 Temperature = 5 Fe mg/l 6 Mn mg/l 7 Total Hardness mg/l as CaCO 3 DESIGN CALIFIER TANK (SLUDGE BLANKET CLARIFIER TYPE : VERTICAL SLUDGE BLANKET) 1. Flow Rate Q = 150 m /hr. Raw Water Quality input 1 Turbidity = NTU ph = Alkalinity = mg/l as CaCO Temperature = 5 Fe mg/l

More information

ENVE 411 Water Engineering Design

ENVE 411 Water Engineering Design ENVE 411 Water Engineering Design Design of Coagulation & Flocculation Units Fall 2012 07 Nov 2012 Assist. Prof. A. Evren Tugtas Orhaniye WTP 2 Mixing Mixing liquids is used to: Blending of two immiscible

More information

SEDIMENTATION INTRODUCTION

SEDIMENTATION INTRODUCTION SEDIMENTATION INTRODUCTION Sedimentation is removal of particulate materials suspended in water by quiescent settling due to gravity Commonly used unit operation in water and wastewater treatment plants

More information

L-10 SEDIMENTATION PART-I

L-10 SEDIMENTATION PART-I L-10 SEDIMENTATION PART-I Environmental Engineering-I CONTETS Types of settling, Theory of settling L-12 PART -II CONTENTS Theory of settling (Continued ) ZONES IN SETTLING TANK A c/s

More information

Sedimentation. Several factors affect the separation of settleable solids from water. Some of the more common types of factors to consider are:

Sedimentation. Several factors affect the separation of settleable solids from water. Some of the more common types of factors to consider are: Sedimentation Sedimentation, or clarification, is the process of letting suspended material settle by gravity. Suspended material may be particles, such as clay or silts, originally present in the source

More information

COAGULATION AND FLOCCULATION

COAGULATION AND FLOCCULATION COAGULATION AND FLOCCULATION Course, Zerihun Alemayehu COAGULATION AND FLOCCULATION Remove infectious agents, Remove toxic compounds that have adsorbed to the surface of particles, Remove precursors to

More information

SETTLING VELOCITY OF PARTICLES

SETTLING VELOCITY OF PARTICLES SETTLING VELOCITY OF PARTICLES Equation for one-dimensional motion of particle through fluid Expression for acceleration of a particle settling in a fluid: m du dt = F e F b F D Where, F e = ma e acceleration

More information

CEE 371 Water and Wastewater Systems

CEE 371 Water and Wastewater Systems Updated: 1 November 009 CEE 371 Water and Wastewater Systems Print version Lecture #16 Drinking Water Treatment: Coagulation, mixing & flocculation Reading: Chapter 7, pp.5-9, 10-13 David Reckhow CEE 371

More information

Lecture 3: Coagulation and Flocculation

Lecture 3: Coagulation and Flocculation Islamic University of Gaza Environmental Engineering Department Water Treatment EENV 4331 Lecture 3: Coagulation and Flocculation Dr. Fahid Rabah 1 3.1 Definition of Coagulation and Flocculation Coagulation

More information

L-17 Coagulation and Flocculation Part-I. Environmental Engineering-I

L-17 Coagulation and Flocculation Part-I. Environmental Engineering-I L-17 Coagulation and Flocculation Part-I Environmental Engineering-I Content Part-I Coagulation, Types of Coagulant, Part-II dosing, rapid mixing, Flocculation-design parameters. Purpose The primary purpose

More information

CT4471 Drinking Water 1

CT4471 Drinking Water 1 CT4471 Drinking Water 1 Coagulation & flocculation Dr.ir. J.Q.J.C. Verberk Room 2.98 25 September, 2007 1 Contents 1. Introduction 2. Coagulation: theory 3. Coagulation: practice 4. Flocculation: theory

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

PHEN 612 SPRING 2008 WEEK 12 LAURENT SIMON

PHEN 612 SPRING 2008 WEEK 12 LAURENT SIMON PHEN 612 SPRING 28 WEEK 12 LAURENT SIMON Mixing in Reactors Agitation, Mixing of Fluids and Power requirements Agitation and mixing are two of the most common operations in the processing industries Agitation:

More information

Delvin DeBoer, Ph.D., PE. MN/ND/SD SWTW April 29, 2014 OUTLINE

Delvin DeBoer, Ph.D., PE. MN/ND/SD SWTW April 29, 2014 OUTLINE Physical/Chemical Process FUNDAMENTALS Delvin DeBoer, Ph.D., PE MN/ND/SD SWTW April 29, 2014 OUTLINE Properties of turbidity and organic matter Mechanisms of coagulation, coagulant chemicals and jar testing

More information

MRI Flocculation. MRI Flocculation Systems. Mix & Match for Maximum Pretreatment Control

MRI Flocculation. MRI Flocculation Systems. Mix & Match for Maximum Pretreatment Control MRI Flocculation MRI Flocculation Systems Mix & Match for Maximum Pretreatment Control MRI Flocculation P resenting MRI m a n u f a c t u r e s v e r t i c a l t u r b i n e s (s h o w n ), h o r i z o

More information

ME332 FLUID MECHANICS LABORATORY (PART II)

ME332 FLUID MECHANICS LABORATORY (PART II) ME332 FLUID MECHANICS LABORATORY (PART II) Mihir Sen Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame, IN 46556 Version: April 2, 2002 Contents Unit 5: Momentum transfer

More information

M E 320 Professor John M. Cimbala Lecture 23

M E 320 Professor John M. Cimbala Lecture 23 M E 320 Professor John M. Cimbala Lecture 23 Today, we will: Discuss diffusers and do an example problem Begin discussing pumps, and how they are analyzed in pipe flow systems D. Diffusers 1. Introduction.

More information

Matlab Sheet 2. Arrays

Matlab Sheet 2. Arrays Matlab Sheet 2 Arrays 1. a. Create the vector x having 50 logarithmically spaced values starting at 10 and ending at 1000. b. Create the vector x having 20 logarithmically spaced values starting at 10

More information

Determining the G Values or Effectiveness of Chemical Diffusers and Injectors

Determining the G Values or Effectiveness of Chemical Diffusers and Injectors Determining the G Values or Effectiveness of Chemical Diffusers and Injectors One of the most common methods of measuring mixing, particularly the mixing of flocculants or coagulants is the use of G value.

More information

Chapter (4) Motion of Fluid Particles and Streams

Chapter (4) Motion of Fluid Particles and Streams Chapter (4) Motion of Fluid Particles and Streams Read all Theoretical subjects from (slides Dr.K.AlASTAL) Patterns of Flow Reynolds Number (R e ): A dimensionless number used to identify the type of flow.

More information

ENGG 199 Reacting Flows Spring Lecture 2b Blending of Viscous, Non-Newtonian Fluids

ENGG 199 Reacting Flows Spring Lecture 2b Blending of Viscous, Non-Newtonian Fluids ENGG 199 Reacting Flows Spring 2006 Lecture 2b Blending of Viscous, Non-Newtonian Fluids Copyright 2000, A.. Etchells, R..Grenville & R.D. LaRoche All rights reserved. Re-Cap In turbulent regime, viscosity

More information

LECTURE 6- ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS

LECTURE 6- ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS LECTURE 6- ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS 1. What is the head loss ( in units of bars) across a 30mm wide open gate valve when oil ( SG=0.9) flow through at a

More information

Signature: (Note that unsigned exams will be given a score of zero.)

Signature: (Note that unsigned exams will be given a score of zero.) Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (-1 point if not circled, or circled incorrectly): Prof. Dabiri Prof. Wassgren Prof.

More information

PLO MIXING AND RTD IN TANKS: RADIOTRACER EXPERIMENTS AND CFD SIMULATIONS

PLO MIXING AND RTD IN TANKS: RADIOTRACER EXPERIMENTS AND CFD SIMULATIONS PLO522 MIXING AND RTD IN TANKS: RADIOTRACER EXPERIMENTS AND CFD SIMULATIONS A. R. Thatte and A. W. Patwardhan Institute of Chemical Techno lou Uiversity of Mumhai, Mumbai, India H. J. PantV. K. Sharma,

More information

10.52 Mechanics of Fluids Spring 2006 Problem Set 3

10.52 Mechanics of Fluids Spring 2006 Problem Set 3 10.52 Mechanics of Fluids Spring 2006 Problem Set 3 Problem 1 Mass transfer studies involving the transport of a solute from a gas to a liquid often involve the use of a laminar jet of liquid. The situation

More information

mixing of fluids MIXING AND AGITATION OF FLUIDS

mixing of fluids MIXING AND AGITATION OF FLUIDS Levenspiel [2] considered when two fluids are mixed together, the molecular behavior of the dispersed fluid falls between two extremes. If molecules are completely free to move about, the dispersed fluid

More information

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]-113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum

More information

Calculation of Power, Shear and Gas-liquid mass transfer in reactors for fermentation.

Calculation of Power, Shear and Gas-liquid mass transfer in reactors for fermentation. VISIMIX TURBULENT. GAS-LIQUID MIXING. FERMENTATION. Calculation of Power, Shear and Gas-liquid mass transfer in reactors for fermentation. 1. Subject of calculations and initial data. This example demonstrates

More information

ME 431A/538A/538B Homework 22 October 2018 Advanced Fluid Mechanics

ME 431A/538A/538B Homework 22 October 2018 Advanced Fluid Mechanics ME 431A/538A/538B Homework 22 October 2018 Advanced Fluid Mechanics For Friday, October 26 th Start reading the handout entitled Notes on finite-volume methods. Review Chapter 7 on Dimensional Analysis

More information

ENGR 4011 Resistance & Propulsion of Ships Assignment 4: 2017

ENGR 4011 Resistance & Propulsion of Ships Assignment 4: 2017 Question 1a. Values of forward speed, propeller thrust and torque measured during a propeller open water performance test are presented in the table below. The model propeller was 0.21 meters in diameter

More information

SUMMER 14 EXAMINATION

SUMMER 14 EXAMINATION Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

Treatment Processes. Coagulation. Coagulation. Coagulation. Coagulation. Coagulation and Flocculation

Treatment Processes. Coagulation. Coagulation. Coagulation. Coagulation. Coagulation and Flocculation CIVL 1112 Water Treatment - and 1/7 Treatment Processes and and flocculation consist of adding a flocforming chemical reagent to a water to enmesh or combine with nonsettleable colloidal solids and slowsettling

More information

Chapter 7 The Energy Equation

Chapter 7 The Energy Equation Chapter 7 The Energy Equation 7.1 Energy, Work, and Power When matter has energy, the matter can be used to do work. A fluid can have several forms of energy. For example a fluid jet has kinetic energy,

More information

Water Treatment: Coagulation

Water Treatment: Coagulation Water Treatment: Coagulation and Flocculation 1 Surface Water Treatment Removal of turbidity rapid mix tank flocculation tanks settling (sedimentation) tanks 2 Rapid Mixing Used to blend chemicals and

More information

1. Starting of a project and entering of basic initial data.

1. Starting of a project and entering of basic initial data. PROGRAM VISIMIX TURBULENT SV. Example 1. Contents. 1. Starting of a project and entering of basic initial data. 1.1. Opening a Project. 1.2. Entering dimensions of the tank. 1.3. Entering baffles. 1.4.

More information

Separation Processes: Sedimentation Separations

Separation Processes: Sedimentation Separations Separation Processes: Sedimentation Separations ChE 4M3 Kevin Dunn, 2014 kevin.dunn@mcmaster.ca http://learnche.mcmaster.ca/4m3 Overall revision number: 300 (September 2014) 1 Copyright, sharing, and attribution

More information

Performance characteristics of turbo blower in a refuse collecting system according to operation conditions

Performance characteristics of turbo blower in a refuse collecting system according to operation conditions Journal of Mechanical Science and Technology 22 (2008) 1896~1901 Journal of Mechanical Science and Technology www.springerlink.com/content/1738-494x DOI 10.1007/s12206-008-0729-6 Performance characteristics

More information

Chapter Four Hydraulic Machines

Chapter Four Hydraulic Machines Contents 1- Introduction. - Pumps. Chapter Four Hydraulic Machines (لفرع الميكانيك العام فقط ( Turbines. -3 4- Cavitation in hydraulic machines. 5- Examples. 6- Problems; sheet No. 4 (Pumps) 7- Problems;

More information

COMPUTER AIDED DESIGN OF RADIAL TIPPED CENTRIFUGAL BLOWERS AND FANS

COMPUTER AIDED DESIGN OF RADIAL TIPPED CENTRIFUGAL BLOWERS AND FANS 4 th International Conference on Mechanical Engineering, December 26-28, 21, Dhaka, Bangladesh/pp. IV 55-6 COMPUTER AIDED DESIGN OF RADIAL TIPPED CENTRIFUGAL BLOWERS AND FANS Nitin N. Vibhakar* and S.

More information

CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES

CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES CENTRIFUGAL PUMP SELECTION, SIZING, AND INTERPRETATION OF PERFORMANCE CURVES 4.0 PUMP CLASSES Pumps may be classified in two general types, dynamic and positive displacement. Positive displacement pumps

More information

Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program.

Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program. Calculation of Power and Flow Capacity of Rotor / Stator Devices in VisiMix RSD Program. L.N.Braginsky, D.Sc. (Was invited to be presented on the CHISA 2010-13th Conference on Process Integration, Modelling

More information

Module 15 : Grit Chamber. Lecture 19 : Grit Chamber

Module 15 : Grit Chamber. Lecture 19 : Grit Chamber Module 15 : Grit Chamber Lecture 19 : Grit Chamber 15. GRIT CHAMBER Grit chamber is the second unit operation used in primary treatment of wastewater and it is intended to remove suspended inorganic particles

More information

15. GRIT CHAMBER 15.1 Horizontal Velocity in Flow Though Grit Chamber

15. GRIT CHAMBER 15.1 Horizontal Velocity in Flow Though Grit Chamber 15. GRIT CHAMBER Grit chamber is the second unit operation used in primary treatment of wastewater and it is intended to remove suspended inorganic particles such as sandy and gritty matter from the wastewater.

More information

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the co-efficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1

More information

Contents. 2 Basic Components Aerofoils Force Generation Performance Parameters xvii

Contents. 2 Basic Components Aerofoils Force Generation Performance Parameters xvii Contents 1 Working Principles... 1 1.1 Definition of a Turbomachine... 1 1.2 Examples of Axial Turbomachines... 2 1.2.1 Axial Hydraulic Turbine... 2 1.2.2 Axial Pump... 4 1.3 Mean Line Analysis... 5 1.4

More information

Chapter (6) Energy Equation and Its Applications

Chapter (6) Energy Equation and Its Applications Chapter (6) Energy Equation and Its Applications Bernoulli Equation Bernoulli equation is one of the most useful equations in fluid mechanics and hydraulics. And it s a statement of the principle of conservation

More information

Fluid Mechanics Answer Key of Objective & Conventional Questions

Fluid Mechanics Answer Key of Objective & Conventional Questions 019 MPROVEMENT Mechanical Engineering Fluid Mechanics Answer Key of Objective & Conventional Questions 1 Fluid Properties 1. (c). (b) 3. (c) 4. (576) 5. (3.61)(3.50 to 3.75) 6. (0.058)(0.05 to 0.06) 7.

More information

Chapter 6: Solid-Liquid Separation in WWTPs. Raúl Muñoz Pedro García Encina

Chapter 6: Solid-Liquid Separation in WWTPs. Raúl Muñoz Pedro García Encina Chapter 6: Solid-Liquid Separation in WWTPs Raúl Muñoz Pedro García Encina 1 Introduction to Solid-Liquid Separation 2 Introduction: Separation Methods Solid/liquid separation technologies Ensure good

More information

Module 15 : Grit Chamber. Lecture 19 : Grit Chamber

Module 15 : Grit Chamber. Lecture 19 : Grit Chamber 1 P age Module 15 : Grit Chamber Lecture 19 : Grit Chamber 2 P age Grit chamber is the second unit operation used in primary treatment of wastewater and it is intended to remove suspended inorganic particles

More information

Volume and Mass Flow Rate Measurement Author: John M. Cimbala, Penn State University Latest revision: 07 December 2007

Volume and Mass Flow Rate Measurement Author: John M. Cimbala, Penn State University Latest revision: 07 December 2007 Volume and Mass Flow Rate Measurement Author: John M. Cimbala, Penn State University Latest revision: 07 ecember 2007 Introduction and notation In many engineering applications, either mass flow rate or

More information

Model Study and Analysis of the Flow Elements of a Recirculation Mixing System

Model Study and Analysis of the Flow Elements of a Recirculation Mixing System Brigham Young University BYU ScholarsArchive All Theses and Dissertations 1967-07-11 Model Study and Analysis of the Flow Elements of a Recirculation Mixing System Albert Warren Berg Brigham Young University

More information

3 Energy Exchange in Turbomachines

3 Energy Exchange in Turbomachines 3 Energy Exchange in Turbomachines Problem 1 The solved and unsolved examples of this chapter are meant to illustrate the various forms of velocity triangles and the variety of the turbomachines. In addition,

More information

PIPE FLOW. General Characteristic of Pipe Flow. Some of the basic components of a typical pipe system are shown in Figure 1.

PIPE FLOW. General Characteristic of Pipe Flow. Some of the basic components of a typical pipe system are shown in Figure 1. PIPE FLOW General Characteristic of Pipe Flow Figure 1 Some of the basic components of a typical pipe system are shown in Figure 1. They include the pipes, the various fitting used to connect the individual

More information

APPLICATION OF MODELS WITH DIFFERENT COMPLEXITY FOR A STIRRED TANK REACTOR

APPLICATION OF MODELS WITH DIFFERENT COMPLEXITY FOR A STIRRED TANK REACTOR HUNGARIAN JOURNAL OF INDUSTRIAL CHEMISTRY VESZPRÉM Vol. 39(3) pp. 335-339 (011) APPLICATION OF MODELS WITH DIFFERENT COMPLEXITY FOR A STIRRED TANK REACTOR A. EGEDY, T. VARGA, T. CHOVÁN University of Pannonia,

More information

Part A: 1 pts each, 10 pts total, no partial credit.

Part A: 1 pts each, 10 pts total, no partial credit. Part A: 1 pts each, 10 pts total, no partial credit. 1) (Correct: 1 pt/ Wrong: -3 pts). The sum of static, dynamic, and hydrostatic pressures is constant when flow is steady, irrotational, incompressible,

More information

R09. d water surface. Prove that the depth of pressure is equal to p +.

R09. d water surface. Prove that the depth of pressure is equal to p +. Code No:A109210105 R09 SET-1 B.Tech II Year - I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

Chapter Four Hydraulic Machines

Chapter Four Hydraulic Machines Contents 1- Introduction. 2- Pumps. Chapter Four Hydraulic Machines (لفرع الميكانيك العام فقط ( Turbines. -3 4- Cavitation in hydraulic machines. 5- Examples. 6- Problems; sheet No. 4 (Pumps) 7- Problems;

More information

1.The number of simultaneous equations to be solved in the slope deflection method,

1.The number of simultaneous equations to be solved in the slope deflection method, EXAM-1 1.The number of simultaneous equations to be solved in the slope deflection method, is equal to : A. the degree of statistical indeterminacy B. the degree of kinematic indeterminacy C. the number

More information

An Overview of Impellers, Velocity Profile and Reactor Design

An Overview of Impellers, Velocity Profile and Reactor Design An Overview of s, Velocity Profile and Reactor Design Praveen Patel 1, Pranay Vaidya 1, Gurmeet Singh 2 1 Indian Institute of Technology Bombay, India 1 Indian Oil Corporation Limited, R&D Centre Faridabad

More information

Active Control of Separated Cascade Flow

Active Control of Separated Cascade Flow Chapter 5 Active Control of Separated Cascade Flow In this chapter, the possibility of active control using a synthetic jet applied to an unconventional axial stator-rotor arrangement is investigated.

More information

4 Mechanics of Fluids (I)

4 Mechanics of Fluids (I) 1. The x and y components of velocity for a two-dimensional flow are u = 3.0 ft/s and v = 9.0x ft/s where x is in feet. Determine the equation for the streamlines and graph representative streamlines in

More information

PROPERTIES OF FLUIDS

PROPERTIES OF FLUIDS Unit - I Chapter - PROPERTIES OF FLUIDS Solutions of Examples for Practice Example.9 : Given data : u = y y, = 8 Poise = 0.8 Pa-s To find : Shear stress. Step - : Calculate the shear stress at various

More information

ROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring

ROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring ROTATIONAL STRESSES INTRODUCTION High centrifugal forces are developed in machine components rotating at a high angular speed of the order of 100 to 500 revolutions per second (rps). High centrifugal force

More information

FE Exam Fluids Review October 23, Important Concepts

FE Exam Fluids Review October 23, Important Concepts FE Exam Fluids Review October 3, 013 mportant Concepts Density, specific volume, specific weight, specific gravity (Water 1000 kg/m^3, Air 1. kg/m^3) Meaning & Symbols? Stress, Pressure, Viscosity; Meaning

More information

Water & Wastewater Mixing: Lighting Up A Dark Art (or cramming a quart into a pint pot!)

Water & Wastewater Mixing: Lighting Up A Dark Art (or cramming a quart into a pint pot!) Water & Wastewater Mixing: Lighting Up A Dark Art (or cramming a quart into a pint pot!) Dr Mick Dawson Process Director mdawson@bhrgroup.co.uk 25th October 2011 BHR Group 2011 BHR Group is a trading name

More information

Research Article Performance of Single and Double Shaft Disk Separators

Research Article Performance of Single and Double Shaft Disk Separators Hindawi Publishing Corporation Physical Separation in Science and Engineering Volume 8, Article ID 58617, 5 pages doi:1.1155/8/58617 Research Article Performance of Single and Double Shaft Disk Separators

More information

Numerical Study of the Semi-Open Centrifugal Pump Impeller Side Clearance A. Farid Ayad *, H. M. Abdalla,A. S. Abo El-Azm Egyptian Armed Forces, Egypt

Numerical Study of the Semi-Open Centrifugal Pump Impeller Side Clearance A. Farid Ayad *, H. M. Abdalla,A. S. Abo El-Azm Egyptian Armed Forces, Egypt 16 th International Conference on AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT - 16 May 26-28, 2015, E-Mail: asat@mtc.edu.eg Military Technical College, Kobry Elkobbah, Cairo, Egypt Tel : +(202) 24025292

More information

Visualization of flow pattern over or around immersed objects in open channel flow.

Visualization of flow pattern over or around immersed objects in open channel flow. EXPERIMENT SEVEN: FLOW VISUALIZATION AND ANALYSIS I OBJECTIVE OF THE EXPERIMENT: Visualization of flow pattern over or around immersed objects in open channel flow. II THEORY AND EQUATION: Open channel:

More information

AGITATION/GAS-LIQUID DISPERSION. CHEM-E Fluid Flow in Process Units

AGITATION/GAS-LIQUID DISPERSION. CHEM-E Fluid Flow in Process Units AGITATION/GAS-LIQUID DISPERSION CHEM-E7160 - Fluid Flow in Process Units 1. INTRODUCTION Agitation: Mixing: Blending: Suspension: Dispersion: Induced motion of a material in a specific way, usually in

More information

PRIMARY TREATMENT NATURE

PRIMARY TREATMENT NATURE PRIMARY TREATMENT NATURE Physical and chemical processes. Physical: sedimentation based in density differences Chemical: coagulation and flocculation, ph adjustment, precipitation (formation of insoluble

More information

Aerodynamic Performance 1. Figure 1: Flowfield of a Wind Turbine and Actuator disc. Table 1: Properties of the actuator disk.

Aerodynamic Performance 1. Figure 1: Flowfield of a Wind Turbine and Actuator disc. Table 1: Properties of the actuator disk. Aerodynamic Performance 1 1 Momentum Theory Figure 1: Flowfield of a Wind Turbine and Actuator disc. Table 1: Properties of the actuator disk. 1. The flow is perfect fluid, steady, and incompressible.

More information

Design of Monoblock Centrifugal Pump Impeller

Design of Monoblock Centrifugal Pump Impeller Design of Monoblock Centrifugal Pump Impeller Authors Mr. Chetan Kallappa Tambake 1, Prof. P. V. Salunke 1 Department of Mechanical Engineering, Walchand Institute of Technology, Ashok Chowk, Solapur-413006,

More information

Contents. 1 Introduction to Gas-Turbine Engines Overview of Turbomachinery Nomenclature...9

Contents. 1 Introduction to Gas-Turbine Engines Overview of Turbomachinery Nomenclature...9 Preface page xv 1 Introduction to Gas-Turbine Engines...1 Definition 1 Advantages of Gas-Turbine Engines 1 Applications of Gas-Turbine Engines 3 The Gas Generator 3 Air Intake and Inlet Flow Passage 3

More information

An Experimental Investigation of A High Radius Pre-Swirl Cooling System

An Experimental Investigation of A High Radius Pre-Swirl Cooling System Proceedings of the 8 th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows Lyon, July 2007 Paper reference : ISAIF8-004 An Experimental Investigation of A High

More information

Lect-36. In this lecture... Tutorial on radial flow turbines. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect-36. In this lecture... Tutorial on radial flow turbines. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay Lect- 36 1 In this lecture... Lect-36 Tutorial on radial flow turbines 2 Problem # 1 Lect-36 The rotor of an IFR turbine, which is designed to operate at the nominal condition, is 23.76 cm in diameter

More information

NUMERICAL STUDY OF THE EFFECT OF BLADE SZE ON PUMPING EFFECTIVENESS OF A PADDLE IMPELLER IN AN UNBAFFLED MIXING VESSEL

NUMERICAL STUDY OF THE EFFECT OF BLADE SZE ON PUMPING EFFECTIVENESS OF A PADDLE IMPELLER IN AN UNBAFFLED MIXING VESSEL Third International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 10-12 December 2003 NUMERICAL STUDY OF THE EFFECT OF BLADE SZE ON PUMPING EFFECTIVENESS OF A PADDLE

More information

Introduction to Fluid Machines and Compressible Flow Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Introduction to Fluid Machines and Compressible Flow Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Introduction to Fluid Machines and Compressible Flow Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No. # 24 Axial Flow Compressor Part I Good morning

More information

CFDOFAIRFLOWINHYDROPOWERGENERATORS

CFDOFAIRFLOWINHYDROPOWERGENERATORS CFDOFAIRFLOWINHYDROPOWERGENERATORS Pirooz Moradnia Göteborg-Sweden 1-1-17 Pirooz Moradnia, Chalmers/ Applied Mechanics/ Fluid Dynamics 1/3 Problem Definition Half of the electricity generation in Sweden

More information

CFD Analysis of a Stirred Vessel Bioreactor with Double Pitch Blade and Rushton Type Impellers

CFD Analysis of a Stirred Vessel Bioreactor with Double Pitch Blade and Rushton Type Impellers CFD Analysis of a Stirred Vessel Bioreactor with Double Pitch Blade and Rushton Type Impellers A. Buss 1, 2, A. Suleiko 2, 3, K. Rugele 2, J. Vanags 3 1. Riga Biomaterials Innovation and Development Centre,

More information

ENERGY TRANSFER BETWEEN FLUID AND ROTOR. Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia

ENERGY TRANSFER BETWEEN FLUID AND ROTOR. Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia ENERGY TRANSFER BETWEEN FLUID AND ROTOR Dr. Ir. Harinaldi, M.Eng Mechanical Engineering Department Faculty of Engineering University of Indonesia Basic Laws and Equations Continuity Equation m m ρ mass

More information

VISIMIX LAMINAR. MODELING OF A STAGNANT ZONE FORMATION AS A RESULT OF INEFFICIENT MIXING.

VISIMIX LAMINAR. MODELING OF A STAGNANT ZONE FORMATION AS A RESULT OF INEFFICIENT MIXING. VISIMIX LAMINAR. MODELING OF A STAGNANT ZONE FORMATION AS A RESULT OF INEFFICIENT MIXING. If your media has a high Yield stress value, Shear stress on the wall may be lower than Yield stress. Stagnant

More information

ISO 9906 INTERNATIONAL STANDARD. Rotodynamic pumps Hydraulic performance acceptance tests Grades 1 and 2

ISO 9906 INTERNATIONAL STANDARD. Rotodynamic pumps Hydraulic performance acceptance tests Grades 1 and 2 INTERNATIONAL STANDARD ISO 9906 First edition 1999-1-15 Rotodynamic pumps Hydraulic performance acceptance tests Grades 1 and Pompes rotodynamiques Essais de fonctionnement hydraulique pour la réception

More information

TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng., June 2003

TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng.,   June 2003 TOTAL HEAD, N.P.S.H. AND OTHER CALCULATION EXAMPLES Jacques Chaurette p. eng., www.lightmypump.com June 2003 Figure 1 Calculation example flow schematic. Situation Water at 150 F is to be pumped from a

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING. Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : II-I- B. Tech Year : 0 0 Course Coordinator

More information

Analysis of the Cooling Design in Electrical Transformer

Analysis of the Cooling Design in Electrical Transformer Analysis of the Cooling Design in Electrical Transformer Joel de Almeida Mendes E-mail: joeldealmeidamendes@hotmail.com Abstract This work presents the application of a CFD code Fluent to simulate the

More information

Lecture 4: Wind energy

Lecture 4: Wind energy ES427: The Natural Environment and Engineering Global warming and renewable energy Lecture 4: Wind energy Philip Davies Room A322 philip.davies@warwick.ac.uk 1 Overview of topic Wind resources Origin of

More information

Rate of Flow Quantity of fluid passing through any section (area) per unit time

Rate of Flow Quantity of fluid passing through any section (area) per unit time Kinematics of Fluid Flow Kinematics is the science which deals with study of motion of liquids without considering the forces causing the motion. Rate of Flow Quantity of fluid passing through any section

More information

Lect-33. In this lecture... Tutorial on centrifugal compressors. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

Lect-33. In this lecture... Tutorial on centrifugal compressors. Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay Let- 33 In this leture... Let-33 utorial on entrifugal ompressors Problem # At the inlet of a entrifugal ompressor eye, the relative Mah number is to be limited to 0.97. he hub-tip radius ratio of the

More information

Separationsteknik / Separation technology

Separationsteknik / Separation technology Separationsteknik / Separation technology 424105 9. Mixning, omrörning och blandning / Mixing, stirring and blending Ron Zevenhoven Åbo Akademi University Thermal and Flow Engineering Laboratory / Värme-

More information

Pumping Stations Design For Infrastructure Master Program Engineering Faculty-IUG

Pumping Stations Design For Infrastructure Master Program Engineering Faculty-IUG umping Stations Design For Infrastructure Master rogram Engineering Faculty-IUG Lecture : umping Hydraulics Dr. Fahid Rabah Water and environment Engineering frabah@iugaza.edu The main items that will

More information

STUDY OF THE PRESSURE DROP FOR RADIAL INFLOW BETWEEN CO-ROTATING DISCS

STUDY OF THE PRESSURE DROP FOR RADIAL INFLOW BETWEEN CO-ROTATING DISCS 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES X. YU 1, 2 H. Y. LU 1 J. N. SUN 2 X. LUO 2,* G. Q. XU 2 (1 Shenyang Aeroengine Research Institute, Aviation Industry Corporation of China, Shenyang,

More information

Numerical Simulation of Flow Field in a Elliptic Bottom Stirred Tank with Bottom Baffles

Numerical Simulation of Flow Field in a Elliptic Bottom Stirred Tank with Bottom Baffles Numerical Simulation of Flow Field in a Elliptic Bottom Stirred Tank with Bottom Baffles Liu Xuedong, Liu Zhiyan Abstract When the crisscross baffles and logarithmic spiral baffles are placed on the bottom

More information

Conservation of Angular Momentum

Conservation of Angular Momentum 10 March 2017 Conservation of ngular Momentum Lecture 23 In the last class, we discussed about the conservation of angular momentum principle. Using RTT, the angular momentum principle was given as DHo

More information

CHAPTER 4 OPTIMIZATION OF COEFFICIENT OF LIFT, DRAG AND POWER - AN ITERATIVE APPROACH

CHAPTER 4 OPTIMIZATION OF COEFFICIENT OF LIFT, DRAG AND POWER - AN ITERATIVE APPROACH 82 CHAPTER 4 OPTIMIZATION OF COEFFICIENT OF LIFT, DRAG AND POWER - AN ITERATIVE APPROACH The coefficient of lift, drag and power for wind turbine rotor is optimized using an iterative approach. The coefficient

More information

Mass Transfer in a Stirred Batch Reactor

Mass Transfer in a Stirred Batch Reactor Mass Transfer in a Stirred Batch Reactor In many processes, efficient reactor usage goes hand in hand with efficient mixing. The ability to accurately examine the effects of impeller placement, speed,

More information

EFFECT OF FORCED ROTATING VANELESS DIFFUSERS ON CENTRIFUGAL COMPRESSOR STAGE PERFORMANCE

EFFECT OF FORCED ROTATING VANELESS DIFFUSERS ON CENTRIFUGAL COMPRESSOR STAGE PERFORMANCE Journal of Engineering Science and Technology Vol. 6, No. 5 (2011) 558-574 School of Engineering, Taylor s University EFFECT OF FORCED ROTATING VANELESS DIFFUSERS ON CENTRIFUGAL COMPRESSOR STAGE PERFORMANCE

More information

vector H. If O is the point about which moments are desired, the angular moment about O is given:

vector H. If O is the point about which moments are desired, the angular moment about O is given: The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment

More information

Introduction to Fluid Machines (Lectures 49 to 53)

Introduction to Fluid Machines (Lectures 49 to 53) Introduction to Fluid Machines (Lectures 49 to 5) Q. Choose the crect answer (i) (ii) (iii) (iv) A hydraulic turbine rotates at N rpm operating under a net head H and having a discharge Q while developing

More information